

Existence and uniqueness of solution to an ODE

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
`squash@ufl.edu`
 Webpage <http://squash.1gainesville.com/>
 9 April, 2019 (at 14:52)

ABSTRACT: Exposition of the standard contraction-mapping proof for a 1st-order DE. Shows how to apply this to higher-order DEs.

(The Fundamental Thm of ODEs, abbreviated **FTODE**: Wikipedia calls this either Picard-Lindelöf thm or Picard's existence thm or Cauchy-Lipschitz thm.)

Entrance. Consider^{♡1} an initial-condition-DE

$$1: \quad \mathbf{x}'(t) = \mathbf{K}(t; \mathbf{x}(t)), \quad \text{where } \mathbf{x}(5) = \mathbf{0}.$$

Here \mathbf{x} is the *unknown function*. Putting sufficient conditions on $\mathbf{K}()$, the *kernel*, will guarantee a local solution; a *unique* local soln.

The Setting

Fix a Banach space \mathbb{H} with $\mathbf{0}$ its zero vector; use $[\cdot]$ for its norm. Let $\mathbf{B} \subset \mathbb{H}$ be a *closed* ball centered at $\mathbf{0}$, with $\text{Radius}(\mathbf{B}) > 0$. (Possibly \mathbf{B} will have infinite-radius and be all of \mathbb{H} ; in that instance, step (6), below, is superflous, and consequently condition (A2) is unnecessary.) Typically, \mathbb{H} is a finite-dim' al Euclidean space \mathbb{R}^{N} . Then, if $\text{Radius}(\mathbf{B})$ is finite, our \mathbf{B} will automatically be compact.

The “contraction space” Ω . Consider a compact interval

$$J_w := [5-w, 5+w],$$

^{♡1}Phrases: WLOG: ‘Without loss of generality’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. Use iff: ‘if and only if’.

IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’. N.B: *Nota bene*, ‘Note well’. QED: *quod erat demonstrandum*, meaning “end of proof”.

where posreal w is what we'll call its “width”. Let Ω_w be the space of **continuous** functions

$$\mathbf{z}: J_w \rightarrow \mathbf{B} \quad \text{such that } \mathbf{z}(5) = \mathbf{0}.$$

Our goal is to find a differentiable fnc $\mathbf{x} \in \Omega_w$ fulfilling (1) for all $t \in J_w$. Henceforth write these two sets as J and Ω ; the dependency on the width was made explicit, above, since *we will later shrink w*. Use $[\cdot]$ to indicate the sup-norm,

$$2a: \quad [\mathbf{z}] := \sup_{t \in J} [\mathbf{z}(t)],$$

for functions mapping $J \rightarrow \mathbb{H}$. For each $\mathbf{z} \in \Omega$, since J is compact, $[\mathbf{z}] < \infty$.

Convergence in $[\cdot]$ is uniform-convergence. The usual “three- ε argument” shows that the uniform-limit of continuous fncs (exists and) is cts. Thus

$$2b: \quad \text{Metric space } (\Omega, [\cdot]) \text{ is complete.}$$

(This used that \mathbf{B} is closed.) Each contraction mapping $\Omega \rightarrow \Omega$ has a (unique) fixed-point. Our goal:

$$2c: \quad \begin{aligned} &\text{Produce a contraction mapping } \mathbf{z} \mapsto \hat{\mathbf{z}} \\ &\text{whose unique fixed-point is a soln to (1).} \end{aligned}$$

