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ABSTRACT: Exposition of the standard contraction-
mapping proof for a 15t-order DE. Shows how to apply
this to higher-order DEs.

(The Fundamental Thm of ODEs, abbreviated FTODE:
Wikipedia calls this either Picard-Lindeléf thm or Picard's

existence thm or Cauchy-Lipschitz thm.)

Consider”! an initial-condition-DE

x'(t) = K(t x(1)),
where x(5) = 0.

Entrance.

Here x is the unknown function. Putting sufficient
conditions on K(), the kernel, will guarantee a
local solution; a unique local soln.

The Setting

Fix a Banach space H with 0 its zero vector;
use [-] for its norm. Let B C H be a closed
ball centered at 0, with Radius(B) > 0. (Possibly
B will have infinite-radius and be all of H; in that in-
stance, step (6), below, is superflous, and consequently
condition (A2) is unnecessary.) Typically, H is a finite-
dim’al Euclidean space R*Y. Then, if Radius(B)
1s finite, our B will automatically be compact.

The “contraction space” (). Consider a com-
pact interval

Jyp = [b—w, b+uw],

Y1Phrases: WLOG: ‘Without loss of generality’. TFAE:
‘The following are equivalent’. ITOf: ‘In Terms Of.
OTForm: ‘of the form’. FTSOC: ‘For the sake of contra-
diction’. Use iff: ‘if and only if .

IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: exempli gratia, ‘for example’. i.e: id est, ‘that
is’. N.B: Nota bene, ‘Note well. QED: quod erat demon-
strandum, meaning “end of proof”.
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where posreal w is what we’ll call its “width”. Let
), be the space of continuous functions

z:J,—B such that z(5)=0.

Our goal is to find a differentiable fnc x € €,
fulfilling (1) for all t € J,. Henceforth write
these two sets as J and (2; the dependency on
the width was made explicit, above, since we will
later shrink w. Use [-] to indicate the sup-norm,

2a: [z] = supz(t)],
teJ
for functions mapping J—H. For each z € (2,
since J is compact, [z] < cc.
Convergence in [-] is uniform-convergence. The
usual “three-¢ argument” shows that the uniform-
limit of continuous fncs (exists and) is cts. Thus

2b:  Metric space (22, [-]) is complete.

(This used that B is closed.) Each contraction map-
ping Q— has a (unique) fixed-point. Our goal:

Produce a contraction mapping z +— Z
whose unique fixed-point is a soln to (1).

Conditions on K

Our kernel K is a function
A0: K: JxB - H
satisfying these three conditions:

Al:  K() is continuous.

K() is bounded. e, its sup-norm
A2:  ||K]|| ;g is finite. |This boundedness is not

needed if B is all of HL.|
A3:  K() is H-wise Lipschitz.

This last means we have a real number U < oo,
where U is the supremum of

[K(t; z) — K(t; y)|
[z —y]
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taken over all t € J and all distinct-point pairs
z,y € B. In particular

vyen: [K(tiz) - Kt y)] < U-[z—y].
Evidently

If B is compact then JxB is cpt, hence (A2).
Ads: And automatically (A3), when B is compact

and the partial derivative %(t; y) exists, and

is a continuous function of (t,y) € JxB.

Each function z € € has a “K-tmage”, which
is a fnc f,: J—HL. It is

4a: fa(t) = K(t; z(t)).
Our Lipschitz constant U yields this:
For all functions z,y € 2:

4b: [fe=f] <U-[z-y].

The operator

Each f, is cts, courtesy the cty of K. Thus (1),
with DE , is equivalent to assertion

1 x(t) & /tf def /tf (r) - dr , for every
' 57 ST  time t € J.

This, courtesy the Fund.thm of Calculus, since fy
is cts so RhS(?7?’) is defined and differentiable.
Each fnc z € Q yields a new fnc z: J—H,

A

A solution x to (??’) is a fixed-point of the map-
ping z — z. Each z maps into H; as a first step,
we need to guarantee that z maps into B. So we
need to arrange that the norm of z is <Radius(B).
From (5) we have, since w is the radius of .J, that

5: 7 =

note
[z] < w-[f] < w-|K]|z-

Courtesy (A2), our K() is bounded. So we can
simply shrink”! width w until the product

6: w-|K]| is dominated by Radius(B).

