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Abstract: Exposition of the standard contraction-
mapping proof for a 1st-order DE. Shows how to apply
this to higher-order DEs.

(The Fundamental Thm of ODEs, abbreviated FTODE:
Wikipedia calls this either Picard-Lindelöf thm or Picard’s
existence thm or Cauchy-Lipschitz thm.)

Entrance. Consider♥1 an initial-condition-DE

x′(t) = K
(
t; x(t)

)
,

where x(5) = 0 .
1:

Here x is the unknown function. Putting sufficient
conditions on K(), the kernel , will guarantee a
local solution; a unique local soln.

The Setting

Fix a Banach space H with 0 its zero vector;
use d·e for its norm. Let B ⊂ H be a closed
ball centered at 0, with Radius(B) > 0. (Possibly
B will have infinite-radius and be all of H; in that in-
stance, step (6), below, is superflous, and consequently
condition (A2) is unnecessary.) Typically, H is a finite-
dim’al Euclidean space R×N . Then, if Radius(B)
is finite, our B will automatically be compact.

The “contraction space” Ω. Consider a com-
pact interval

Jw := [5−w, 5+w] ,

♥1Phrases: WLOG: ‘Without loss of generality’. TFAE:
‘The following are equivalent’. ITOf: ‘In Terms Of’.
OTForm: ‘of the form’. FTSOC: ‘For the sake of contra-
diction’. Use iff: ‘if and only if’.
IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.
Use w.r.t: ‘with respect to’ and s.t: ‘such that’.
Latin: e.g: exempli gratia, ‘for example’. i.e: id est, ‘that

is’. N.B: Nota bene, ‘Note well’. QED: quod erat demon-
strandum, meaning “end of proof”.

where posreal w is what we’ll call its “width” . Let
Ωw be the space of continuous functions

z:Jw→B such that z(5) = 0 .

Our goal is to find a differentiable fnc x ∈ Ωw

fulfilling (1) for all t ∈ Jw. Henceforth write
these two sets as J and Ω; the dependency on
the width was made explicit, above, since we will
later shrink w. Use J·K to indicate the sup-norm,

JzK := sup
t∈J
dz(t)e ,2a:

for functions mapping J→H. For each z ∈ Ω,
since J is compact, JzK <∞.

Convergence in J·K is uniform-convergence. The
usual “three-ε argument” shows that the uniform-
limit of continuous fncs (exists and) is cts. Thus

Metric space (((Ω, J·K))) is complete.2b:

(This used that B is closed.) Each contraction map-
ping Ω→Ω has a (unique) fixed-point. Our goal:

Produce a contraction mapping z 7→ ẑ
whose unique fixed-point is a soln to (1).2c:

Conditions on K

Our kernel K is a function

K: J×B→ HA0:

satisfying these three conditions:

K() is continuous.A1:

K() is bounded. I.e, its sup-norm
‖K‖J×B is finite. [This boundedness is not
needed if B is all of H.]

A2:

K() is H-wise Lipschitz.A3:

This last means we have a real number U < ∞,
where U is the supremum of

dK(t; z)−K(t; y)e
dz− ye
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taken over all t ∈ J and all distinct-point pairs
z,y ∈ B. In particular

∀t∈J,
∀z,y∈B : dK(t; z)−K(t; y)e 6 U · dz− ye .
Evidently

If B is compact then J×B is cpt, hence (A2).
And automatically (A3), when B is compact
and the partial derivative dK

dy (t; y) exists, and
is a continuous function of (((t,y))) ∈ J×B.

A4:

Each function z ∈ Ω has a “K-image ” , which
is a fnc fz:J→H. It is

fz(t) := K
(
t; z(t)

)
.4a:

Our Lipschitz constant U yields this:
For all functions z,y ∈ Ω:

Jfz − fyK 6 U · Jz− yK .4b:

The operator

Each fz is cts, courtesy the cty of K. Thus (1),
with DE

�� ��x′=fx , is equivalent to assertion

x(t)
?
=
∫ t

5
fx

def
==
∫ t

5
fx(τ) · dτ , for every

time t ∈ J .1′:

This, courtesy the Fund.thm of Calculus, since fx
is cts so RhS(??′) is defined and differentiable.

Each fnc z ∈ Ω yields a new fnc ẑ:J→H,

ẑ :=
[
t 7→

∫ t

5
fz

]
.5:

A solution x to (??′) is a fixed-point of the map-
ping z 7→ ẑ. Each ẑ maps into H; as a first step,
we need to guarantee that ẑ maps into B. So we
need to arrange that the norm of ẑ is 6Radius(B).
From (5) we have, since w is the radius of J , that

JẑK 6 w · JfzK
note
6 w · ‖K‖J×B .

