
Algorithms for solving some differential
equations [v.8]

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA

squash@ufl.edu
Webpage http://squash.1gainesville.com/teaching.html

15 March, 2023 (at 21:20)

XQuiz S: Wedn., 03Feb. 2021
XQuiz T: Wedn., 17Feb.
XQuiz U: Wedn., 03Mar.
XQuiz V: Wedn., 17Mar.
XQuiz W: Wedn., 31Mar.
Quiz X: Tuesday, 20Apr.

What does this mean?

stand took to world.
I you throw the

Number Sets. Expression k ∈ N [read as “k is an element
of N” or “k in N”] means that k is a natural number; a natnum.
Expression N 3 k [read as “N owns k”] is a synonym for k ∈ N.

N = natural numbers = {0, 1, 2, . . . }.
Z = integers = {. . . ,−2,−1, 0, 1, . . . }. For the set

{1, 2, 3, . . . } of positive integers, the posints, use Z+. Use Z−
for the negative integers, the negints.

Q = rational numbers = { p
q
| p ∈ Z and q ∈ Z+}. Use Q+ for

the positive rationals and Q− for the negative rationals.
R = reals. The posreals R+ and the negreals R−.
C = complex numbers, also called the complexes.
For ω∈C, let “ω > 5” mean “ω is real and ω > 5” . [Use

the same convention for ≥, <,≤, and also if 5 is replaced by any real
number.]

Use R = [∞, ∞] := { ∞} ∪ R∪{ ∞}, the extended re-
als.

An “interval of integers ” [b .. c) means the intersec-
tion [b, c) ∩ Z; ditto for open and closed intervals. So
[e .. 2π] = {3, 4, 5, 6} = [3 .. 6] = (2 .. 6]. We allow b and c to
be ±∞; so (∞ .. 1] is Z−. And [∞ .. 1], is { ∞} ∪ Z−.

Floor function: bπc = 3, b πc = 4. Ceiling fnc: dπe = 4.
Absolute value: | 6| = 6 = |6| and | 5 + 2i| =

√
29 .

Mathematical objects. HI Seq: ‘sequence’.
poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’
and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr.:
‘expression’. Fnc: ‘function’ (so ratfnc: means rational function,
a ratio of polynomials). trnfn: ‘transformation’. cty: ‘continuity’.
cts: ‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-
Variable’. CoI: ‘Constant of Integration’. LoI: ‘Limit(s) of
Integration’. RoC: ‘Radius of Convergence’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’.
CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand
side’ of an eqn or inequality. LhS: ‘lefthand side’. Sqrt
or Sqroot: ‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn:
‘partition’, but pt: ‘point’ as in “a fixed-pt of a map”.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value
Thm’. MVT: ‘Mean-Value Thm’.

The logarithm function, defined for x>0, is

log(x) :=

∫ x

1

dv

v
. Its inverse-fnc is exp().

For x>0, then, exp
(
log(x)

)
= x = elog(x). For real t, naturally,

log
(
exp(t)

)
= t = log(et).

PolyExp: ‘Polynomial-times-exponential’, e.g, [3 + t2]·e4t.
PolyExp-sum: ‘Sum of polyexps’. E.g, f(t) := 3te2t + [t2]·et is a
polyexp-sum.

Prefix nt- means ‘non-trivial ’. E.g “a nt-soln to f ′ = 5f is
f(t) := e5t; a trivial soln is f ≡ 0.”

Phrases. WLOG: ‘Without loss of generality’. IFF: ‘if
and only if’. TFAE: ‘The following are equivalent’. ITOf: ‘In
Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of
contradiction’. And ### =“Contradiction”.

IST: ‘It Suffices To’, as in ISTShow, ISTExhibit.
Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: exempli gratia, ‘for example’. i.e: id est, ‘that
is’. N.B: Nota bene, ‘Note well’. inter alia: ‘among other things’.
QED: quod erat demonstrandum, meaning “end of proof”.

Factorial. Def: n! := n·[n−1]·[n−2] · · · 2·1; so 0! = 1.
Rising Fctrl: Jx ↑ KK := x·

[
x+ 1

]
·
[
x+ 2

]
· · ·
[
x+ [K−1]

]
,

Falling Fctrl: Jx ↓ KK := x·
[
x− 1

]
·
[
x− 2

]
· · ·
[
x− [K−1]

]
,

for natnum K and x∈C. E.g, JK ↓KK = K! = J1↑KK.
N.B: For n ∈ N: If K > n then Jn ↓ KK = 0.
Note Jx ↑ KK = Jx+ [K−1] ↓ KK.

Learn from the mistakes of others. You can’t
live long enough to make them all yourself.

–Eleanor Roosevelt

Some differentiation formulas. Below, italic
boldface parameters a,b, c and f represent numbers.
Here, differentiation is w.r.t variable t.

t · et/c =
[
et/c · [ct− c2]

]′
.1.1:

t2 · et/c =
[
et/c · [ct2 − 2c2t+ 2c3]

]′
.1.2:

c
a + bt

=
[
c
b · log(a + bt)

]′
.1.3:

Use expressions E(t) := eat, S(t) := sin(f ·t) and
C(t) := cos(f ·t), below. The number f can be thought
of as “frequency” and, in some contexts, the a can be
thought of as “attenuation”. We have

[a2 + f 2] ·
∫
E·S = E ·

[
aS − f C

]
.1.4:

[a2 + f 2] ·
∫
E·C = E ·

[
f S + aC

]
.1.5:

Webpage http://people.clas.ufl.edu/squash/ Page 1 of 71

http://squash.1gainesville.com/teaching.html
http://people.clas.ufl.edu/squash/index.html

Page 2 of 71 The Easy Scan Prof. JLF King

§Table of Contents (ToC)
Introduction . 2
The Easy Scan . 2
Separation of variables [SoV] 6
CoV to SoV . 7
Complex numbers . 9
SVBuried Treasure Problem [BTP] 9
C-exponential [Chap4–NSS9, P.237]. 10
Same-freq Lemma . 12

CCLDE Algorithm [Const.-Coeff LDE] 13
Polynomial target Undetermined coeffs. 14
PolyExp target . 15

Linear maps . 17
Conjugate-root example 17
Same-span Lemma . 17
Mass-spring [NSS in §4.1, §4.2, §4.9]. 19
The FOLDE algorithm [First-Order LDE]. 20
log-CoV to FOLDE [Change-of-Variable]. 21
Bernoulli eqn using FOLDE 22

The EXACT algorithm . 23
EXACT Example of (E1.1) 24
EXACT Example of (E1.2) 25
Exactifying-factor theory 26

Logistic model [§3.2–NSS9, P.98] 27
Hyperbolic trigonometric functions 31

Derivation of hanging cable 33
The Suspension Bridge solution 34
The Hanging Cable (catenary) solution 34

Convolutions [Chap4–NSS9, P.237.] 40
Power-of-x Lemma . 40
Convolve-Mac Thm . 42
Chain-rule Lemma . 42
DUI: Differentiation under Integral 42
Leibniz-rule Lemma . 43
Leibniz corollary . 43
Convol-diff Thm . 43
Convol-GenTar Algorithm 44

Variation of Parameters [NSS9: §4.6 & §2.4., ex.#30] 46
Cramer’s “Rule” Thm 46
Wronskian L.I. Thm . 46
VoP algorithm [Variation of Parameters]. 46
Equidimensional operators 49
Roo algorithm [Reduction of order]. 49

Operators . 52
Op-commutation lemma 52

Matrix exponential . 54
MatExp theorem . 54
Recoding: Exchanging dimension for DE-order 57
MacFOLDE . 58

A Appendix: Misc examples 60

B Binomial coeffs & the Product rule 61
Calculus applications 61
Product Rule . 61
Gen. Product Rule . 62

C Order-3 VoP 63

D It’s about Brine, it’s about Space, it’s about brine
moving place to place... 64
Compartmental analysis [§3.2–NSS9] 65

Cascading tanks . 66

E Matrix-exp: A bit further 68

F Intro to Calculus of Variations 68

Index for DiffyQ 69

Introduction

[Use NSS9 for the 9th edition of the Nagle,Saff,Snider text-
book. Use, e.g, #7P.193.NSS9, to refer to problem #7 on
page 193 of NSS9.] [Use ZW8 for 8th edition of Zill & Wright,
using e.g, #7P.193.ZW8, to refer to problems.]

For the following algorithms, the unknown func-
tion is y = y(t). For a DE of form

Fnc(y, y′, y′′, . . .) = G() ,

we will call G() the tarGet fnc.

Use D for the differentiation operator ; there-
fore I := D0 is the identity operator. And D3(y)

means D
(
D
(
D(y)

))
, i.e y′′′. So I(y) = D0(y) = y.

[See §5.2–NSS9, P.243.]

Use DE: ‘Differential Equation’, LDE: ‘Linear DE’,
ODE: ‘Ordinary DE’ and PDE: ‘Partial DE’. IVP:
‘Initial-Value Problem’.

Use boldface 1 := [t 7→ 1], for the constant-1 fnc.
For the identity function, use Id(t) = t. Differenti-
ating, Id ′ = 1.

The Easy Scan

Below, α, β,A,B, r range over all numbers; R or C,
as appropriate.

Before we work on solving a DE with U.F y(t), let’s
glean some properties of S, the soln-set of the DE.

What is the name of: The indep.var? The U.F?
What are the parameters in the DE? And: What is
the order of the DE?

Types of functions.

a1: Is the zero-fnc a soln? Are there constant-solns?

a2: Are there non-constant polynomial solns? [This
usually involves examining how the DiffOp affects the de-
gree of a polynomial.]

a3: Could a nt-exponential, A·eBt with B 6=0 and
A 6=0, be a soln to the DE?

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King The Easy Scan Page 3 of 71

Closure properties of S.

b1: Is S sealed [closed] under horizontal translation?
I.e, for soln f and number r, must Tr(f) also be
a soln? I.e, is the DE autonomous?

b2: Is S sealed [closed] under scaling?, i.e, for f ∈ S,
must each αf also be a soln?

For f,g ∈ S, must f+g ∈ S?

[This S is sealed under scaling and under addition IFF
the DE can be written in form LinearOp(y) = 0.]

b3: If not (b2), then is S at least sealed under av-
eraging? I.e, ∀f,g ∈ S and all scalars α,β with
α+ β = 1, is average

[
[αf] + βg

]
a soln?

b4: Special? Is the DOp linear, affine, equidimen-
sional, a CCLDOp? Is the DE autonomous, sepa-
rable, EXACT(ifiable), FOLDE, Bernoulli-type?

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 4 of 71 The Easy Scan Prof. JLF King

Easy-Scan Example. Consider U.F y=y(t) satisfying

dy
dt = 6t2 · [y − 4] .∗:

Checking types (a1,a2,a3). For analysis, define
operators [Left and Right]

L(y) := dy
dt ; [so here, L = D]

R(y) := 6t2 · [y − 4] .

Since L(y)≡0 IFF y≡Constant, the only constant soln
to (∗) is y≡4. And for a poly y of degree N≥1, neces-
sarily Deg

(
R(y)

)
= 2+N , whereas Deg

(
L(y)

)
= N−1.

So no non-constant polynomial solns.
Lastly, L(A·eBt) equals [with A,B 6= 0] another nt-

exponential, AB·eBt. But R(A·eBt) is not a pure ex-
ponential, because of the polynomial factor. So (∗)
has no nt-exponential solns.

Checking closure properties. More to
come. . . �

Soln to (∗). Our DE is separable, so we can get at
least an implicit (∗)-soln. Because we did the Easy-
scan first , should our computation yield a non-trivial
polynomial or exponential answer, then we erred ei-
ther in our SoV computation. . . or in our Easy-
scan. . . OR both!

Separating (∗) gives 1
y−4 dy = 6t2 dt. Let’s only

consider real solns y() with y()>4. [I’m avoiding dis-
cussing what it means to extend log() to C.] Using CoI α,
antidiffing yields

log(y − 4) = α + 2t3 . Exponentiating,

y = 4 + [eα · e2t3] .

Renaming β := eα, then, gives

yβ(t) = 4 + βe2t3 .∗∗:

Indeed, each β∈C has (∗∗) satisfy (∗). Let’s check . . .

Does (∗∗) satisfy (∗) ? Abbreviating E := e2t3 , note
E′

Chain rule
======== E · 2·3t2, i.e E ′ = 6t2E. Thus

[RhS(∗)]′ = y′ = β · 6t2E .

Note y − 4 = βE. So LhS(∗) def
== 6t2 · βE. This in-

deed equals [RhS(∗)]′, as desired. �

I am always ready to learn although I do
not always like being taught.
–Winston Churchill

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King The Easy Scan Page 5 of 71

There’s a delta for every epsilon

It’s a fact that you can always count upon.
There’s a delta for every epsilon

And now and again,
There’s also an N .

But one condition I must give:
The epsilon must be positive
A lonely life all the others live,

In no theorem
A delta for them.

How sad, how cruel, how tragic,
How pitiful, and other adjec-
Tives that I might mention.
The matter merits our attention.
If an epsilon is a hero,
Just because it is greater than zero,
It must be mighty discouragin’
To lie to the left of the origin.

This rank discrimination is not for us,
We must fight for an enlightened calculus,
Where epsilons all, both minus and plus,

Have deltas
To call their own.

Words and Music by: –Tom Lehrer
Video of Lehrer performing the δ-ε song.
Lyrics, and audio of Lehrer performing.

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

https://www.youtube.com/watch?v=zxFCQplZgKI&feature=youtu.be&t=2m31s
http://ww3.haverford.edu/physics-astro/songs/lehrer/delta.htm

Page 6 of 71 Separation of variables [SoV] Prof. JLF King

Separation of variables [SoV]

Consider UF f=f(t) defined on interval J := [3, 7]
satisfying IVP

f ′(t) = β(t)
/
µ
(
f(t)

)
,

with f(5) = 9.
2a:

Let K := f(J), the interval which is the f -image of J.
Together with functions β,µ, suppose we have

three other fncs B,M,MInvF satisfying:

Fncs β,B are defined on J, with B′ = β.

Fncs µ,M are defined on K,
with µ6=0 and M′ = µ.

Fnc M is invertible with MInvF its inverse-fnc.

2b:

Re-write the top-line of (2a) as

µ
(
f(t)

)
· f ′(t) = β(t) .2c:

For each t ∈ J, then, we have∫ t

5
µ
(
f(t)

)
· f ′(t) dt =

∫ t

5
β(t) dt .2d:

Substitution y = f(t) says LhS(2d) equals∫ f(t)

f(5)
µ
(
y
)
·dy by FTC

====== M
(
f(t)

)
−M

(
f(5)

)
.