Conditions on \mathbf{K}

Our kernel \mathbf{K} is a function

$$A0: \quad \mathbf{K}: J \times \mathbf{B} \rightarrow \mathbb{H}$$

satisfying these three conditions:

$$A1: \quad \mathbf{K}() \text{ is continuous.}$$

$$A2: \quad \begin{aligned} &\mathbf{K}() \text{ is bounded. I.e, its sup-norm} \\ &\|\mathbf{K}\|_{J \times \mathbf{B}} \text{ is finite. [This boundedness is \underline{not} needed if } \mathbf{B} \text{ is all of } \mathbb{H}.] \end{aligned}$$

$$A3: \quad \mathbf{K}() \text{ is } \mathbb{H}\text{-wise Lipschitz.}$$

This last means we have a real number $\mathcal{U} < \infty$, where \mathcal{U} is the supremum of

$$\frac{[\mathbf{K}(t; \mathbf{z}) - \mathbf{K}(t; \mathbf{y})]}{[\mathbf{z} - \mathbf{y}]}$$

taken over all $t \in J$ and all distinct-point pairs $\mathbf{z}, \mathbf{y} \in \mathbf{B}$. In particular

$$\forall t \in J, \forall \mathbf{z}, \mathbf{y} \in \mathbf{B}: \|\mathbf{K}(t; \mathbf{z}) - \mathbf{K}(t; \mathbf{y})\| \leq \mathcal{U} \cdot \|\mathbf{z} - \mathbf{y}\|.$$

Evidently

If \mathbf{B} is compact then $J \times \mathbf{B}$ is cpt, hence (A2).

A4: And automatically (A3), when \mathbf{B} is compact and the partial derivative $\frac{d\mathbf{K}}{dy}(t; \mathbf{y})$ exists, and is a continuous function of $(t, \mathbf{y}) \in J \times \mathbf{B}$.

Each function $\mathbf{z} \in \Omega$ has a “**K-image**”, which is a fnc $f_{\mathbf{z}}: J \rightarrow \mathbb{H}$. It is

$$4a: f_{\mathbf{z}}(t) := \mathbf{K}(t; \mathbf{z}(t)).$$

Our Lipschitz constant \mathcal{U} yields this:

For all functions $\mathbf{z}, \mathbf{y} \in \Omega$:

$$4b: \|f_{\mathbf{z}} - f_{\mathbf{y}}\| \leq \mathcal{U} \cdot \|\mathbf{z} - \mathbf{y}\|.$$

The operator

Each $f_{\mathbf{z}}$ is cts, courtesy the cty of \mathbf{K} . Thus (1), with DE $\boxed{\mathbf{x}' = f_{\mathbf{x}}}$, is equivalent to assertion

$$1': \mathbf{x}(t) \stackrel{?}{=} \int_5^t f_{\mathbf{x}} \stackrel{\text{def}}{=} \int_5^t \mathbf{f}_{\mathbf{x}}(\tau) \cdot d\tau, \text{ for every time } t \in J.$$

This, courtesy the Fund.thm of Calculus, since $f_{\mathbf{x}}$ is cts so RhS(??') is defined and differentiable.

Each fnc $\mathbf{z} \in \Omega$ yields a new fnc $\hat{\mathbf{z}}: J \rightarrow \mathbb{H}$,

$$5: \hat{\mathbf{z}} := \left[t \mapsto \int_5^t f_{\mathbf{z}} \right].$$

A solution \mathbf{x} to (??') is a **fixed-point** of the mapping $\mathbf{z} \mapsto \hat{\mathbf{z}}$. Each $\hat{\mathbf{z}}$ maps into \mathbb{H} ; as a first step, we need to guarantee that $\hat{\mathbf{z}}$ maps into \mathbf{B} . So we need to arrange that the norm of $\hat{\mathbf{z}}$ is $\leq \text{Radius}(\mathbf{B})$. From (5) we have, since w is the radius of J , that

$$\|\hat{\mathbf{z}}\| \leq w \cdot \|f_{\mathbf{z}}\| \stackrel{\text{note}}{\leq} w \cdot \|\mathbf{K}\|_{J \times \mathbf{B}}.$$

Courtesy (A2), our $\mathbf{K}()$ is bounded. So we can simply shrink¹ width w until the product

$$6: w \cdot \|\mathbf{K}\| \text{ is dominated by } \text{Radius}(\mathbf{B}).$$

This arranges that the $[\mathbf{z} \mapsto \hat{\mathbf{z}}]$ mapping indeed maps Ω into Ω .