Courtesy (A2), our K() is bounded. So we can
simply shrink♥1 width w until the product

w · ‖K‖ is dominated by Radius(B).6:

This arranges that the [z 7→ ẑ] mapping indeed
maps Ω into Ω.
♥1Shrinking w shrinks interval J and so might decrease

norm ‖K‖J×B. Lipschitz constant U might also decrease.

The Contraction

For each two functions z,y ∈ Ω observe that
Jẑ− ŷK 6 w · Jfz − fyK

6 w · U · Jz− yK .
7:

Again♥1 shrink w, this time so that

w · U < 1 .6′:

Now, finally, z 7→ ẑ is a contraction-map on Ω
and thus has a unique fixed-point. ♦

A general initial-condition. If we instead re-
quire that y(5) = P for some particular pt P ∈ H,
then just center ball B at P and replace (5) by

ẑ :=
[
t 7→ P +

∫ t

5
fz(τ) dτ

]
.5′:

Higher-order DEs
We first give an example of “re-coding” a higher-
order DE to a 1st-order DE.

2nd-order to 1st-order. Over an interval
J ⊂ R, suppose we seek a soln h:J→R to DE

h′′(t) = sin
(
t · h′(t)

)
+ h(t) .8a:

A fnc x:J→R2 can be written in components as

x(t) =
[
h1(t)
h0(t)

]
.

If each hj is differentiable then so is x, and x′

equals
[
h1
h0

]′ note
===

[
h′
1

h′
0

]
. Consider DE (∗)

x′(t)
def
==
[
h1(t)
h0(t)

]′ ∗
=
[
sin(t·h1(t))+h0(t)

h1(t)

]
.8b:

The 0th-component, h0, of a soln x to (8b) is au-
tomatically a soln to (8a). Conversely, a soln h

to (8a) yields a soln
[
h1()
h0()

]
to (8b), by setting

h0 := h and h1 := h′.
Lastly, defining the kernel K:J×R2→R2 by

K
(
t;
[
h1

h0

])
:=
[
sin(t·h1)+h0

h1

]
,8c:

makes the vector-valued DE x′(t) = K
(
t; x(t)

)
a

restatement of (8b), hence of (8a).
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Re-coding done more generally

Now consider a third-order DE OTForm

h′′′ = G(t; h, h′, h′′) ,

with h(k)(5) = Pk, for k = 0, 1, 2.
9:

Here h:J→H andG:J ×H×3→H and each Pk is a
point in H. By letting hk denote the kth derivative
h(k), we can restate the DE part of (9) as a vector
equation h

′
2

h′1
h′0

 =

G(t; h0, h1, h2)
h2
h1

 .

Reduction. In order to write (9) as a first-order
eqn, consider a fnc x:J→H×3 written as a column

vector x(t) =

[
h2(t)
h1(t)
h0(t)

]
, where each hk maps J→H.

This notation hands us a function

K: J ×H×3 → H×3 defined by

K
(
t;
[
h2
h1
h0

])
:=

[
G(t;h0,h1,h2)

h2
h1

]
.

10:

This allows us to rewrite (9) as

∀ t ∈ J : x′(t) = K
(
t; x(t)

)
,

with x(5) = P ,
9′:

where P denotes the point
[
P2
P1
P0

]
in H×3. ♦

Commentary. Suppose K is, say, 7-times contin-
uously-differentiable. Then a fixed-pt of z 7→ ẑ,
where

ẑ(t) := P +
∫ t

5
K
(
τ ; z(τ)

)
dτ ,

is (at least) 8-times continuously-diff’able.
When K() comes from (10) then the level of

differentiability of K() is that of G(). �

When our hypotheses fail. Consider the fol-
lowing H := R case. For C a real constant, define

x(t) = xC(t) :=
1

1 + Ct
.11a:

Note x(t)− 1 = Ct
1+Ct

, so

x(t) · [x(t)− 1] =
Ct

[1 + Ct]2
.

But this latter equals t ·x′(t). hence xC() satisfies
initial-value problem

t · x′(t) = x(t) · [x(t)− 1] , with
x(0) = 1 .

11b:

For each C ∈ [0, 3) our xC() is well-defined on
interval J := ( 1

3
,∞). Since J 3 0 [our initial-cond

is at 0], we thus have an infinite family of solns
to IVP (11b) on J ; one soln for each C ∈ [0, 3).

Since the conclusion to FTODE is false, it must
be that some FTODE-hypothesis failed.

Writing (11b) in form (1), our kernel is

K
(
t; x

)
:=

1

t
· [x2 − x] .11c:

But this is not well-defined at t=0, which is where
our initial-condition takes place. Also, no matter
how small a t0>0 is take, the RhS(11c) is not H-
wise Lipschitz as t ranges over interval (0, t0). �
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