And RhS(2d) equals B(t)− B(5). Hence

M
(
f(t)

)
= B(t) +

[
M
(
f(5)

)
− B(5)

]
.

Consequently, initial condition (2a) produces

f(t) = MInvF
(

B(t) + M(9)− B(5)
)
.2e:

Example of SoV . Consider U.F. f=f(t) satisfying

f ′(t) = e 2f(t) · t note
=== 2t

/
2e2f(t) ,

with f(0) = 9.
2a†:

Soln. [Do Easy-Scan first.] Define the following fncs:

β(t) := 2t and B(t) := t2.

µ(y) := 2e2y and M(y) := e2y.

Hence MInvF = 1
2 · log.

2b†:

Computing, B(t) + M(9)−B(0) = t2 + e18 − 0. Hence

f(t) = 1
2 log

(
t2 + e18) .2e†:

Check. To verify that (2e†) satisfies (2a†), note

f ′(t) =
2t + 0

2 · [t2 + e18]
note
===

t

t2 + e18
.∗:

And e2f(t) = elog(t2+e18) = t2 + e18. Hence e 2f(t) · t
equals t

/
[t2 + e18], which indeed equals RhS(∗).

Finally, to verify the initial condition, note f(0)
equals 1

2 log(e18) = 1
2 · 18 = 9.

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King CoV to SoV Page 7 of 71

CoV to SoV

A function F (x1, . . . , xN) is scale-invariant [or “ho-
mogeneous of degree-0”] if

∀s 6= 0 : F (sx1, . . . , sxN) = F (x1, . . . , xN) .3.1:

[I.e, F is unchanged by scaling.] More generally, for a
d∈R, say that F () is “homogeneous of degree d” if

∀s 6= 0 : F (sx1, . . . , sxN) = sd·F (x1, . . . , xN) .3.2:

3.3: Scale-invariant to SoV. Consider a scale-in-
variant F (x, y), U.F y= y(x), and DE

dy
dx = F (x, y) .3.3a:

Define CoV
�� ��v := y

x and fnc G(v) := F (1, v). Solve

1

G(v)− v
·dv =

1

x
· dx3.3b:

using SoV. For each number α, then,

yα(x) := x · vα(x)3.3c:

solves (3.3a). [NB:You might only obtain implicit solns.]�

Why does this work? Substitution v := y
x yields

that
F (x, y) = F (1, yx)

note
=== G(v) .

Rewrite v := y
x as y = x·v. The Product Rule gives

G(v) = dy
dx

P.R.
=== 1·v + x· dv

dx .

This separable DE, rewritten, is (3.3b).

Scale-invariant CoV Example. To compute U.F
y= y(x), divide by x in DE

x·dydx = x + 5y , obtaining

dy

dx
= 1 + 5· yx .

[
Note RhS is
scale-invariant.

]
3.3a†:

So define G(v) := 1 + 5v. Then G(v)− v = 1 + 4v.
So (3.3b) becomes

1

1 + 4v
·dv =

1

x
·dx .3.3b†:

Integrating each side, using α as CoI, produces

1
4 log

(
|1 + 4v|

)
= α + log

(
|x|
)
.

Letting β := 4α gives

log
(
|1 + 4v|

)
= β + 4log

(
|x|
)
.

Exponentiating,
|1 + 4v| = eβ·|x|4 .

With γ := ±eβ , discard the abs.values, obtaining

1 + 4v = γ·x4 .

Recovering y, we now have that

y

x
def
== v = 1

4γx
4 − 1

4 .

With σ := 1
4γ, multiplying both sides by x delivers

yσ(x) = σx5 − 1
4x .3.3c†:

Checking. Does (3.3c†) satisfy x·dydx = x + 5y ?
Computing its LhS,

x·dydx = x·[5σx4 − 1
4] = 5σx5 − 1

4x .∗:

Again using (3.3c†),

x + 5y = x +
[
5σx5 − 5

4 x
] note

=== RhS(∗) . �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 8 of 71 CoV to SoV Prof. JLF King

Scale-invar. CoV Ex.2. For t>0, U.F y= y(t) sat-
isfies

y2y′t = t3 + y3. Dividing by y2t produces∗:

y′ =
[t
y

]2
+
y

t
. Note RhS is

scale-invariant.
3.3a‡:

With v := y
t , then, this RhS is G(v) := 1

v2
+ v. Then

G(v)− v = 1
v2
. So (3.3b) becomes

v2 ·dv =
1

t
· dt .3.3b‡:

Integrating each side, using α as CoI, produces
1
3v

3 = α + log
(
t
)
.

Let β := 3α. Then

v =
[
β + 3log

(
t
)]1/3

.

Consequently,

yβ(t) = t ·
[
β + 3log

(
t
)]1/3

.3.3c‡:

Checking. Does (3.3c‡) satisfy (∗) ?
With S := [β + 3log

(
t
)
], note

y′ =
[
t · S1/3]′ = 1 · S1/3 + t · 1

3S 2/3·3t
= S1/3 + S 2/3 .

∗∗:

Multiplying (∗∗) by y2t
note
=== t3 S2/3 yields

y2y′t =
[
t S1/3]3 + t3

note
=== y3 + t3. X �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King Complex numbers Page 9 of 71

3.4: Linear-CoV to SoV. A function H(), and
numbers P,Q, define DE

dy

dx
= H(Px + Qy) .3.4a:

WLOG, Q 6= 0. CoV
�� ��z := Px + Qy implies that

dz
dx = P·1 + Q· dy

dx
note
=== P + Q·H(z) .

Apply SoV to
1

P + Q·H(z)
· dz = 1·dx .3.4b:

Each number α, then, gives a soln

yα(x) := [zα(x) − P·x]/Q3.4c:

to (3.4a). [These solns might only be implicit solns.] �

Linear-CoV to SoV Example. Consider U.F
y= y(t) fulfilling

dy
dt = exp(t+ y) .3.4a†:

Setting z := t+ y, note dz
dt = 1 + dy

dt = 1 + ez. Hence
dz

1+ez = 1· dt. Anti-diffing gives

z − log(1 + ez) = α+ t ,

for CoI α. While we do not know how to solve this
implicit soln explicitly, we can rewrite it for y as

y + t − log
(
1 + exp(y + t)

)
= α+ t .3.4c†:

By applying d
dt , the energetic reader can verify that

this is an implicit soln to (3.4a†).

Complex numbers

[Complex arithmetic done in class.]
The number you have reached is imaginary. Please
rotate your phone 90degrees and dial again.

–David Grabiner

4.1:SVBuried Treasure Problem [BTP]. Floating in
the ocean you spy a bottle containing a pirate’s map
to fabulous treasure. You sell your possessions, pur-
chase a robot-crewed ocean-catamaran, and sail to the
island, discovering it is a vast plateau. The map says:

Arrrgh, Matey! Count your paces from the gallows
to the a quartz boulder, turn Left 90◦ and walk the
same distance; hammer a gold spike into the ground.

Count your paces from the gallows to the giant oak,
turn Right 90◦ and walk the counted distance; hammer
a silver spike into the ground.

Find Ye Buried Treasure midway between the spikes.

With joy, you bound up the plateau [with the treasure
you can say bye bye to annoying Math classes!] and immedi-
ately spot the giant oak, and quartz boulder. But the
gallows has rotted away without a trace.

Nonetheless, you find the Treasure. How? ♦

[Hint: Using B, K, w for the Bolder’s, oaK’s and (unknown)
galloWs’ location, write the treasure’s spot as a fnc tB,K(w)
by using C addition and multiplication.] Alphabetic-order
mnemonic: Boulder Left gold

oaK Right silver

Solved
by: Matthew C, Junhao Z., Hani S., 2020t. Nathan T., 2021t.

(Partial soln) Sreeram V., 2022g. Maxime A., 2023g.

Remark. The discriminant of quadratic [i.e, A6=0]
polynomial q(z) := Az2 +Bz + C is

Discr(q) := B2 − 4AC .5.1:

The zeros [“roots”] of q are

Roots(q) =
1

2A

[
B ±

√
Discr(q)

]
.5.2:

Hence when A,B,C are real, then the zeros of q form
a complex-conjugate pair. And q has a repeated root
IFF Discr(q) is zero.

A monic R-irreducible quadratic has form

q(Z) = Z2 − SZ + P = [Z − r] · [Z − r] ,5.3:

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 10 of 71 C-exponential [Chap4–NSS9, P.237] Prof. JLF King

where r ∈ CrR. Note S = r + r = 2Re(r) is the
Sum of the roots. And P = r · r = |r|2 is the Product
of the roots. The g discriminant, Discr(g), equals

S2 − 4P note
=== [r− r]2 = −4·[Im(r)]2 .5.4:

Completing-the-square yields

q(Z) =
[
Z − S2

]2
+ F 2, where F := |Im(r)| ,5.5:

which is easily checked. [Exercise] �

6: Fundamental Theorem of Algebra (Gauss and friends).
Consider a monic C-polynomial

p(Z) := ZN +BN−1Z
N−1 + . . . +B1Z+B0 .

Then p factors completely over C as

p(Z) = [Z − r1] · [Z − r2] · . . . · [Z − rN] ,

for a list r1, . . . , rN ∈ C, possibly with repetitions.
This list is unique up to reordering.

If p is a real polynomial, i.e p = p, then p fac-
tors over R as a product of monic R-irreducible linear
and R-irred. quadratic polynomials. The product is
unique up to reordering.

Also: A proof-sketch is in Primer on Polynomials on my
Teaching page. ♦

C-exponential [Chap4–NSS9, P.237]

The algebraic structure of R can be consistently ex-
tended to a larger field, by adjoining a sqroot of
negative 1. This is conventionally♥1 called i, so
i2 = 1 = [i]2. Extending R by i produces field

C := {x1 + yi | where x and y are real} .

[I’ve written x1 + yi to emphasize that the additive structure
of C is that of a 2-dimensional R-vectorspace, with basis vectors
1 and i. In practice, we write 2 + 3i, not 2·1 + 3i.]

A geometric picture of C, with the real axis hor-
izontal, and the imaginary axis vertical, is called
the Argand plane or the complex plane.

♥1Electrical engineers use j rather than i, as “i” is used to
represent current/amperage in EE. Also, while boldface i is a
sqroot of 1, we still have non-boldface i as a variable. E.g, we
could [but wouldn’t] write 7i +

∑4
i=3 i

2 note
=== 7i + 32 + 42.

Write real-part and imaginary-part extractors
as, e.g, for z := 2 − 3i, give

Re(z) = 2 and Im(z) = 3

since z = 2·1 + [3]·i. The absolute-value or mod-
ulus of z is its distance to the origin; so

|z| =
√

Re(z)2 + Im(z)2 .

[Here,
∣∣2 − 3i

∣∣ =
√

4 + 9 =
√

13 .] The complex conju-
gate of this z is z = 2 + 3i. For a general ω = x+ yi
with x,y∈R, observe that

Re(ω) := x = ω+ω
2 , Im(ω) := y = ω−ω

2i ;

ω = Re(ω) − Im(ω)i ;

|ω|2 Pythag. thm
========= x2 + y2 = ωω .

(Complex-)conjugation ω 7→ ω is an involution of C,

since ω = ω. For complex polynomial f(z) =
N∑
j=0

cjz
j ,

define f(z) :=
N∑
j=0

cj z
j , its conjugate polynomial.

Thus f(z) = f(z) ,

since µ+ ν = µ+ ν and µν = µ · ν for µ,ν ∈ C.
Multiplying complex numbers corresponds to mul-

tiplying their moduli and adding their angles.

To write a quotient ν
α in std x+ iy form, note

ν
α = να

αα = να
/
|α|2

So write να in std form, then divide by real |α|2.

See W: Complex number and W: Argand plane for arith-
metic with complex numbers.

Let’s extend the exponential fnc to C.

7a: Defn. For z ∈ C, define

exp(z) := ez :=
∞∑
n=0

1

n!
·zn = 1 + z + 1

2z
2 + 1

6z
3 + . . . ;

cos(z) :=
∞∑
k=0

[1]k

[2k]!
·z2k = 1 − 1

2z
2 + 1

24z
4 − . . . ;

sin(z) :=
∞∑
k=0

[1]k

[2k + 1]!
·z2k+1 = z − 1

6z
3 + 1

120z
5 −

Each series has ∞-RoC. ♦

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

http://squash.1gainesville.com/PDF/primer-poly.pdf
http://squash.1gainesville.com/teaching.html
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Complex_plane

Prof. JLF King C-exponential [Chap4–NSS9, P.237] Page 11 of 71

Since we have absolute convergence of each series,
we can re-order terms without changing convergence.

7b: Lemma. Fix α,β ∈ C. Then
eα · eβ = eα+β . ♦

Proof. For natnum N , recall the Binomial thm which
says that ∑

j+k=N

(N
j,k

)
· αjβk = [α+ β]N ,∗:

where the sum is over all ordered-pairs (((j, k))) of
natnums. By its defn [and abs.convergence], eαeβ equals[∞∑
j=0

1

j!
·αj
]
·
[∞∑
k=0

1

k!
·βk
]

=
∞∑
N=0

[∑
j+k=N

1

j!

1

k!
· αjβk

]
.

But 1
j!·k! equals

1
N ! ·

N !
j!·k! . Hence eαeβ equals

∞∑
N=0

1

N !

[∑
j+k=N

(N
j,k

)
· αjβk

] by (∗)
=====

∞∑
N=0

1

N !
[α+ β]N ,

which is the defn of eα+β . �

7c: Lemma. For θ,x,y,z complex numbers:

ei θ = [cos(θ) + i sin(θ)] =: cis(θ) . Hence7.1:

ei θ + e i θ

2
= cos(θ) ,

ei θ − e i θ

2i
= sin(θ) . Also,7.2:

ex± iy = ex · e±i y = ex · [cos(y) ± i sin(y)] ,7.3:

since cos(y) = cos(y) and sin(y) = sin(y).
When θ is real, then,

Re(ei θ) = cos(θ) and Im(ei θ) = sin(θ) .7.4:

Since the coefficients in their power-series expan-
sions are all real, our exp(),cos(),sin() fncs each com-
mute with complex-conjugation, i.e

exp(z)=exp(z), cos(z)=cos(z), sin(z)=sin(z) ;7.5:

Translation-identities & addition-identities
cos(z − π

2) = sin(z) , sin(z + π
2) = cos(z) ,

cos(α±β) = cos(α) cos(β) ∓ sin(α) sin(β),
sin(α±β) = cos(α) sin(β) ± sin(α) cos(β).