This arranges that the |z — Z] mapping indeed
maps {2 into €.

“1Shrinking w shrinks interval J and so might decrease
norm || K| ;, 5. Lipschitz constant &/ might also decrease.

Higher-order DEs
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The Contraction

For each two functions z,y € () observe that

 B-sl < w4l
' <w-U-[z-y].

Again®! shrink w, this time so that
6': w-U < 1.

Now, finally, z +— Z is a contraction-map on (2
and thus has a unique fixed-point. O

A general initial-condition. If we instead re-
quire that y(5) = P for some particular pt P € H,
then just center ball B at P and replace (5) by

£ P+/5tfz(r)d7].

5 zZ =

Higher-order DEs

We first give an ezample of “re-coding” a higher-
order DE to a 1**-order DE.

27d_order to 1%%-order. Over an interval
J C R, suppose we seek a soln h: J—-R to DE

8az W(t) = sin(t- (1)) + hlt).
A fne x: J—R? can be written in components as
_ [m®
X(t) o {ho(t)}'
If each h; is differentiable then so is x, and x’
/ /
equals [Zé} fote {Zﬂ Consider DE (x)

def [ h " Tsin(th h
sh: x/(1) = [ h;gﬂ i3 { (O + halt)

The 0*"-component, hg, of a soln x to (8b) is au-
tomatically a soln to (8a). Conversely, a soln h
to (8a) yields a soln [Z;EH to (8b), by setting
ho = h and hy == h'.

Lastly, defining the kernel K:.JxR?—R? by
w KR = [0

hi

makes the vector-valued DE x'(t) = K(t; X(t)) a
restatement of (8b), hence of (8a).
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Re-coding done more generally

Now consider a third-order DE OTForm

" = G(t; h, W, B"),
with h®(5) = P, for k =0,1,2.

Here h: J—»H and G:J x H*® — H and each Py is a
point in H. By letting h;, denote the k" derivative
h(®) | we can restate the DE part of (9) as a vector
equation

hIQ G(t7 hO; hl; h2)
Ryl = hy
h, hy
Reduction. In order to write (9) as a first-order

eqn, consider a fnc x: J—H® written as a column
ha(t)
vector x(t) = [hl(t)] , where each hj, maps J—H.

ho(t)
This notation hands us a function

K: JxH® — H* defined by

10: h G(t; hohi,h
Ko (1)) = ["R]
ho h1

This allows us to rewrite (9) as

. vieJ: x(t) = K(tx(1),
with x(5) = P,
. P, x3
where P denotes the point |:£1:| in H™. O
0

Commentary. Suppose K is, say, 7-times contin-
uously-differentiable. Then a fixed-pt of z — 1z,
where
t
z(t) = P +/ K(T; Z(T)) dr,
5
is (at least) 8-times continuously-diff’able.

When K() comes from (10) then the level of
differentiability of K() is that of G(). O

Re-coding done more generally
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When our hypotheses fail. Consider the fol-
lowing H := R case. For C' a real constant, define

11a: x(t) = xc(t) = 1+10t
Note x(t) —1= %, SO
x(t) - [x(t) — 1] = MCZW

But this latter equals ¢ - x(¢). hence x¢() satisfies
initial-value problem

t-x'(t) = x(t) - [x(t)—1], with

11b:
x(0) = 1.

For each C' € [0,3) our x¢() is well-defined on
interval J = (*é, o0). Since J 3 0 [our initial-cond
is at 0], we thus have an infinite family of solns
to IVP (11b) on J; one soln for each C' € [0, 3).

Since the conclusion to FTODE is false, it must
be that some FTODE-hypothesis failed.

Writing (11b) in form (1), our kernel is
1lc: K(t' :L‘) = 1-[.752—35].
’ t

But this is not well-defined at t=0, which is where
our initial-condition takes place. Also, no matter
how small a ¢,>0 is take, the RhS(11c¢) is not H-
wise Lipschitz as ¢ ranges over interval (0,%y). [
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