

Staple!

Linear Algebra
MAS4105 6137

Class-E

Prof. JLF King
Tuesday, 05Apr2016

Ord: _____

Hello. Every IP is conj-linear in its first argument: So $\langle \alpha \mathbf{u}, \mathbf{w} \rangle = \overline{\alpha} \langle \mathbf{u}, \mathbf{w} \rangle$ and $\langle \mathbf{u}, \alpha \mathbf{w} \rangle = \alpha \langle \mathbf{u}, \mathbf{w} \rangle$.

E1: Show no work. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a A multivariate polynomial, where each monomial has the same degree, is **circle**

monogamous atrocious gregarious
monic expialadocious homogeneous
manic unitary Unitarian utilitarian

b Let $\mathbf{p} := (4, 1, 3)$, $\mathbf{q} := (1, 7, 0)$ and $\mathbf{w} := (1, 1, 0)$. A dir-vec for $\mathbb{L} := \text{Line}(\mathbf{p}, \mathbf{q})$ is $\mathbf{D} := \mathbf{p} - \mathbf{q} =$ _____.

The point on \mathbb{L} closest to \mathbf{w} is $\mathbf{C} =$ _____.

c Line $y = [\dots x] + \dots$ is the least-squares best-fit to data pts $\{(-3, 0), (-1, 0), (1, 0), (3, 1)\}$.

d Let $\mathbf{B} := \begin{bmatrix} 3 & 6 & 0 & -3 & 0 \\ 1 & 2 & 1 & 0 & 1 \end{bmatrix}$. Then $\mathbf{R} := \text{RREF}(\mathbf{B})$ is
[show no work, here]

$$\mathbf{R} = \left[\begin{array}{c|c|c|c|c} & & & & \\ \hline & & & & \\ \hline \end{array} \right].$$

I For subspace $\mathbf{V} := \text{Nul}(\mathbf{L}_B)$, use back-substitution, and *scaling*, to produce an integerized-basis (i.e, in each vector the Gcd of the entries is 1, and the first non-zero value is positive)

$$\mathbf{v}_1 := \left(\begin{array}{c} \dots \\ \dots \\ \dots \\ \dots \\ \dots \end{array} \right), \mathbf{v}_2 := \left(\begin{array}{c} \dots \\ \dots \\ \dots \\ \dots \\ \dots \end{array} \right), \\ \mathbf{v}_3 := \left(\begin{array}{c} \dots \\ \dots \\ \dots \\ \dots \\ \dots \end{array} \right), \mathbf{v}_4 := \left(\begin{array}{c} \dots \\ \dots \\ \dots \\ \dots \\ \dots \end{array} \right).$$

[Note: Only use as many as the dimension of \mathbf{V} .]

II Apply Gram-Schmidt to compute an **orthogonal integerized-basis** for \mathbf{V} :

$$\mathbf{b}_1 := \left(\begin{array}{c} \dots \\ \dots \\ \dots \\ \dots \\ \dots \end{array} \right), \mathbf{b}_2 := \left(\begin{array}{c} \dots \\ \dots \\ \dots \\ \dots \\ \dots \end{array} \right), \\ \mathbf{b}_3 := \left(\begin{array}{c} \dots \\ \dots \\ \dots \\ \dots \\ \dots \end{array} \right), \mathbf{b}_4 := \left(\begin{array}{c} \dots \\ \dots \\ \dots \\ \dots \\ \dots \end{array} \right).$$

e Let $\mathbf{P}: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be orthogonal projection on the θ -angle line. [Picture on blackboard.] In terms of numbers $\mathbf{c} := \cos(\theta)$ and $\mathbf{s} := \sin(\theta)$, then, w.r.t the std-basis, $\llbracket \mathbf{P} \rrbracket_{\mathcal{E}}^{\mathcal{E}}$ equals $\left[\begin{array}{c|c} & \\ \hline & \\ \hline \end{array} \right]$.

f

Linear $\mathbf{S}, \mathbf{T}: \mathbf{V} \rightarrow \mathbf{V}$ on \mathbb{C} -IPS with $\text{Dim}(\mathbf{V}) = 20$. Use $\text{Geo}(\alpha, \mathbf{T})$ and $\text{Alg}(\alpha, \mathbf{T})$ for the geometric and algebraic multiplicities of $\alpha \in \mathbb{C}$, for \mathbf{T} .

1 If $2, -2, 2i$ are \mathbf{T} -evals, then $\text{Geo}(16, \mathbf{T}^4) \geq 3$. **T** **F**

2 If β is a \mathbf{T} -eval and h is an arbitrary \mathbb{C} -polynomial, then $h(\beta)$ is an eval for $h(\mathbf{T})$. **AT** **AF** **Nei**

3 If α is an eval for both \mathbf{T} and \mathbf{S} , then α is an \mathbf{ST} -eval. **AT** **AF** **Nei**

4 If $7i - 5$ is an eval for \mathbf{T}^* , then $7i + 5$ is an eval for \mathbf{T} . **AT** **AF** **Nei**

OYOP: Essay: *Write on every third line, so that I can easily write between the lines.*

E2: On \mathbb{C} -IPS, consider a linear fnc'al $h: \mathbf{V} \rightarrow \mathbb{C}$. Suppose that $\text{Dim}(\mathbf{V}) = 6$. Prove $\exists \mathbf{u} \in \mathbf{V}$, such that $h(\cdot) = \langle \mathbf{u}, \cdot \rangle$.

End of Class-E

E1: _____ 170pts
E2: _____ 45pts

Total: _____ 215pts