7.6:

extend to the complex plane. Finally,

Range(exp) = Cr{0} is the punctured C.
And Range(cos) = C = Range(sin).

7.7:

All zeros of [complex] cos() lie in R. Hence
cos() has only one period, that of 2π.
Both statements hold for sin().

7.8: ♦

Pf of (7.7). For Range(cos)
?
= C, target τ

2∈C requires
z with cos(z) = τ/2. With R := eiz, then, we need
R+ 1

R = τ , i.e R2 − τR+ 1 = 0. This quad.eqn has
a solution R ∈ C. As R=0 is not a soln, necessarily
R ∈ Range(exp). �

Pf of (7.8). Fix a z = x+ iy st. cos(z) = 0. Thus

0 = 2cos(z) = exp(i · [x+ iy]) + exp(i · [x+ iy])

= exp(y + ix) + exp(y − ix)

= e ycis(x) + eycis(x) .

Since these summands cancel, they must have equal
abs.values. Since x and y are real, then,

e y = e y· |cis(x)| = ey· |cis(x)| = ey.∗:

But R-exp() is 1-to-1, so (∗) implies that y = y.
Hence y = 0, i.e z is real. �

7e: Lemma. Familar derivative relations, exp′ = exp
and cos′ = sin and sin′ = cos, continue to hold. ♦

Same-frequency cosines/sines. Consider a sum
of same-frequency cosines

h(t) :=
∑N

j=1
Aj ·cos(Pj + F·t) ,

where Aj∈ R is amplitude, Pj∈R is phase-shift and
F∈R determines the frequency. [Courtesy (7.6), we could
include sine fncs in the sum.] We seek a phase-shift θ and
amplitude R≥0 so that

h(t) = R · cos(θ + Ft) .

From (7.4), we have that h(t) equals

N∑
j=1

Aj ·Re(ei[Pj + Ft])
note
=== Re

(N∑
j=1

Aj · ei[Pj + Ft]
)

= Re
([N∑
j=1

Aj · eiPj
]
· eiFt

)
.

Thus we are led to define SSS∈C and X,Y ∈ R by

SSS :=
[∑N

j=1
Aj · eiPj

]
=: X + iY .†:

Since each Aj and Pj is real,

X =
N∑
j=1

Aj ·cos(Pj) and Y =
N∑
j=1

Aj ·sin(Pj) .

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 12 of 71 C-exponential [Chap4–NSS9, P.237] Prof. JLF King

7f: Same-freq Lemma. [With notation from above.] Set
R := |SSS| note

===
√
X2 + Y 2 .

If SSS = 0, then h() is the zero-fnc; so can set θ := 0.
Otherwise, if X = 0, then set θ to π

2 or π
2 as Y is

positive or negative.
Otherwise: If X > 0 then set θ := arctan(Y /X);

and if X < 0 then set θ := π + arctan(Y /X).
With R,θ defined as above[N∑

j=1

Aj · cos(Pj + F·t)
]

= R· cos(θ + Ft).‡: ♦

7g: E.g. Compute reals R≥ 0 and phase-shift θ st.
Rcos(θ+8t) = cos(π

3
+8t) + cos(5π

3
+8t) −

√
2cos(7π

4
+8t).

Soln: Applying (†), above,

SSS = ei
π
3 + ei

5π
3 −

√
2ei

7π
4

Geometry
======= i .

Hence R = |i| = 1 and θ = Arg(i) = π
2 . �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King CCLDE Algorithm [Const.-Coeff LDE] Page 13 of 71

CCLDE Algorithm [Const.-Coeff LDE]
Initially, we only handle the [target = zero-fnc] case.

Step S0. Consider numbers C0, . . . ,CN and U.F
y=y(t) satisfying

CNy
(N) + CN−1y

(N−1) + . . .+ C1y
′ + C0y = 0 ,∗:

with CN 6= 0. Define the auxiliary polynomial

q(Z) := CNZ
N + CN−1Z

N−1 + . . .+ C1Z
1 + C0Z

0 .

We can now re-write (∗) as[
q(D)

]
(y) = 0 .8a:

Step S1. Let R denote the set of distinct roots
[i.e, zeros] of q(). For each root r ∈ R, let Mr ∈ Z+

denote the multiplicity of r in q(). Thus
∑

r∈R Mr

equals N , i.e, Deg(q).
The above says that our polynomial factors as

q(Z) = CN ·
∏
r∈R

[Z − r]Mr .8b:

Step S2. The general solution to (8a) is

y(t) =
∑
r∈R

∑
j∈[0 ..Mr)

[
λr,j · tj · er·t] ,8c:

freely choosing the N many numbers, {λr,j}r,j .

Step S3. Now suppose we were given initial con-
ditions, e.g, given specified numbers for values
y(0), y′(0), y′′(0), . . . , y(N−1)(0). Or perhaps we are
given the value of y′′ at N different points.

Differentiate (8c) appropriately and plug in the
given points to obtain N equations [“high school” linear
equations] which you solve for the values of the N many
unknowns {λr,j}r,j .

CCLDE Example. U.F. y = y(t) satisfies DE

y(5) − 6y(4) + 9y(3) + 10y′′ − 36y′ + 24y = 0 .

Define p(Z) := Z5−6Z4 +9Z3 +10Z2−36Z1 +24Z0; the
aux-poly of the above DE. We can re-write the DE as[

p(D)
]
(y) = 0 .8a†:

Step S1. Factor polynomial p as

p(Z) = [Z2 − 3] · [Z − 2]3

= [Z − U] · [Z − V] · [Z − 2]3 ,
8b†:

where U :=
√

3 and V := U . I.e, R =
{
U, V, 2

}
and

MU = 1, MV = 1 and M2 = 3.

Step S2. For five arbitrary [possibly complex] num-
bers α, β, λ0, λ1, λ2, the function

y(t) := αeUt + βe Ut +
[2∑
j=0

λj · tje2t
]

8c†:

is the general soln to (8a†).

Step S3. Consider IVP (8a†) with

y(0) = 2; y′(0) = 0; y′′(0) = 4;

y(3)(0) = 12; y(4)(0) = 30 .

Solving for the coefficients in (8c†) gives

α = β = 1; λ0 = λ1 = 0; λ2 = 1 .8d:

Consequently, the soln to this IVP is

y(t) =
[
e
√

3 ·t] +
[
e
√

3 ·t] − [
t2 e2t] .8e:

Complex-root Example. Your experiments with
fluid-flow♥2 produce U.F. f = f(t) such that

f ′′′ − [2 + i]f ′′ + [1 + 4i]f ′ + [2− i]f = 0 .8f:

Defining the auxiliary polynomial, then factoring,
gives

q(Z) := Z3 − [2 + i]Z2 + [1 + 4i]Z + [2− i]

=
[
Z − i

]2
·
[
Z − [2− i]

]
.

8g:

The solns, f(t), to (8f) are the linear-combinations of

eit , teit , e[2−i]t .

If desired, write e[2−i]t as e2t · [cos(t) − i sin(t)],
since cos() is an even-fnc and sin() an odd-fnc.

♥2Wine, with a Milk chaser. . .

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 14 of 71 Polynomial target Undetermined coeffs Prof. JLF King

Polynomial target Undetermined coeffs

[In NSS9 §4.4, “Undetermined coeffs.”.] We study DE

V(f) = G , where the target-poly is

G(t) =
∑K

j=0
Bjt

j . Write V = q(D)
using aux-poly

q(Z) =
∑N

n=L
CnZ

n ,

9a:

for natnums L ≤ N with CL 6= 0 and CN 6= 0.
Since CCLDOp V() carries polys to polys, we can

solve for the coeffs of f . Write a candidate soln as

f(t) =
K+L∑
j=L

uj · tj ,9b:

for undetermined numbers ~u = (((u0, u1, . . . , uK))).
Equating coeffs in V(f) = G gives K+1 “high school”
[e.g, linear] eqns in the K+1 unknowns ~u. This system
will have (exercise!) a unique soln.

Polynomial-Target 1. U.Poly f = f(t) satisfies

f ′′ + 5f ′ + 4f = 8t+ 22 . So V := q(D), where

q(Z) := Z2 + 5Z + 4 = [Z − 4] · [Z − 1] .
9a†:

Hence L = 0 and N = 2. Our target G(t) := 8t+ 22
has degree K=1. So poly f has form

f(t) = wt+ u9b†:

for undetermined numbers w,u. Thus

V(f)
Why?
====

[
5D + 4I

]
(f) = 4wt + [5w + 4u] .

[Why? Did you detect that D2(f) = 0 ?]
Set 4wt+ [5w+4u] equal to target, 8t+ 22, giving

eqns 4w = 8 and 5w + 4u = 22. Reading L-to-R,
w=2 and u=3. I.e, f := 2t+ 3 is sent by V() to G.

(P-T 1 continued) IVP. Mystery fnc h=h(t) satisfies

h′′ + 5h′ + 4h = 8t+ 22 , together with∗1:
h(0) = 0 and h′(0) = 1 .∗2:

From (9a†), we know that e 4t and e t are each
mapped to 0 by V(). Consequently, the general soln,
h, to (∗1) has form

h(t) = αe 4t + βe t +
[
2t+ 3

]
,

for constants α,β. Eqns (∗2) yield α = 2 and β = 5.
Thus fnc

h(t) = 2e 4t − 5e t +
[
2t + 3

]
is the unique soln to Mystery-IVP (∗1, ∗2).

Polynomial-Target 2. U.Poly f = f(t) satisfies

f ′′ + 3f ′ = 9t2 + 6t− 3 . So V := 3q(D), where

q(Z) := Z2 + 3Z = [Z − 0] · [Z − 3] .
9a‡:

Hence L = 1 and N = 2. Target G(t) := 9t2 + 6t− 3
has degree K=2. Thus polynomial f has form

f(t) = wt3 + vt2 + ut9b‡:

for not-yet-determined numbers w,v,u. Computing,

V(f) = f ′′ + 3f ′ = 9wt2 + [6w+6v]t+ [2v+3u] .

Equating coeffs with G := 9t2 + 6t− 3 produces

9w = 9 and 6w + 6v = 6 and 2v + 3u = 3 .

Hence w = 1, so v = 0, thus u = 1.
The Upshot: Function f := t3 − t is sent by

V() to G. Consequently, the general (9a‡)-solution is
fα,β(t) = α + βe 3t + [t3 − t] .

P-T 2, alternative. Fnc h := f ′ satisfies h′ + 3h = G.
Since Deg(h) = Deg(G) = 2; our h = Pt2 + Qt + R, for some
numbers P ,Q,R. Consequently,

9t2 + 6t− 3
by DE
=====

[
D + 3I

]
(h) = 3Pt2 + [2P + 3Q]t + 3R .

Hence 9 = 3P ; so
�� ��P = 3 . And 6 = 2P + 3Q = 6 + 3Q; thus�� ��Q = 0 . Lastly, 3 = 3R, whence

�� ��R = 1 . The Upshot
is. . .

f def
==

∫
h =

∫
[3t2 − 1] dt = t3 − t ,

as before.

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King PolyExp target Page 15 of 71

PolyExp target

APolyExp is a poly×exponential; e.g F (t) := [3+t2]·e4t.

Step P0. Consider a CCLDOp L() and DE

L(y) = G1(t) eM1t + G2(t) eM2t + . . . ,10a:

where each Gj is a polynomial and each exponent-
Multiplier Mj is a number. For each polyExp, we
will compute a fnc yj s.t L(yj) = Gj ·eMjt. Then
y1 + y2 + . . . is a particular soln to (10a). Adding
the gen.soln z to L(z) = 0 gives the gen.soln to (10a),
since L is linear .

We’ve reduced the problem to solving DEs OTForm
L(y) = G· eMt, where G is a poly. We’ll compute a
soln OTForm y := f ·eMt, where f is a poly.

Step P1. For an arb.fnc f and arb.number µ, let
E := eµt and note that E′ = µE. Compute L(fE)
to produce a CCLDOp Vµ, that depends on the num-
ber µ, such that

L(f · E) = Vµ(f) · E .

So L() sends f ·eMt to G·eMt IFF f satisfies

VM (f) = G .

Use (9a), Undetermined Coeffs, to solve for f .

Defn. Call Vµ = VL,µ the operator “associated to
operator L and number µ” . �

Preliminary computation. To speed up our nu-
merical example, let’s pre-compute the L-to-Vµ tran-
sition for a general quadratic CCLDOp L().

Numbers r1,r2 yield a quadratic poly

q(Z) := [Z − r1][Z − r2] = Z2 − SZ + P ,

using the sum S := r1 + r2, and product P := r1r2,
of the roots. The corresponding operator is

L(y) := y′′ − Sy′ + Py .

For arb. number µ and fnc f , letting E := eµt, note

[f ·E](0) = f · E ;

[f ·E](1) = f ′E + fE′
note
=== [f ′ + µf] · E ;

[f ·E](2) = [f ′′ + µf ′]E + [f ′ + µf]·µE =
[
f ′′ + 2µf ′ + µ2f

]
· E .

Consequently, L(f ·E) = Vµ(f)·E where

Vµ(f) = f ′′ + [2µ− S]f ′ + [µ2 − Sµ+ P]f

note
=== f ′′ + [2µ− S]f ′ + [q(µ)]f .

10b:

[The coeff of f will always be q(µ).]

PolyExp-target Example 1. Consider DE

y′′ − y′ − 2y =

A︷ ︸︸ ︷
[8t+ 22]e3t +

B︷ ︸︸ ︷
[9t2 + 6t− 3]e2t.10a†:

Hence S = 1 and P = 2, and

q(Z) = Z2 − Z − 2 = [Z + 1] · [Z − 2] .

Thus r1 = 1 and r2 = 2. Courtesy (10b),

Vµ(f) = f ′′ + [2µ− 1]f ′ + [µ2 − µ− 2]f .

Let’s compute fncs ya and yb so that L(ya) = A and
L(yb) = B, recalling that (10a†) defined A and B.

PolyExpA. Note V3(f) = f ′′ + 5f ′ + 4f . With
G := 8t+ 22, then, we seek f such that V3(f) = G.
Happily, (9a†) solved this; set ya := [2t+ 3]·e3t.

PolyExpB. Observe V2(f) = f ′′ + 3f ′. Setting
G := 9t2 + 6t− 3, we seek f for which V2(f) = G.
A Stroke of Good Fortune! –example (9a‡) to the
rescue. We can let yb := [t3 − t]·e2t.

Assembling the pieces. Our hard work has paid
off. Recalling roots r1 and r2, the (10a†) gen.soln is

yα,β(t) = α e t + β e2t + [2t+ 3]·e3t + [t3 − t]·e2t

= αe t + [2t+ 3]·e3t + [t3 − t+ β]·e2t .