¹Shrinking w shrinks interval J and so might decrease norm $\|\mathbf{K}\|_{J \times \mathbf{B}}$. Lipschitz constant \mathcal{U} might also decrease.

The Contraction

For each two functions $\mathbf{z}, \mathbf{y} \in \Omega$ observe that

$$7: \|\hat{\mathbf{z}} - \hat{\mathbf{y}}\| \leq w \cdot \|f_{\mathbf{z}} - f_{\mathbf{y}}\| \leq w \cdot \mathcal{U} \cdot \|\mathbf{z} - \mathbf{y}\|.$$

Again¹ shrink w , this time so that

$$6': w \cdot \mathcal{U} < 1.$$

Now, finally, $\mathbf{z} \mapsto \hat{\mathbf{z}}$ is a contraction-map on Ω and thus has a unique fixed-point. \diamond

A general initial-condition. If we instead require that $\mathbf{y}(5) = \mathbf{P}$ for some particular pt $\mathbf{P} \in \mathbb{H}$, then just center ball \mathbf{B} at \mathbf{P} and replace (5) by

$$5': \hat{\mathbf{z}} := \left[t \mapsto \mathbf{P} + \int_5^t f_{\mathbf{z}}(\tau) d\tau \right].$$

Higher-order DEs

We first give an *example* of “re-coding” a higher-order DE to a 1st-order DE.

2nd-order to 1st-order. Over an interval $J \subset \mathbb{R}$, suppose we seek a soln $h: J \rightarrow \mathbb{R}$ to DE

$$8a: h''(t) = \sin(t \cdot h'(t)) + h(t).$$

A fnc $\mathbf{x}: J \rightarrow \mathbb{R}^2$ can be written in components as

$$\mathbf{x}(t) = \begin{bmatrix} h_1(t) \\ h_0(t) \end{bmatrix}.$$

If each h_j is differentiable then so is \mathbf{x} , and \mathbf{x}' equals $\begin{bmatrix} h_1 \\ h_0 \end{bmatrix}' \stackrel{\text{note}}{=} \begin{bmatrix} h_1' \\ h_0' \end{bmatrix}$. Consider DE (*)

$$8b: \mathbf{x}'(t) \stackrel{\text{def}}{=} \begin{bmatrix} h_1(t) \\ h_0(t) \end{bmatrix}' \stackrel{*}{=} \begin{bmatrix} \sin(t \cdot h_1(t)) + h_0(t) \\ h_1(t) \end{bmatrix}.$$

The 0th-component, h_0 , of a soln \mathbf{x} to (8b) is automatically a soln to (8a). Conversely, a soln h to (8a) yields a soln $\begin{bmatrix} h_1 \\ h_0 \end{bmatrix}$ to (8b), by setting $h_0 := h$ and $h_1 := h'$.

Lastly, defining the kernel $\mathbf{K}: J \times \mathbb{R}^2 \rightarrow \mathbb{R}^2$ by

$$8c: \mathbf{K}(t; \begin{bmatrix} h_1 \\ h_0 \end{bmatrix}) := \begin{bmatrix} \sin(t \cdot h_1) + h_0 \\ h_1 \end{bmatrix},$$

makes the vector-valued DE $\mathbf{x}'(t) = \mathbf{K}(t; \mathbf{x}(t))$ a restatement of (8b), hence of (8a).