Nifty! Worth the price of admission. . .

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 16 of 71 PolyExp target Prof. JLF King

PolyExp-tar Ex. 2. For poly q(Z) := Z2 − 7Z + 12
and operator R := q(D), consider DE

R(y) =

A︷︸︸︷
6e2t +

B︷ ︸︸ ︷
[2t− 2]e3t +

C︷︸︸︷
60 .10a‡:

Aux-poly q() has root-sum S := 7 and root-product
P := 12. So (10b) tells us, for each number µ, that
the associated operator Vµ=VR,µ is

Vµ(f) = f ′′ + [2µ− 7]f ′ + [q(µ)]f .∗:

Let’s compute fncs ya, yb and yc so that R(ya) = A,
R(yb) = B, and R(yc) = C, from (10a‡).
For future reference, note q() factors as

q(Z) = [Z − 3]·[Z − 4] .U:

So e3t and e4t are annihilated by R().

PExpA.From (∗,U), our V2(f) = f ′′ − 3f ′ + 2f .
We seek f s.t V2(f) = 6; so f must have degree zero.
Writing f() := w, we see that 6 = V2(f) = 2w; thus
w = 3. I.e, ya := 3e2t is sent by R() to A.

PExpB. Courtesy (∗,U), our V3(f) = f ′′ − f ′.
A polynomial f s.t V3(f) = 2t− 2 has form

f(t) = wt2 + vt .

Computing, V3(f) = 2wt+ [2w − v]. Setting this
equal to 2t−2 gives w = 1 and v = 0. Consequently,
yb := t2e3t is sent by R() to B.

PExpC.Note that C = 60e0·t. Our (∗,U) says
V0(f) = f ′′ − 7f ′ + 12f ; i.e, V0=R, as it must. [Why?]

What polynomial f has V0(f) = 60 ? Why
f() = 60

12 = 5, of course! Unsurprisingly, yc := 5 is
sent by R() to C.

Assembly. Recalling roots 3 and 4 of our aux-
poly (U), the general-soln to (10a‡) is

yα,β(t) = αe3t + βe4t + 3·e2t − t2·e3t + 5 .10b:

Terms can be combined, if desired. Copasetic!

PolyExp-tar Ex. 3. For poly q(Z) := Z3 − 3Z2 + 5
and operator P := q(D), consider DE

P(y) = t2e2t.10aU:

For arb. fnc f , letting E := e2t, note

[f ·E](0) = f · E ;

[f ·E](1) = f ′E + fE′
note
=== [f ′ + 2f] · E ;

[f ·E](2) = [f ′′ + 2f ′]E + [f ′ + 2f]· 2E =
[
f ′′ + 4f ′ + 4f

]
· E ;

[f ·E](3) =
[
f ′′′ + 4f ′′ + 4f ′

]
E

+
[
2f ′′ + 8f ′ + 8f

]
E =

[
f ′′′ + 6f ′′ + 12f ′ + 8f

]
· E .

Recall that the associated operator V=VP,2 is defined
by

�� ��P(f ·E) = V(f)·E . So

V(f) = f ′′′ + [6−3]f ′′ + [12−12]f ′ + [8−12+5]f

note
=== f ′′′ + 3f ′′ + f .

10c:

[As it must, the coeff of f is q(2).]
We seek a poly f solving V(f) = t2, so write

f = wt2 + vt+ u . Note f ′′′ = 0. Hence

V(f) = wt2 + vt+ [6w + u]
Goal
=== t2 .

Solving, w = 1 and v = 0 and u = 6.

So y(t) := [t2 − 6]e2t is a soln to (10aU). However,
the gen.soln is harder to obtain, as computing the
roots of the above q() is not so easy. [Cardano’s formula
can be used.]

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King Conjugate-root example Page 17 of 71

Linear maps

A vector space is like R×R [or C×C] with component-
wise addition: For vectors vj := (((xj , yj))), their sum
v1 + v2 is (((x1 + x2, y1 + y2))). More generally, a vec-
tor space♥3 is a set V (or it might be called W or E or
H or. . .) together with an addition which is commuta-
tive and associative. Also, we can multiply a vector
by a scalar which is either a real number or, more
generally, a complex number.

So a VS is a tuple
(((
V,+,0, ·,R

)))
when the scalars are

reals, or
(((
V,+,0, ·,C

)))
when we allow complex scalars.

11a: Defn. Now consider a map L:V→W between
vector spaces

(((
V,+,0, ·,C

)))
and

(((
W,+,0, ·,C

)))
. This

map L is linear IFF:

∀v1,v2,v ∈ V and for all scalars α,
our L satisfies

L(v1 + v2) = L(v1) + L(v2) and£1:
L(α ·v) = α · L(v) .£2:

Equivalently: For all vectors v1, . . . ,vN and for all
scalars α1, . . . , αN :

L
(∑N

j=1
αjvj

)
=

∑N

j=1
αjL(vj) . �

11b: Span Defn. The set of all linear-combinations
[lin-combs] of a collection S := {v1, . . . ,vN} of vectors
is called “the span of S” . I.e, Span(S) equals

Span(v1, . . . ,vN) :=

{ N∑
j=1

αjvj

∣∣∣∣ Where α1, . . . , αN
are scalars.

}
.

Our S is a linearly-independent set [an L.I-set] if
the only list β1, . . . , βN of scalars satisfying

[∑N

j=1
βjvj

]
= 0 [the zero vector]�

is β1=0, β2=0 . . . ,βN=0. [See §6.1–NSS9P.323, & §4.2]

VS examples. For N a natnum or ∞, let DiffN be the
VS of N -times differentiable fncs, with CN ⊂ DiffN

the sub-VS of fncs whose N th-derivative is cts. So

Diff0 % C0 % Diff1 % C1 % Diff2 % . . . % Diff∞
note
=== C∞ .

♥3Abbreviate ‘vector space’ as VS, and ‘vector spaces’ as VSes.

E.g, fnc |x| is in C0, the space of cts fncs, but is not
in Diff1, since abs.value is not differentiable at the
origin. N.B: Often C is written for C0, the cts fncs.�

Conjugate-root example

A polynomial with all real coeffs [a “real-poly” or “R-
poly”] factors into a product of R-irreducible linear and
quadratic real-polys.

The discriminant of quadratic [i.e, A 6=0] polyno-
mial q(Z) := AZ2 +BZ + C is

Discr(q) := B2 − 4AC ,12.1:
and its zeros [“roots”] are

1

2A

[
B ±

√
Discr(q)

]
.12.2:

When A,B,C are real, then, the non-real zeros of q
come in complex-conjugates pairs.

13: Same-span Lemma. Here, Span means C-Span.
Fix J,K complex numbers [usually real, in practice].
Then

Span
(

e[J+iK]t, e[J−iK]t
)

= Span
(

eJt · cos(Kt) , eJt · sin(Kt)
)

note
=== eJt · Span

(
cos(Kt) , sin(Kt)

)
.

Indeed, for numbers α, β, µ, ν, we have

α · e[J+iK]t + β · e[J−iK]t equals

eJt ·
[
µ · cos(Kt) + ν · sin(Kt)

]
,

13a:

where the scalars are related by

µ = α+ β and ν = i·[α− β] ;13b:

α =
µ − i·ν

2
and β =

µ + i·ν
2

.13c: ♦

Proof. Lemma (7c) and routine algebra. �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 18 of 71 Conjugate-root example Prof. JLF King

Eric’s requested IVP (Reverse engineering).
Let’s create a CCLDE whose diff-operator polyno-

mial q() has a specified complex-conjugate roots; say
U := 3 + 2i and U = 3− 2i. Define

q(Z) := [Z − U] · [Z − U]
note
=== Z2 − 6Z + 13 .∗:

Let’s go through the steps to solve DE

f ′′ − 6f ′ + 13f = 0∗∗:

with initial conditions f(0) = 1 and f ′(0) = 13.
By CCLDE, the soln-set to (∗∗) is C-Spn

(
eUt, eUt

)
.

To re-write using cos() and sin(), define expressions

E := e3t, C := cos(2t), S := sin(2t) .

Courtesy (13a), there are numbers µ, ν so that

f(t) := E · [µC + νS]

satisfies the initial conditions. This gives

1 = f(0) = 1 · [µ·1 + ν·0]
note
=== µ .

Diff’ing gives f ′(t) = 3E·[µC+νS] +E·[2µS+2νC].
So 13 = f ′(0) , which equals

3·[µ+ 0] + 1·[2µ·0 + 2ν·1] = 3µ + 2ν

= 3 + 2ν .

Hence ν = 5. Thus the soln to the IVP is

f(t) = e3t ·
[
cos(2t) + 5 sin(2t)

]
∗1:

by (13c)
====== 1−5i

2 ·e
[3+2i]t + 1+5i

2 ·e
[3−2i]t .∗2:

Prefer a single trig-fnc with phase shift? Easily,

cos(2t) + 5 sin(2t) = cos(2t) + 5 cos(2t − π
2)

by Same-freq (7f)
============ R · cos(θ + 2t) ,

where R :=
√

12 + 52 =
√

26 ≈ 5.099 ,

and θ := arctan
(

5
1

)
= −arctan(5) ≈ 1.373 . �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King Mass-spring [NSS in §4.1, §4.2, §4.9] Page 19 of 71

Mass-spring [NSS in §4.1, §4.2, §4.9]

Abstract/concrete units. Symbol :: means “has
abstract units of”. E.g, [Height of Little Hall] :: d©.

d© in inches ft,mi feet,miles cm,m (centi)meters

t© sec seconds min minutes hr hours mph=mi
hr

d©3 gal gallons lit liters=1000cm3 [volume]
m© kg kilograms [mass]
w© lb pounds oz ounces kg·m

sec2 [weight, force]
p© ◦F Fahrenheit ◦C Celsius
/© Dimensionless ?© Units depend on application

Convention: These notes will typically write zero
without units, i.e, 0 rather than 0min or 0kg·m

sec2 .

Harmonic motion. Our parameters are
M :: m© Mass of object. [>0]
B :: m©

/
t© Damping coefficient. [≥0]

K :: m©
/

t©2 Hooke’s constant of the spring. [>0]
y=y(t) :: d© Position of the mass at time t.

ω :: 1/ t© (Angular) frequency, radians
time .

An unforced spring has DE

My′′ + By′ + Ky = 0 . Here, let 0 implicitly
take on units of force.14:

The corresponding aux-poly is

q(Z) := MZ2 + BZ + K, with

∆ := Discr(q) = B2 − 4MK ::
[m©

t©
]2

and

Roots(q) = B
2M ±

√
∆

2M = B
2M ±

√[B
2M

]2 − K
M :: 1

t© .�� ��Case: ∆ < 0, underdamped Set

ω :=
√

∆
2M and R := B

2M . So

Roots(q) = R ± iω .

Thus the soln-set to (14) is

e Rt · Span
(
cos(ωt), sin(ωt)

)
= e Rt · Span

(
eiωt, e iωt

)
= Span

(
e[R+iω]t, e[R−iω]t

)
.�� ��Case: ∆ = 0, critically damped Aux-poly has

one real root, negative, of multiplicity 2. Etc.�� ��Case: ∆ > 0, overdamped Aux-poly has two
(distinct) negative real roots. Etc.

Viewing M and K as fixed. The natural un-
damped, B = 0, frequency is ωNat =

√
K
M . The

critical-damping coeff is B := 2
√

MK .

Pendulum. Consider a length L :: d© pendulum, un-
der a uniform acceleration [gravitional] field A :: d©

t©2 . Let
θ=θ(t) denote its angle w.r.t vertical. At time t, the
observed acceleration of the bob is L·θ′′(t), whereas
the acceleration from A is A·sin

(
θ(t)

)
, giving DE

θ′′ = A
L · sin(θ) .15:

If the max-value of θ() is small, then we can use
approximation sin(θ)

θ ≈ 1 to get approximating DE

θ′′ = A
L · θ .16a:

This Harmonic.DE has ω :=
√

A
L :: 1

t© .

Adjoined paragraph: With θ0 the time-zero displace-
ment (initial angle), our (16a) has soln

θ(t) = α sin(ω·t) + θ0 cos(ω·t), with angular
speed

θ′(t) =
[
α cos(ω·t) − θ0 sin(ω·t)

]
· ω.

16b:

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 20 of 71 The FOLDE algorithm [First-Order LDE] Prof. JLF King

The FOLDE algorithm [First-Order LDE]

[§2.3–NSS9.]

Step F0. Write the DE in the form

dy

dx
+ [C(x) · y] = G(x) .17a:

Pick [i.e, compute] an antiderivative B() of C(), i.e

B(x) :=

∫ x

C() .17b:

For later use, store this multiplier function♥4 M :

M(x) := eB(x) = [simplified] .17c:

Observe that M ′ = M · C. Hence

[M · y]′ = [M ·C · y] + [M · y′]

= M ·
[
[C·y] + y′

]
by (17a)
====== M ·G .

Step F1. Define product P (x) := M(x) ·G(x).
Compute an antiderivative,

Q(x) :=

∫ x

P () .17d:

Step F2. Now, for α := [an arbitrary constant], the
following definition of y will satisfy equation (17a):

y(x) = yα(x) :=
α

M(x)
+

Q(x)

M(x)
.17e:

Step F3. Use (17e) to compute y′. Plug in to (17a)
to see if your formula for y satisfies it. [It is at this point
that I sometimes find that I have made a computational error.]

Step F4. If the problem asks that y satisfy –in
addition to (17a)– an initial condition of the form
y(x0) = y0, then substitute x = x0 and y = y0

into (17e) and solve for α. You will get that

α =
[
y0 ·M(x0)

]
− Q(x0) .17f:

That’s all there is to it! It’s all copasetic.
♥4Using functional notation, we could write M := exp ◦B.

FOLDE Example. Given DE

x3y′ + x2y = 7x8 − x5 , re-write it as

y′ + 1
x ·y = 7x5 − x2 ,

17a†:

to fit form (17a). So G(x) = [7x5 − x2].
Applying step (F0), we have C(x) = 1/x, and can

define B := log. Hence

M(x)
def
== elog(x) note

=== x .17c†:

Step F1. Define P (x) := x · [7x5 − x2] = 7x6 − x3.
Antidifferentiate to get

Q(x) := x7 − 1
4x

4 .17d†:

Step F2. For each constant, α, the function

yα(x) :=
α

x
+
[
x6 − 1

4x
3]17e†:

is supposed to satisfy (17a†). Check that it does!

Step F4. Imagine we are given initial condition

y(2) = 66.5 .17g:

For the corresponding α, compute

yα(2) =
α

2
+ 64 − 2 =

α

2
+ 62 .

Hence α/2 = 66.5 − 62 = 4.5, so
�� ��α = 9 . Alterna-

tively, formula (17f) gives

α = [66.5 ·M(2)] − Q(2)

= [66.5 · 2] − [128− 4]

= 133 − 124
note
=== 9 .

The Upshot: The unique soln to IVP (17a† , 17g) is

y(x) = [9/x] + x6 − 1
4x

3 .

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King log-CoV to FOLDE [Change-of-Variable] Page 21 of 71

FOLDE Trig-Example. U.F. y=y(t) satisfies

y′ + cos(2t)·y = cos(2t) .17a‡:

Applying (F0) conveniently hands us

B(t) :=

∫ t

cos(2τ) dτ
note
=== 1

2sin(2t) .17b‡:

To lessen writing, define expressions

c := cos(2t) and s := sin(2t) .

Thus our multiplier is

M(t) := e
1
2
s ,17c‡:

and the corresponding product is P (t) := c · e
1
2
s. An

antiderivative is

Q(t) := e
1
2
s note

=== M(t) ,17d‡:

so Q
M = 1.

The Upshot: For each constant α, function

y(t) = yα(t) := α·e
1
2

sin(2t) + 117e‡:

will satisfy (17a‡).
Checking: Note [1

2s]′ = c. Hence differentiat-
ing (17e‡) gives

y′ = αe
1
2
s·[c] . And

c·y = αe
1
2
s · c + c .

Their sum is
�� ��y′ + c·y = c , which indeed is (17a‡).

log-CoV to FOLDE [Change-of-Variable]

Consider a positive-valued fnc y=y(t) satisfying DE

y′ − [G(t) · y] = C(t) · y·log(y) .18a:

Happily, we can convert this to a FOLDE, by setting
z := log(y). Divide by y and re-order as

[y′/y] + C(t)log(y) = G(t) .

Our substitution allows us to re-write this as

z′ + C(t)·z = G(t) ,18b:

which has form (17a). Its general soln zα() hands us

yα(t) = ezα(t) = exp
(
zα(t)

)
.18c:

Example of CoV-to-FOLDE. For t>0, we seek a
positive-valued fnc y=y(t) satisfying

ty′ = 2t2y +
[
y·log(y)

]
.18a†:

Dividing by t·y and re-ordering gives

y′

y −
[

1
t · log(y)

]
= 2t .

Substitution z := log(y) gives

z′ −
[

1
t · z

]
= 2t .18b†:

Matching to (17a), we define

G(t) := 2t, C(t) := 1
t , B := log ,

and M(t) := eB(t) = 1
t .

Step (F1) gives P (t) := 1
t ·2t = 2, hence Q(t) := 2t.

For an arbitrary constant α, then,

zα(t) := α·t + 2t·t .17e†:

“Un-substituting” [returning to y], then, yields

yα(t) = eαt+ 2t2 .18c†:

Have you checked that this really satisfies (18a†)?

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 22 of 71 Bernoulli eqn using FOLDE Prof. JLF King

Bernoulli eqn using FOLDE

Given fncs C̃ and G̃, we seek solutions y()> 0 to

y′ + C̃·y = G̃
/
y[N−1] ,19a:

where N ∈ R with N 6= 0. [When N is zero, the DE
is y′ + C̃·y = G̃·y. This rewrites as y′ + [C̃ − G̃]·y = 0, the
easy ZeroTar case of FOLDE.]

To convert (19a) to a LDE, multiply both sides by
N ·y[N−1] to get

Ny[N−1]·y′ + NC̃·yN = N ·G̃ .

With CoV z = yN , this becomes

z′ + N · C̃(t)︸ ︷︷ ︸
C(t)

· z = N ·G̃(t)︸ ︷︷ ︸
G(t)

.19b:

Apply the FOLDE algorithm to obtain a general
soln zα. Finally, take the (positive) N th-root to get

yα := [zα]1/N .19c:

Bernoulli eqn Example. U.F. y=y(t) has

y′ + 2y = t · y 2 note
=== t

/
y[3−1] .19a†:

So N = 3 and C̃(t) = 2 and G̃(t) = t. Change-of-
variable z := y3 gives [via DE 3y2y′ + 6y3 = 3t]

z′ + 6z = 3t .19b†:

So B(t) := 6t and M(t) = e6t. Thus product

P (t) := M(t)·3t note
=== 3t·e6t .

Courtesy (1.1), one antiderivative of P is

Q(t) := e6t ·
[t
2
− 1

2 · 6

]
.

For α an arbitrary number, then,

zα(t) = αe 6t +
[
t
2 −

1
12

]
. Hence17e†:

yα(t) =
[
αe 6t + t

2 −
1
12

]1/3
.19c†:

ZeroTar FOLDE. [This uses notation from the (17a)
paragraph.] Because a “W” looks a bit like an upside-
down “M”, when FOLDE-ing I’ll sometimes define

W (x) :=
1

M(x)
recall
==== e B(x) .

In this notation, soln (17e) is

yα(x) = α·W (x) + Q(x)·W (x) .

In particular, when target fnc G from (17a) is zero,
our general soln reduces to yα(x) = α·W (x). So if we
just need one non-trivial soln, we can let α=1, giving

y(x) = W (x) = 1
/
eB(x) .

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King The EXACT algorithm Page 23 of 71

The EXACT algorithm
[§2.4–NSS9. §2.4–ZW8.] Write your DE in form[

N (x, y) · dy
dx

]
+ M(x, y) = 0 .20a:

Our goal is to describe y as an implicit solution :
We seek a non-trivial function F(·, ·) so that each so-
lution y to (20a) satisfies

F
(
x, y(x)

)
= α ,20b:

for some constant α. [If we are interested in complex-valued
solutions, then we will allow α to be a complex number.]

Step E1. Does
∂N
∂x

=
∂M
∂y

?20c:

If yes, then (20a) is “an exact DE ” ; this means
[courtesy of our theorem] that there exists a differentiable
fnc F(x, y) such that

∂F

∂y
= N and

∂F

∂x
= M .20c′:

In this case, proceed to step (E2). Conversely, if (20a)
is not exact, go to (E1.1) and (E1.2).

Step E2. Compute F() as follows. Compute two
antiderivatives, and their difference:

B(x, y) :=

∫ y

N (x, ỹ) dỹ ;

A(x, y) :=

∫ x

M(x̃, y) dx̃ ;

Diff(x, y) := B(x, y)−A(x, y) .

Since (20c′) holds, this difference Diff(x, y) can be
written as the difference between a pure function of y
and a pure function of x. We do that next.

Step E3. Find functions g(y) and h(x) so that [this
can usually be done by inspection]

Diff(x, y) = g(y)− h(x) .20d:

[The pair of functions g, h is almost unique —adding a constant
to g and the same constant to h, gives another a soln-pair.]
One can compute a function F() which satisfies (20c′),
by either

F(x, y) := A(x, y) + g(y) or
F(x, y) := B(x, y) + h(x) .

20e:

Step E4. Now use (20b) to discern what you need
to know about y(x), such as asymptotic behavior
as x→ ±∞. You might do this by solving (20b) ex-
plicitly for y(x), or you might use qualitative methods.

EXACT Example. U.F y=y(x) is a soln to[
8y + sin(x)

]
y′ + ycos(x)− 3x2 = 0 .20a∗:

With N := 8y + sin(x) andM := ycos(x)− 3x2, note

Nx = 0 + cos(x) = cos(x) + 0 = My ;

happily (20a∗) is exact.
Anti-differentiating w.r.t y, then x, gives

B(x, y) :=

∫ y

N note
=== 4y2 + ysin(x) ;

A(x, y) :=

∫ x

M note
=== ysin(x) − x3 . Thus

B − A = 4y2 + x3 = g(y) − h(x) , where

we can define g(y) := 4y2 and h(x) := x3. Hence

F(x, y) := B(x, y) + h(x)

= 4y2 + ysin(x) − x3 note
=== A(x, y) + g(y) .

Consequently, each soln y() to (20a∗), satisfies
4
[
y(x)

]2
+
[
y(x)·sin(x)

]
− x3 = α

for some number α.

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 24 of 71 EXACT Example of (E1.1) Prof. JLF King

Step E1.1. [§2.5–NSS9. §2.4–ZW8.] When (20a) is
not exact, check to see if we can create an exact-ifying
fnc W (x), as follows. Compute

C(x, y) :=
Nx(x, y)−My(x, y)

N (x, y)
.20f:

Simplify C(x, y) to see if it is a fnc of x only. If “no”,
then (20a) cannot be made exact by multiplying by a
pure fnc of x. Try (E1.2), later in these notes.

If “yes”, then write C(x) := C(x, y). An exact-
ifying factor W (x) is a soln to DE

W ′(x) + C(x)W (x) = 0 .∗:

Applying FOLDE, define B() :=
∫
C(). Then

W (x) := 1
/

eB(x)20g:

satisfies (∗).
Finally, define two new functions

N̂ (x, y) := N (x, y)·W (x) and

M̂(x, y) := M(x, y)·W (x) .
20h:

Automatically, differential eqn[
N̂ (x, y) · dy

dx

]
+ M̂(x, y) = 0 .20a.1:

is exact. Apply steps (E2,E3,E4) to (20a.1).

EXACT Example of (E1.1)
Consider DE

[x+ 1]·2y︸ ︷︷ ︸
N (x,y)

· y′ + 3·[5 + y2]︸ ︷︷ ︸
M(x,y)

= 0 .20a†:

Is this Exact? Applying (E1), note

Nx − My = 2y − 6y
note
=== 4y20c†:

is not the zero-fnc, so (20a†) is not an exact DE. To
attempt an exact-ifying factor, (E1.5), we compute

C(x, y) :=
4y

[x+ 1]·2y
= 2

/
[x+ 1] .20f†:

This is a pure fnc of x, so we anti-diff w.r.t x and get
B(x) := 2 · log(x+ 1). Our exact-ifying factor is thus

W (x) := e B(x) note
=== [x+ 1]2 .

Good! We now have Exact DE (20a.1), where

N̂ (x, y) = [x+ 1]3 · 2y and

M̂(x, y) := 3 · [x+ 1]2 · [5 + y2] .
20h†:

Applying (E2), then (E3). Anti-differentiating
w.r.t y, respectively, x gives

B(x, y) :=

∫ y

N̂ note
=== [x+ 1]3 · y2 ;

A(x, y) :=

∫ x

M̂ note
=== [x+ 1]3 · [5 + y2] . Thus

B − A note
=== 5 · [x+ 1]3 = g(y)− h(x) , where

we can define g(y) := 0 and h(x) := 5 · [x+ 1]3. Fi-
nally, (20e) tells us that F = A+ g

note
=== A.

Checking. Consider a fnc y= y(x) satisfying

Const = [x+ 1]3 ·
[
5 + y(x)2] .∗∗:

Applying d
dx hands us

0 = 3[x+ 1]2·
[
5 + y(x)2] + [x+ 1]3·2y(x)·y′(x) .

Dividing by [x+ 1]2 yields (20a†). Nice. . .

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King EXACT Example of (E1.2) Page 25 of 71

Step E1.2. When step (E1.1) fails, check for an
exact-ifying fnc W (y), as follows. Compute

C(x, y) :=
My(x, y)−Nx(x, y)

M(x, y)
.20i:

Simplify C(x, y) to see if it is a fnc of y alone. If “yes”,
write C(y) := C(x, y). This time, exact-ifying factor
W (y) satisfies DE

W ′(y) + C(y)W (y) = 0 .∗:

Applying FOLDE, define B() :=
∫
C(). Then

W (y) := 1
/

eB(y)

fulfills (∗). Define two new functions

N̂ (x, y) := N (x, y)·W (y) and

M̂(x, y) := M(x, y)·W (y) .
20j:

Apply steps (E2,E3,E4) to DE[
N̂ (x, y) · dy

dx

]
+ M̂(x, y) = 0 ,20a.2:

which is exact.

EXACT Example of (E1.2)
Consider y=y(x) in

x2︸︷︷︸
N (x,y)

· y′ − [y2 + 2xy]︸ ︷︷ ︸
M(x,y)

= 0 .20a‡:

Firstly,

Nx − My = 2x−
[

[2y + 2x]
] note

=== 2[y + 2x]

is not the zero-fnc, so (20a‡) is not exact. Secondly,
ratio

Nx − My

N
=

2 · [y + 2x]

x2

is not a pure fnc of x, so (E1.1) is inapplicable.
Applying (E1.2), we compute C(x, y) as

My − Nx
M

note
===

[2 · [y + 2x]]

[y2 + 2xy]
note
===

2

y
.20i‡:

Yes! –this is a pure fnc of y. Applying FOLDE, we
anti-diff w.r.t y, obtaining B(y) := 2 · log(y). Our
exact-ifying factor is thus

W (y)
def
== e B(y) note

=== 1
/
y2 .

Multiplying (20a‡) by 1
y2

gives exact N̂ ·y′ + M̂ = 0,
where

N̂ (x, y) :=
x2

y2
and

M̂(x, y) :=
[
1 +

2x

y

]
.

20j‡:

Applying (E2,E3). Anti-differentiating w.r.t y
and x, yields

B(x, y) :=

∫ y

N̂ note
=== −x

2

y
;

A(x, y) :=

∫ x

M̂ note
===

[
x +

x2

y

]
. Thus

B − A = x = g(y)− h(x) , where

we define g(y) := 0 and h(x) := x. Finally, (20e) tells
us that F = A+ g

note
=== A.

Checking. Consider a fnc y= y(x) satisfying

α =
[
x +

x2

y(x)

]
,∗∗:

for some number α. Applying d
dx produces that

0 =
[
1 +

2xy − x2y′

y2

]
note
===

x2y′ − 2xy − y2

y2
.

Multiplying by y2 yields (20a‡), as desired.
In this instance, we can actually solve (∗∗) for y()

as
yα(x) =

x2

α+ x
.

Nifty. . .

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 26 of 71 Exactifying-factor theory Prof. JLF King

Exactifying-factor theory

For fncs N=N (x, y) and M=M(x, y), suppose DE�� ��N y′ + M = 0 is not exact. What property would
a fnc W=W (x, y) have to possess in order that DE

[NW]y′ + [MW] = 0†:

be exact? Exactness requires equality of

[N·W]x
note
=== NWx + NxW with

[M·W]y
note
=== MWy + MyW .

∗:

That is, (†) is exact IFF

0 = NWx −MWy + [Nx −My]W .‡:

Alas, PDE (‡) is likely as difficult as the original DE.