Re-coding done more generally

Now consider a third-order DE OTForm

$$9: \quad \begin{aligned} h''' &= G(t; h, h', h'') , \\ &\text{with } h^{(k)}(5) = P_k, \text{ for } k = 0, 1, 2. \end{aligned}$$

Here $h: J \rightarrow \mathbb{H}$ and $G: J \times \mathbb{H}^{\times 3} \rightarrow \mathbb{H}$ and each P_k is a point in \mathbb{H} . By letting h_k denote the k^{th} derivative $h^{(k)}$, we can restate the DE part of (9) as a vector equation

$$\begin{bmatrix} h'_2 \\ h'_1 \\ h'_0 \end{bmatrix} = \begin{bmatrix} G(t; h_0, h_1, h_2) \\ h_2 \\ h_1 \end{bmatrix}.$$

Reduction. In order to write (9) as a *first*-order eqn, consider a fnc $\mathbf{x}: J \rightarrow \mathbb{H}^{\times 3}$ written as a column vector $\mathbf{x}(t) = \begin{bmatrix} h_2(t) \\ h_1(t) \\ h_0(t) \end{bmatrix}$, where each h_k maps $J \rightarrow \mathbb{H}$.

This notation hands us a function

$$10: \quad \begin{aligned} \mathbf{K}: J \times \mathbb{H}^{\times 3} &\rightarrow \mathbb{H}^{\times 3} \text{ defined by} \\ \mathbf{K}\left(t; \begin{bmatrix} h_2 \\ h_1 \\ h_0 \end{bmatrix}\right) &:= \begin{bmatrix} G(t; h_0, h_1, h_2) \\ h_2 \\ h_1 \end{bmatrix}. \end{aligned}$$

This allows us to rewrite (9) as

$$9': \quad \begin{aligned} \forall t \in J: \quad \mathbf{x}'(t) &= \mathbf{K}\left(t; \mathbf{x}(t)\right), \\ &\text{with } \mathbf{x}(5) = \mathbf{P}, \end{aligned}$$

where \mathbf{P} denotes the point $\begin{bmatrix} P_2 \\ P_1 \\ P_0 \end{bmatrix}$ in $\mathbb{H}^{\times 3}$. \diamond

Commentary. Suppose \mathbf{K} is, say, 7-times continuously-differentiable. Then a fixed-pt of $\mathbf{z} \mapsto \hat{\mathbf{z}}$, where

$$\hat{\mathbf{z}}(t) := \mathbf{P} + \int_5^t \mathbf{K}\left(\tau; \mathbf{z}(\tau)\right) d\tau,$$

is (at least) 8-times continuously-diff'able.

When $\mathbf{K}()$ comes from (10) then the level of differentiability of $\mathbf{K}()$ is that of $G()$. \square

When our hypotheses fail. Consider the following $\mathbb{H} := \mathbb{R}$ case. For C a real constant, define

$$11a: \quad \mathbf{x}(t) = \mathbf{x}_C(t) := \frac{1}{1 + Ct}.$$

Note $\mathbf{x}(t) - 1 = \frac{-Ct}{1+Ct}$, so

$$\mathbf{x}(t) \cdot [\mathbf{x}(t) - 1] = \frac{-Ct}{[1 + Ct]^2}.$$

But this latter equals $t \cdot \mathbf{x}'(t)$. hence $\mathbf{x}_C()$ satisfies initial-value problem

$$11b: \quad \begin{aligned} t \cdot \mathbf{x}'(t) &= \mathbf{x}(t) \cdot [\mathbf{x}(t) - 1], \quad \text{with} \\ \mathbf{x}(0) &= 1. \end{aligned}$$

For each $C \in [0, 3)$ our $\mathbf{x}_C()$ is well-defined on interval $J := (-\frac{1}{3}, \infty)$. Since $J \ni 0$ [our initial-cond is at 0], we thus have an infinite family of solns to IVP (11b) on J ; one soln for each $C \in [0, 3)$.

Since the conclusion to FTODE is false, it must be that some FTODE-hypothesis failed.

Writing (11b) in form (1), our kernel is

$$11c: \quad \mathbf{K}(t; x) := \frac{1}{t} \cdot [x^2 - x].$$

But this is not well-defined at $t=0$, which is where our initial-condition takes place. Also, no matter how small a $t_0 > 0$ is take, the RhS(11c) is *not* \mathbb{H} -wise Lipschitz as t ranges over interval $(0, t_0)$. \square