Idea: Could a pure fnc of x be an exactifying-
factor? If W=W (x), then Wy is zero, so (‡) becomes

0 = Wx +
Nx−My

N W .‡x:

This effectively♥5 forces ratio Nx−My

N to be x-pure.
Hence (‡x) is a FOLDE [the easy =0 case]. This explains
where coeff-fnc (20f) came from. Similarly, were W a
pure fnc of y, then (‡) reduces to

0 = Wy +
My−Nx
M W ,‡y:

explaining coeff-fnc (20i).

♥5Weasel word alert! I’ll explain in class.

2-variable exactifying-factor. Verify that pair

N = N (x, y) := 5xy2 + 3x2 and

M = M(x, y) := 2y3 + 3xy
20k.1:

is not an exact-pair. Show that
�� ��H = H(x, y) := xy2

is an exactifying-factor for the (((N ,M))) pair.

Soln to 2-V E-F. Firstly, derivatives

Nx
note
=== 5y2 + 3·2x and

My
note
=== 2·3y2 + 3x

are not equal, showing pair (((N ,M))) not exact.
Define products

N̂ := NH note
=== 5x2y4 + 3x3y2 and

M̂ := MH
note
=== 2xy5 + 3x2y3 .

Observe that these derivatives,

[N̂]x
note
=== 5·2xy4 + 3·3x2y2 and

[M̂]y
note
=== 2·5xy4 + 3·3x2y2 ,

are indeed equal.
In the spirit of IAATYDMMMTWIAYTD, applying the

EXACT algorithm produces fnc

F
(
x, y

)
:= x2y5 + x3y3

s.t Fy = N̂ and Fx = M̂. In consequence, each
[complex] number α gives implicit soln

F
(
x, y(x)

)
= α

to DE
N
(
x, y(x)

)
·y′(x) + M

(
x, y(x)

)
= 0 ,

for the N andM defined in (20k.1). �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King Logistic model [§3.2–NSS9, P.98] Page 27 of 71

Logistic model [§3.2–NSS9, P.98]

Suppose p = p(t) measures the size of a population at
time t. Let ?© be a placeholder for the units of p. [If
p(t) measures the weight of bacteria in a petri dish at time t,
then ?© might mean ounces. If p(t) is a count of individuals
then ?© indicates no units.] Suppose the population has
natural birth-multiplier B>0, in units 1/ t©. [Agree
that B :: 1

t© means that B is in abstract units 1/ t©.] Were
there no constraints, the DE♥6 would be

p′ = B · p , with soln p(t) = p0·eB·t.

A more realistic model has a carrying capacity C>0
[with C :: ?©], which is the maximum population that
the environment can sustain. As long as 0<p()<C,
the population continues to grow, albeit more and
more slowly. When p>C, then the population de-
clines [deaths exceed births], asymptotically approach-
ing C. The form of the DE might be

dp

dt
(t) =

[
B·F

(
p(t)

)]
· p(t) ,12a:

where B·F
(
p(t)

)
is the birth-mult @t. This F () has

lim
p→C

F (p) = 0, lim
p↘0

F (p) = 1, and likely should be

continuous, and strictly decreasing, for 0 < p < C.
The simplest such F is F (p) := 1− p

C . This engen-
ders the Logistic model DE♥7

dp

dt
= B·

[
1− p

C

]
· p .12b:

Solving (12b). Define q(t) := p(t)
C . Thus

q′ = 1
Cp
′ = B·

[
1− q

]
· 1

C ·p = B·
[
1− q

]
·q. I.e,

dq

dt
= B·

[
1− q

]
· q .12c:

This DE separates♥8 as 1
q·[1−q] dq = B dt. Antidiffing

RhS gives Bt. [Exer: DE (12c) is autonomous and 1st-order,
so we don’t need a CoI. Why?] Partial-fractioning gives

1

q · [1− q]
=

1

q
+

1

1− q
.∗:

♥6Sometimes called the Malthusian model because of ideas
in An Essay on the Principle of Population, 1798, by Thomas Robert
Malthus. However, I am unaware of evidence that Malthus wrote
down a differential-eqn.
♥7Usually attributed to Pierre-François Verhulst in 1838.
♥8Dividing by q·[1− q] loses solns q ≡ 0 and q ≡ 1; i.e, loses

p ≡ 0 ?© and p ≡ C. We’ll regain these two equilibrium solns later..

When 0 < q < 1. Expression (∗) antidifferenti-
ates to

[
log(q) − log(1− q)

]
. Exponentiating gives

eBt =
q

1− q
note
===

1

1− q
− 1 .†:

A soupçon of algebra yields

q =
eBt

eBt + 1
=

1

1 + e−Bt
.

Un-substituting, and using autonomy, hands us

p(t) =
C

1 + e B·[t − τHalf]
,12d:

where p(τHalf) is half of C.

Otherwise. If q > 1 then (∗) antidifferentiates to[
log(q) − log(q − 1)

]
. Exponentiating produces q

q−1 .
OTOHand, if q < 0 then (∗) antidifferentiates

to
[
log(q)− log(1− q)

]
. Exponentiating results in

q
1−q

note
=== q

q−1 . Hence both q>1 and q< 0 produce

eBt =
q

q − 1
.‡:

Routine algebra cheerfully delivers

p(t) =
C

1 − e B·[t − τAsymp]
,12e:

where this p() has a vertical-asymptote at t=τAsymp .

Algebra. Both (12d,12e) rewrite as p(t) = C
1 +M ·e B·t ,

where M
by (12d)
====== eB·τHalf , by (12e)

====== eB·τAsymp ,

respectively. Plugging t=0min into (12d,12e) says p0

by (12d)
======

C

1 + eB·τHalf
, by (12e)

======
C

1− e B·τAsymp

respectively. In both cases, then, M = C
p0
− 1. �

Unifying. The above algebra yielded a uniform
description of (12d), (12e) and the p() ≡ C forward-
stable equilibrium soln, as

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

https://en.wikipedia.org/wiki/Logistic_function
https://en.wikipedia.org/wiki/An_Essay_on_the_Principle_of_Population
https://en.wikipedia.org/wiki/Thomas_Robert_Malthus
https://en.wikipedia.org/wiki/Thomas_Robert_Malthus
https://en.wikipedia.org/wiki/Pierre_Francois_Verhulst

Page 28 of 71 Logistic model [§3.2–NSS9, P.98] Prof. JLF King

p(t) =
C

1 + [C
p0
− 1] · e B·t ,12f:

where p0 denotes the population at time 0.
Multiplying top&bottom by p0 unifies with the for-

ward-unstable p() ≡ 0 equilibrium soln, giving

p(t) =
C · p0

p0 + [C− p0]·e Bt

=
C · p0 · eBt

C + p0·[eBt − 1]
.

12g:

Although derived in R, please check, for all com-
plex numbers p0,B,C with C 6= 0, that (12f,12g) sat-
isfy DE (12b) for all♥9 complex times t.

Cool stuff. . . .

Exer:Doubling-time. Haffoweria bacteria have
an unconstrained (Malthusian model) doubling
time♥10 of 30min. Compute the birth-multiplier, B,
for Haffoweria.
Soln. Define τDbl := 30min. [It is often, but not always,
good to give conceptual names to values]

The Malthusian model gives p(t) = p0·eBt. So

2 =
p(τDbl)

p(0 min)
=

exp(B · τDbl)

1
.

Logarithmizing gives

B =
log(2)

τDbl
=

log(2)

30 min
≈ 0.023 1

min
. �

♥9Well –. . . essentially. If B = 0
min

or C=p0, then the soln is
constant. When B6= 0

min
and C 6=p0, then the soln has a single

(complex) time, τAsymp, when the (12f)-denominator is zero.
♥10Apparently, doubling time is also called generation time.

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King Logistic model [§3.2–NSS9, P.98] Page 29 of 71

Exer: Population-sampling. Reproduction of the
fascinating DiffTheorya bacteria closely follows the
logistic model (12b). Sharon Scientist designs a pro-
tocol to estimate B and C for DiffTheorya :

She put initial population p0=p(0min), into a petri
dish, then measured the pop. at two later times t1<t2.
Prior to this, she used DiffyQ to derive the simplest
time-ratio ρ := t2

t1
for her protocol. What time-ratio

ρ = t2
t1

[not nec. an integer] did Dr. Scientist use?

Pop-samp, Theory. Formula (12f),

p(t) =
C

1 + [C
p0
− 1] · e B·t ,∗:

suggests studying ratio

p(0min)

p(t)
note
===

1 + Me B·t

1 + M
, where M := C

p0
− 1.

Can we isolate B ? Observe that

H(t) :=
p(0 min)

p(t)
− 1

note
=== [e B·t − 1] · M

1 + M
.

Define [we are not dividing by zero, as t1 6= 0min] ratio

R :=
H(t2)

H(t1)
=

e B·t2 − 1

e B·t1 − 1
.

WithNNN := e B·t1 [forNNNegative-expon], note NNN
ρ

= e B·t2 .
Thus

R =
NNN
ρ
− 1

NNN − 1
.

When ρ is a
posint, then,

R = NNN
ρ−1

+NNN
ρ−2

+ · · ·+ NNN + 1 .

So the simplest useful ratio is ρ := t2
t1

= 2, whence�� ��R = NNN + 1 . [Exer: What is wrong with using ρ=1 ?]

BirthMult. Recall R
def
== [p0/p2]− 1

[p0/p1]− 1 . Hence

NNN = R− 1 =

p0

p2
− p0

p1
p0

p1
− 1

× p1 p2
p1 p2======

p1p0 − p2p0

p0p2 − p1p2
.

It’s more convenient to work with EEE := 1
NNN

note
=== eB·t1 ,

the rEciprocal, whence

EEE =
1

R− 1
=
[p1 − p0

p2 − p1

]
· p2

p0

note
≥ 0. Thus,

B =
log(EEE)

t1
=

1

t1
· log

([p1 − p0

p2 − p1

]
· p2

p0

)
.

12h:

CarryingCapacity. Recall that EEE = eB·t1 . Plug-
ging t1 in formula (12f) gives p1 = C

1 +
[

C
p0
−1
]/

EEE
.

Solving for C delivers

C = p1 ·

=: S︷ ︸︸ ︷
EEE − 1

EEE − p1

p0

. Algebra gives

S =
p0p1 + p1p2 − 2p0p2

p1p1 − p0p2
.

Our EEE and
S are scale-
inv fncs of
p0,p1,p2.

12i: �

Pop-samp computation. Dr. Sharon used t1 = 13min
and p0 := 2 oz, measuring p1 := p(13min) = 5.792 oz,
and p2 := p(26min) = 11.987 oz. Formulas (12h,12i)
and floating-point arithmetic gave her

B ≈ 0.099999994 1
min and C ≈ 20.000008oz .†:

Not bad, as I had employed formula-(∗) with

B := 1
10min and C := 20 oz .

As a responsible researcher, Dr. S. repeats her ex-
periment, this time exceeding the estimated Carrying-
Cap, initializing p0 := 50 oz.

She measures p1 := p(8 min) = 27.382 oz, then later
p2 := p(16 min) = 22.756 oz. [The pop. is dying off.]

Trusty dusty floating-point produces

B ≈ 0.09999992 1
min and C ≈ 19.999996oz ,‡:

which is consistent with (†). �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 30 of 71 Logistic model [§3.2–NSS9, P.98] Prof. JLF King

12j: Questions. For DiffTheorya with p0 := 50 oz:
LQ1: When (in past time) is the vertical asymptote?
How could we verify it experimentally?

In the petri dish, Sharon observes that Mys-
teria bacteria stabilizes at 30 oz. Seeded with
p0 := 2 oz, she records p1 = 7.274 oz just 10 min later.
LQ2: What is the birth-mult for Mysteria? Started
from 2 oz, how many minutes later is the dish at half
CarryCap for Mysteria? �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King Hyperbolic trigonometric functions Page 31 of 71

Hyperbolic trigonometric functions

The hyperbolic versions of cos and sin are written
cosh [rhyming with “josh”] and sinh [pronounced “cinch”].
For z,α,β complex,

cosh(z) :=
ez + e z

2
note
=== cos(iz) ,

sinh(z) :=
ez − e z

2
note
=== i sin(iz) ,

exp(±z) = cosh(z) ± sinh(z) .

13a:

The corresponding facts about cos(),sin() give

cosh(z + 2πi) = cosh(z),
sinh(z + 2πi) = sinh(z) ;

[period 2πi]13b:

cosh(z + πi) = cosh(z),
sinh(z + πi) = sinh(z) ;

[anti-period πi]13c:

cosh(z + iπ2) = i sinh(z) ; [translation-scale]13d:

cosh2 − sinh2 = 12 . [Pythagoras]13e:

cosh(α±β) = cosh(α) cosh(β)± sinh(α) sinh(β),
sinh(α±β) = cosh(α) sinh(β)± sinh(α) cosh(β).

13f:

All zeros of cosh & sinh are pure imaginary. Further,

Range(cosh) = C = Range(sinh) .13g:

Easily,
cosh′ = sinh, sinh′ = cosh,

cosh′′ = cosh, sinh′′ = sinh .
13h:

Routinely, the Maclaurin series are

cosh(z) = 1 + z2

2! + z4

4! + . . . =
∑∞

n=0

z2n

[2n]!
.

sinh(z) = z + z3

3! + z5

5! + . . . =
∑∞

n=0

z2n+1

[2n+ 1]!
.

13i:

Posting race: Translation? We know that sin()
is a translate of cos(); i.e sin(z) = cos(z − π

2).
Dis(Prove): Function sinh() is a translate of cosh().
I.e, ∃T ∈ C so that sinh(z) = cosh(z −T).

Inverse hyperbolic functions on R. To build in-
vertible fncs, we restrict domains so that the restric-
tions are 1-to-1. Define restricted cosh , ResCosh,
to be cosh restricted to the non-negative reals, and
define ResSinh, restricted sinh,cosh , to be sinh but
only on the reals. I.e

ResCosh := cosh �[0,∞) and ResSinh := sinh �R .

Easily, ResCosh and ResSinh are strictly increasing
on their domains, indeed, are bijections

ResCosh :[0,∞)↪�[1,∞) and ResSinh :R↪�R ,

hence have inverse fncs

acosh := ResCosh 1 and asinh := ResSinh 1 .

13j: Hyperbolic inverses. Function acosh() bijects
[1,∞) onto [0,∞), and asinh :R↪�R, by

acosh(t) = log
(
t+

√
t2− 1

)
, acosh′(t) = 1√

t2−1
,†:

asinh(t) = log
(
t+

√
t2 + 1

)
, asinh′(t) = 1√

t2+1
.‡: ♦

Pf for acosh. Target t ∈ [1,∞) asks for the z ∈ [0,∞)

with cosh(z) = t. Set E := ez
note
≥ e0 = 1. Expanding,

E + 1
E = 2t. Thus E2 − 2tE + 1 = 0. Hence E is one

of [t±
√

t2 − 1].
Were E = [t−

√
t2 − 1], then t−

√
t2 − 1 ≥ 1, i.e,

t− 1 ≥
√

t2 − 1 . Both sides are non-neg., so squar-
ing preserves order, giving t2 + 1− 2t ≥ t2 − 1. Thus
1 ≥ t; but that branch of square-root does not extend
to [1,∞). So E = t +

√
t2 − 1 , whence LhS(†). �

Proof for asinh. For target t ∈ R we seek the z ∈ R
with sinh(z)=t. With E := ez, then, E − 1

E = 2t,
so E2 − 2tE − 1 = 0. Thus E ∈ [t±

√
t2 + 1]. But

[t−
√

t2 + 1] is not >0. Hence E = t +
√

t2 + 1 ,
whence LhS(‡). �

Pf for asinh′.The Chain rule says [f ◦ g]′ = [f ′ ◦ g] · g′.
With f := sinh and g := asinh, for t∈R note

sinh′
(
asinh(t)

)
= cosh

(
asinh(t)

)
∗∗
==
√

cosh2(asinh(t)
)

=
√

sinh2(asinh(t)
)

+ 1 =
√
t2 + 1 .

[Eqn (∗∗) holds, since sinh(t) is real, and cosh() is non-negative
on R.] Multiplying both sides by asinh′(t) produces

1
note
===

[
sinh ◦ asinh

]′(
t
)

=
√
t2 + 1 · asinh′(t) .

The proof for acosh′ is similar. �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 32 of 71 Hyperbolic trigonometric functions Prof. JLF King

Hyperbolic cosh , sinh solve certain classic DfyQs.

13k: Lemma. For α complex, fnc f(z) := sinh(z −α)
is a soln to

[f ′]2 = 12 + f2.

The only other analytic solutions [courtesy FTODE] are
constant functions f() ≡ ±i.

Integrating f shows that the non-constant analytic
solns to

[g′′]2 = 12 + [g′]2.‡:

are g(z) := β + cosh(z −α), for β,α ∈ C. ♦

Proof. As sinh(z)2 = 1
22

[
e2z + e 2z − 2

]
, so

12 + [sinh(z)]2 = 1
22

[
e2z + e 2z + 2

]
= [cosh(z)]2

note
=== [sinh′(z)]2 . �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King Derivation of hanging cable Page 33 of 71

Derivation of hanging cable
Consider a hanging cable whose position is the graph
of height fnc y=h(x). As usual, use y′ for h′(x).

Settings: A hanging cable (HC) only supports
its own weight; the curve is called a catenary. In the
suspension bridge cable (SBC) setting, the cable
supports the (horizontal) suspension-bridge deck ; we
assume a massive deck compared to the cable-weight.

To normalize the notation, arrange the coordi-
nate system so that the lowest point of the cable is
above x=0 and hence y′ is zero. Call this lowest
point (((0, h(0)))) the vertex of the cable. We define
three physical constants:

T is the tension in the cable at its vertex. (The cable
is horizontal here, so this is also its horizontal component
of Tension.) This T has units w©.

S is the weight-per-distance (ie, denSity) of the load
at the cable’s vertex. (So S is the limit as x↘0

of 1
x

times the weight on the cable-system above inter-
val [0, x].) This S has units w©/ d©.

R is the ratio S/T :: 1
d© . Use Q := 1

R = T/S :: d©.

Cable tension. Let τ = τ (x) denote the tension
in the cable above x. Let τVer and τHor denote
the vertical and horizontal components of tension; so
τ , τVer, τHor all have units w©.

Gravity acts only vertically. Were there points
x0<x1 with τHor(x0) 6= τHor(x1), then the cable
above interval [x0, x1] would move horizontally.
Since it does not, the fnc τHor() is a constant.
So

�� ��τHor ≡ T . Since ratio τVer
τHor

equals the cable
slope y′, necessarily

y′() = 1
T · τVer() .†:

Different values of T engender different cable
shapes. [We’ll discover that the suspension bridge cable is
a parabola; different T-values produce different parabolae.]

Cable loading. Let W (x) denote the weight of the
cable above interval [0, x]. We will describe W () as a
product W (x) = S · Λ(x)

so Λ(x) has units d©. The meaning of Λ(5ft) is the
length which, were the cable-loading to have constant
density S, would weigh the same as the cable-system
above the interval [0ft, 5ft].

Weight and tension. For 0≤x0≤x1, the loading
on the cable above an interval [x0, x1] must equal the
difference τVer(x1)− τVer(x0) of the vertical compo-
nents of tension. As x=0 is the lowest pt of the ca-
ble, necessarily τVer(0) is zero. For all x ∈ R, then,
τVer(x) equals W (x). Hence

y′(x)
by (†)
==== 1

T ·W (x) = 1
T · S · Λ(x) ,

We rewrite this as

y′() = R · Λ() , with

y′(0) = 0, and y(0) = 0 ,
14:

where we tacked on initial conditions that the cable-
vertex has horizontal tangent, and height zero.

This (14) is our IVP for cable problems with ar-
bitary loading. We now solve it for two Λ() load func-
tions.

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 34 of 71 The Hanging Cable (catenary) solution Prof. JLF King

The Suspension Bridge solution

For the suspension bridge, W (x) = S ·x. So Λ(x) = x.
Integrating (14) thus produces height

h(x) = 1
2R · x2 = 1

2
S
T x

2 .15:

Note that the RhS has units 1
d© · d©

2. This equals d©,
which indeed is the abstract unit for height.

The Hanging Cable (catenary) solution

For the hanging cable, whose only load is itself,

W (x) := S · [Cable arclength above [0, x]] .

Consequently,

Λ(x) =

∫ x

0

√
12 + h′

(
x̃
)2

dx̃ . By FTC, then,

Λ ′ =
√

1 + [h′]2 .

HC:

Rather than compute the integral, we instead differ-
entiate DE (14) to produce

h′′ = R ·
√

1 + [h′]2 .

Squaring this gives

[h′′]2 = R2 ·
[
1 + [h′]

2] same
====

[
1 + [h′]2

]/
Q2.∗:

Claim:
�� ��h(x) := 1

R cosh(Rx) satisfies (∗).

Note h′(x) = cosh′(Rx). And h′′(x) = R cosh′′(Rx).
So

[h′′(x)]2 = R2 [cosh′′(Rx)]2

by (13k)
====== R2

[
1 + [cosh′(Rx)]2

]
= R2

[
1 + [h′(x)]2

]
,

as desired. Further, h′(0) = sinh(0) = 0. Thus: In
the HC case, the soln to (14) is catenary [recall Q = 1

R
]

h(x) = Q ·
[
cosh

(x
Q

)
− 1

]
.

Or, letting vertex-
height be non-zero,

h(x) = Q· cosh
(x

Q

)
= T

S · cosh
(S
T x

)
.

16a:

16b: Lemma. The length of cable above interval
[x0, x1] is

Len
(
cable

)
= Q·

[
sinh

(x1

Q

)
− sinh

(x0

Q

)]
. ♦

Proof. Eqn (14) says our Λ(x) equals

Q ·h′(x)
by (16a)
====== Q · sinh

(x
Q

)
. �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King The Hanging Cable (catenary) solution Page 35 of 71

16c: Distance between poles? An 80ft cable hangs
between two 50ft poles, with lowest point 20ft above
the ground. How far apart are the poles? ♦

Prelim to (16c). We give symbolic names to the
quantities. Let

L :=
[ArcLength from
vertex to a pole

]
= 1

2 ·80ft = 40ft ;

V :=
[Vertical dist. from
vertex to pole top

]
= [50− 20]ft = 30ft ;

z :=
[Horizontal distance
from vertex to pole

]
= [Not yet known] .

Good eng. practice; Lower/Upper bnds on z:

L− V < z <
√
L2 − V 2 .£:

Lower bnd: The poles would be closer if the cable
ran down the pole, then horizontally out to the vertex.

Upper bnd: The poles would be further apart
if the cable ran straight from the pole-top
to the vertex. This distance, says Pythagoras,
√
L2 − V 2 =

√
42 − 32 · 10ft =

√
7 · 10ft ≈ 26.457ft.

We expect pole-separation, 2z, to satisfy

20ft < 2z < 53ft .££:

If our computation yields a value not in this range,
we temporarily halt pole construction, and figure out
What Went Wrong? Where?: The Four W’s. �

Soln to (16c). We’ll prove that the corresponding Q
is

Q
?
=

L2 − V 2

2V
= 35

3 ft .16c.1:

Lemma 16b applied with x1 := z and x0 := 0 ft,
gives

L/Q = sinh
(
z/Q

)
. Hence

asinh
(
L/Q

)
= z/Q . So,

z = Q · asinh
(
L/Q

)
.

16c.2:

As the question asks for 2z, our (16c.1) would give

2z =
L2 − V 2

V
· asinh

(L · 2V

L2 − V 2

)
‡:

by (13j)
======

L2 − V 2

V
· log

(
L · 2V
L2−V 2 +

√
[L · 2V
L2−V 2]2 + 1

)
= 70

3 ft · log
(

24
7 +

√
[24

7]2 + 1
) [

NB: Pythag triple
72 + 242 = 252.

]
= 70

3
· log(7) ft ≈ 45.4046 ft .

Proving (16c.1). Our (16a) and (16b) give, respec-
tively,

RV = cosh(Rz)− cosh(R·0ft) = cosh(Rz)− 1 ,

RL = sinh(Rz) − sinh(R·0ft) = sinh(Rz) .

Thus 1 = [cosh2 − sinh2] equals

[RV + 1]2 − [RL]2 =
[
R2V 2 + 2RV + 1

]
− R2L2 .

Subtracting 1 from both sides, then dividing by R,
yields

2V = R[L2 − V 2] .

Multiplying by Q
2V delivers (16c.1), as desired. �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 36 of 71 The Hanging Cable (catenary) solution Prof. JLF King

16d: Same poles: Tension. The previous cable has den-
sity S := 1

5
lb
ft . What is the cable-tension at the vertex?

What is the highest tension in the cable; where? ♦

Soln to (16d). From our defn of Q, the vertex-tension
is

T
def
== τHor(0)

def
== S·Q by (16c.1)

======== 1
5
lb
ft ·

35
3 ft = 7

3 lb.

Since τHor() is constant, the highest (in both senses!)
tension is where the cable joins the pole; where τVer()
is highest. That value is

τVer(z) =
[
Cable weight from
vertex to pole

]
= S ·L = 8 lb .16d.1:

Pythagoras tells us

τ (x)2 = T2 + [τVer(x)]2 .∗:

In particular, τ (z)2 = [SQ]2 + [SL]2. Thus, max ten-
sion is

τ (z) = S ·
√
Q2 + L2 = S·125

3 ft = 25
3 lb.16d.2: �

Alt (16d). Note τVer(x) = T·h′(x) = T·sinh(xQ).

So (∗) and identity T2 · [12+sinh2] = T2 · cosh2

give

τ (x) = T · cosh(x/Q).16d.3:

Maximum tension is thus

τ (z) = T · cosh(z/Q) .16d.4:

[Exer: % The righthand sides of (16d.2) and (16d.4) are
equal.] �

16e: Breaking point. On a planet with sur-
face acceleration A := 10 m

sec2 , an 80m long cable has
mass 16kg. Its breaking tension is 100 N. [A Newton is
N = [kg·m]

/
[sec2].] What is the maximum span before

this cable breaks? ♦

Prelim to (16e).Looking at half the cable, from vertex
to one pole:

L := 1
2 ·80m = 40m, is the arcLength;

z :=
[Horizontal distance
from vertex to pole

]
= [Not yet known] ;

W := [Weight of half the cable] = 8 kg ·A = 80 N ;
X := [Maximum tension] = 100 N .

The cable weight-density is S = W/L = 2N
m .

Lower/Upper bnds are: 0m < z < L= 40m. The 1st in-
equality is strict, since the length of cable hanging straight down
needed to break the cable is X

S
= 100

2
m = 50m

strict
> L. The 2nd

inequality is also strict, since the breaking tension is strictly
less than ∞. �

Soln (16e). We need z to satisfy τ (z) = X.
From (16d.2), then, X2 = S2Q2 + [SL]2. And (16d.1)
says SL = W . Hence

Q = 1
S
·
√
X2 − W 2 =

60 N

2N/m
= 30 m .

Thus (16c.2) assures

z = Q · asinh
(
L
Q

)
= 30 m · asinh

(
40
30

)
/ 33 m.

So the span is 2z / 66 m. �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King The Hanging Cable (catenary) solution Page 37 of 71

17.1: Unequal poles. We have pole-0 and pole-1 of
heights 0 ≤ V0,V1, not both zero. Running between is
a length-Λ cable, long enough that the vertex lies be-
tween the poles; just touching the ground. For k=0,1,
use `k for the arclength from pole-k to vertex, and zk
for the horizontal distance. Compute `0. ♦

Prelim. Define height difference D := V1 − V0. �

17.2: Theorem. When V1 6= V0, the `0 arclength is

`0 = 1
D

[√
V1V0·

[
Λ2 − D2

]
− V0Λ

]
.†: ♦

Plausibility. Exchanging subscripts gives

`1 = 1
D

[√
V0V1·

[
Λ2 − [D]2

]
− V1Λ

]
.‡:

Adding (‡) to (†) shows that

`1 + `0
note
=== 1

D

[
V1Λ − V0Λ

] X
= Λ .£:

We now vary a Vk, which will vary D. Must it also
vary Λ [making derivatives harder to calculate]? No! As (†)
does not directly mention either zk, we can vary pole-
separation to keep Λ constant [with vertex touching the
ground].

Setting V0 = 0 [i.e, the vertex is at pole-0] gives

`0�V0=0 = 1
V1

[units of d©2︷ ︸︸ ︷√
0 − 0

]
X
= 0 .

[No gain to setting V1=0 in (†), as (£) shows we will get Λ.]�

Sending V1→V0. [Our derivation of (†) uses V1 6=V0, so we
need to take a limit.] The limit has the poles of equal
height, so we expect that the limit-value of `0 is Λ/2.

Since D = V1 − V0, derivative dD
dV1

= 1 = dV1
dV1

. Let
P denote V1V0·

[
Λ2 − D2

]
. Then l’Hôpital’s tells us

that lim
V1→V0

`0 equals the limit of ratio

d
dV1

[
√
P − ΛV0]
d

dV1
D

note
===

d
dV1

[
√
P]

1
Chain
==
rule

1

2
√
P
· dPdV1

.∗:

Note dP
dV1

= V0
[
Λ2 − D2

]
+V1V0·

[
0− 2D

]
. Thus

lim
V1→V0

dP
dV1

= V0
[
Λ2 − 02] − 0 = V0 ·Λ2 .

Also, lim
V1→V0

P = V0V0·Λ2, so lim
V1→V0

√
P = V0Λ. Thus

the limit of RhS(∗) equals

1

2·V0Λ
· V0·Λ2 X

=
Λ

2
,

as predicted. �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 38 of 71 The Hanging Cable (catenary) solution Prof. JLF King

Unequal soln. From (16a), the cable’s shape♥11 is

h(x) = 1
r ·
[
cosh(rx) − 1

]
.

This, and (16b), yield

rVk + 1 = cosh(r·zk) and

r `k = sinh(r·zk) .

Courtesy Pythagorus

12 = [rVk + 1]2 − [r`k]
2 .

Subtracting 1 from both sides, then dividing by r,
yields 0 = rVk

2 + 2Vk − r·`k2. Solving for r,

1

r
=
`k

2 − Vk
2

2Vk
.

Thus `0
2−V02
V0

= `1
2−V12
V1

. Cross-multiplying, then
subtracting,

V1`0
2 − V0`1

2 +

= V0V1D︷ ︸︸ ︷
V0V1

2 − V1V0
2 = 0 .

Since `1 = Λ− `0, our `0 is a root of polynomial

f(t) := V1t
2 − V0[Λ− t]2 + V0V1D

= Dt2 + 2V0Λ·t + V0[V1D − Λ2] .

Computing the polynomial’s discriminant,

1
4Discr(f) = 1

4 ·
[
[2V0Λ]2 − 4·D·V0[V1D − Λ2]

]
= V0

[
V0Λ2 − D[V1D − Λ2]

]
= V0

[
[V0 +D]Λ2 − V1D

2
]

= V0
[
V1Λ2 − V1D

2]
= V1V0

[
Λ2 − D2] .

The roots of f are

1
2D ·

[
2V0Λ ± 2

√
V1V0

[
Λ2 − D2

]]
= 1

D ·
[
±
√
V1V0

[
Λ2 − D2

]
− V0Λ

]
.

Our `0 is non-negative, hence (†).

♥11I’ve made r
def
== vertex-density

vertex-tension lower-case, as it is currently
unknown.

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King The Hanging Cable (catenary) solution Page 39 of 71

Difficulties mastered are opportunities won.
–Winston Churchill

18.1: Bent outta shape? A 22m cable, whose min-
imum bending radius (see W: Bending radius), is 3m

has its two ends attached to a
track in the ceiling of a workshop. Bringing the ends
together lowers the cable-vertex. How low can the
vertex be before transgressing min–Bend-radius some-
where along the cable? ♦

Curvature. Consider an oriented-curve C, point P0

on C, and have P (s) be the point along C at arclength
distance s from P0. [So s :: d©.] Relative to horizontal,
let θ(s)=θC(s) be the angle of the tangent-line at P (s).
Writing

θ(s) = Some-Particular-Formula(s)†:

is sometimes called a Whewell equation for the
curve (William Whewell, pron. “Hu-well”). Its derivative
w.r.t arclength,

κ(s) = κC(s) := θ′(s) ,‡:

gives the curvature at P (s). This (‡) is called a
Cesàro equation (Ernesto Cesàro) for C. As we ex-
pect, κ(s) :: 1

d© , since curvature is the reciprocal of
radius-of-curvature. �

Prelim. [This “Bent” problem is kinda hokey, as our derviation
of a hanging-cable assumed ∞ flexibility, whence min-Bend-
radius should be zero. But we proceed anyway. . .]

We seek the curvature of cable h(x) = Qcosh(xQ).
We could use the annoying Calc-I formula

κ =
h′′[

1 + h′ 2
]3/2 .

More natural and elegant is derive a Cesàro formula
for our beloved catenary. �

18.2: Catenary curvature lemma. Consider catenary

h(x) = Qcosh(xQ) ,

where x,Q :: d©. Measuring from the vertex by arc-
length s,

θcat(s) = arctan(s
/
Q) and18.3:

κcat(s) =
Q

s2 + Q2
18.4:

are the Whewell and Cesàro formulae, respectively.♦

Proof. Previous work shows that

Slope = h′(x) = sinh(xQ) and

Arclength = s(x) = Q sinh(xQ) .

Thus s
/

Q gives slope ITOf arclength. Hence (18.3) is
the angle at arclength s. Differentiation and algebra
produces (18.4). �

Bent soln. With L := 22m
2 half the cable-len, and min

Bend-radius B := 3m, I claim max-vertical-drop is

VMax =
√
L2 + B2 − B18.5:

= [
√

112 + 32 − 3]m ≈ 8.4m .

[Were min-Bend-radius zero, we’d expect the max drop to be
the cable going straight down, then straight back up again. And
indeed, VMax(0m) = L.] Here’s the argument for (18.5):

Formula (18.4) says max-curvature occurs at the
vertex (unsurprisingly), so the min radius-of-curve is Q.

[The next time I teach this course, I will exchange names R

and Q, making R min-radius-of-curve.]
We seek to maximize ceiling-to-vertex vertical

drop, v, without violating min-Bend-radius. As for-
mula (16c.1) gives

Q(v) =
L2 − v2

2v
,

we maximize v such that Q(v) ≥ B. [The graph of
Q(v) = L2/2

v
− 1

2
v is a hyperbola with one asymptote verti-

cal [send v→0] and the other with slope 1
2

[send v→∞]. This
hyperbola twice intersects the horiz-line at height-Q: At a neg-
ative value less than L, and (the value we seek) at a positive
value less than L.] Rewrite inequality B ≤ Q(v) as

v2 + 2Bv − L2 ≤ 0 .

As a fnc-of-v the poly’s discriminant is 22[B2 + L2],
whence its roots ±

√
L2 + B2 − B. Thus (18.5). �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

https://en.wikipedia.org/wiki/Bend_radius
https://en.wikipedia.org/wiki/William_Whewell
https://en.wikipedia.org/wiki/Ernesto_Cesaro

Page 40 of 71 Convolutions [Chap4–NSS9, P.237.] Prof. JLF King

To a man who has only a hammer, every problem
looks like a nail. –Mark Twain (paraphrased)

Convolutions [Chap4–NSS9, P.237.]

Recall the identity fnc Id := [t 7→ t]. So Id3(x) = x3,
and Id0 is the constant-fnc 1. Below, let J := [0,∞).

Convolution defn. Given (locally-integrable) fncs
f ,g:J→C, their one-sided convolution is the fnc
mapping J→C by

[f ~ g](t) :=

∫ t

0
f(t− v) · g(v) dv .19.1:

Easily, we get these algebraic properties:

Convolution is commutative and associa-
tive. Convolution is bilinear♥1, in that
[f1 + f2]~ g = [f1 ~ g] + [f2 ~ g] ,

[5f]~ g = 5·[f ~ g] ,

for arb. fncs f , f1, f2 and arbitrary scalar, 5.
Convolution commutes with complex-

conjugation: f ~ g = f ~ g .

19.2:

We also have this cty property [more is true]:

If f ,g continuous, then [f ~ g] is cts.19.3:

Caveat: We do not have a formula for how convo-
lution interacts with multiplication; we have no nice
formula for F ~ [g · h].

Powers. As a shorthand, the “nth convolution
power of f ” ,

f~n := f ~ f ~ n. . . ~ f ,

is the result of convolving together n copies of f . In
particular, 1~[n+1] is the nth-antideriv of 1 (i.e, x0)
whose derivatives are zero at the origin. So

1~[n+1] = 1
n! ·Id

n i.e
==

[
x 7→ xn

n!

]
.20a:

We get this nice corollary.
♥1In the other order, f ~ [g1 + g2] = [f ~ g1] + [f ~ g2]; in

other words: “Convolution distributes over addition”. Also,
f ~ [7g] = 7[f ~ g]; i.e: “Scalars factor-out”.

20b: Power-of-x Lemma. Consider a continuous func-
tion β:J→C, and a natnum N . Then[

1
N ! ·Id

N]~ β = BN ,†N :

where BN is the unique function such that

0 = BN (0) = B′N (0) = B′′N (0) = . . .= B
(N)
N (0) .‡:

and B(N+1)
N = β. ♦

Proof. For an arbitrary fnc g, the FTC says that
[1~ g]

(
t
) def

==
∫ t

0g is the antideriv G of g such that
G(0) = 0. Courtesy (20a), our

[
1
N ! ·Id

N]~ β is

1~
[
1~ N+1. . . [1~ β] . . .

]
,

using the associativity of convolution. Hence[
1
N ! ·Id

N]~ β is indeed the BN defined by (‡). �

Alt Pf. Just for fun, here is an alternate proof using
a derivative-of-convolution formula, (24e), that we’ll
shortly deduce.

Defining αk(t) = tk/k!, note [αk+1]′ = αk. Fix a
natnum K satisfying (†K). Differentiating,

[
αK+1 ~ β

]′ by (24e)
======

[
[αK+1]′ ~ β

]
+
[
αK+1(0) · β

]
= [αK ~ β] ,

since αK+1(0) is 0, asK+1 is positive. So
[
αK+1~β

]′
is BK . Thus

[
αK+1 ~ β

]
(t) =

∫ t

0
BK

by FTC
====== BK+1(t) .

Hence (†K+1). We’ve shown that (†K) ⇒ (†K+1), as
desired. �

Ex.C1. Note that d
dv

(
[5+1− v] · ev

)
= [5− v] · ev. So

[Id~ exp](t)
def
==

∫ t

0
[t− v]·ev dv =

[
[t+1− v] · ev

]∣∣∣v=t

v=0

= et − [t+1] . �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King Convolutions [Chap4–NSS9, P.237.] Page 41 of 71

Ex.C2. Let f(x) := x2 and β(x) := 30[x4 + x]. Then

[f ~ β]
(
t
)

=

∫ t

0
[t− v]2 · 30[v4 + v] dv .

The integrand is a poly, which we could multiply-out,
then integrate. Alternatively, cheerfully apply (†2),
and antidiff β thrice to get

30x7

5·6·7
+

30x4

2·3·4
=

x7

7
+

5x4

4
.

Multiply by 2! to conclude that

[f ~ β]
(
t
)

=
2

7
·t7 +

5

2
·t4 . �

Ex.C3. Let’s convolve exponentials f(x) := eBx and
g(x) := eCx, where B,C ∈ C.�� ��Case: B = C The integrand for comput-

ing [f ~ f](5) is eB
[
5−v

]
· eBv note

=== eB·5; constant.
Its integral is thus 5 · eB·5. Hence

[x 7→ eBx]~2(t) = [f ~ f](t) = t · eBt .
In functional notation, f ~ f = Id · f .

21a:

[In the B=0 case, this says 1~ 1 = Id, which is indeed correct.]�� ��Case: B 6= C Define differenceD := C −B. The

[f ~ g](5) integrand is eB[5−v] ·eCv note
=== eB·5 ·eD·v. Its

integral is eB·5

D · eD·v
∣∣v=5

v=0
, i.e, eB·5

D ·
[
eD·5 − 1

]
.

This equals 1
D [eC·5 − eB·5]. Consequently,

[f ~ g](t) =
[eCt − eBt]

C − B
note
===

[eBt − eCt]

B − C
.

I.e, f ~ g = g − f
C−B = f − g

B−C .

21b:

This is symmetric in B and C, as it must be. �

A shorthand. I’ll write ‘[9x]~ e3x equals. . . ’ to mean:

Let f(u) := 9u and g(Z) := eZ .
Then [f ~ g](x) equals. . .

I.e, I will sometimes use the same letter for the input-
vars, and the output-var. �

Ex.C4.1. We seek to compute H := [9x]~ e3x .
Let’s solve this just by using properties of convo-

lution. Let G := e3x. Since [
∫

3G] = G + Const, and
G�x=0 is 1, it follows that

1~ [3G] = G− 1 .†:

Since convolution is bilinear,

H = 9[x~G] = x~ [9G]

= [1~ 1]~ [9G]

= 1~ [1~ [9G]] ,

since ~ is associative. Computing the inside-convolu-
tion,

1~ [9G] = 3·[1~ [3G]]
by (†)
==== 3·[G− 1] = 3G− 3 .

So, H = 1~
[
3G − 3·1

]
=
[
1~ 3G

]
− 3·[1~ 1]

= [G− 1]− 3x = e3x − 1− 3x . �

Ex.C4.2. The preceding example showed that

1~G = 1
3 [G − 1] , and

1~2 ~G = 1
9 [G − 1− 3x] .

‡:

Continuing, [1~3 ~G] is one-ninth of

[1~G]− [1~ 1]− 3[1~ x]

= 1
3 [G− 1] − x − 3· x

2

2

= 1
3

[
G − 1− 3x − 32· x

2

2

]
note
=== 1

3

[
G − [3x]0

0!
− [3x]1

1!
− [3x]2

2!

]
.

Hence

1~3 ~G =
1

27
·
[
G −

[[3x]0

0!
+

[3x]1

1!
+

[3x]2

2!

]]
.

The pattern is clear:
For each natnum N , with G denoting e3x,

1
N ! ·[x

N ~G]
recall
==== 1~[N+1] ~G

=
1

3N+1

[
G −

N∑
k=0

[3x]k

k!

]
.

22a:

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 42 of 71 Convolutions [Chap4–NSS9, P.237.] Prof. JLF King

Rewriting,

xN ~ e3x =
N !

3N+1

[
e3x −

N∑
k=0

[3x]k

k!

]
.22b:

The above sum,
∑N
k=0

[3x]k

k! , we recognize as the
N th-Maclaurin-polynomial of e3x; see below. Before
generalizing this result, let us compute an example
with [shudder] actual numbers .

Let R := [6− 9x+ 54x2]~ e3x. Then

R = 6·[1~G] − 9·[x~G] + 54·[x2 ~G] .

From (22b), or (‡), note

6 · [1~G] = 6 · 1
3 · [G− 1] = 2G− 2 , and

9 · [x~G] = 9·19 · [G− 1− 3x] = G + 1 + 3x, and

54·[x2 ~G] = 54· 2!
33
·
[
Terms

]
= 4

[
G− 1− 3x− 9

2x
2
]
.

Adding these together says that

R = 5e3x −
[
5 + 9x+ 18x2] . �

Maclaurin polynomial. For a natnum N , consider a
function G which is N -times differentiable. Then the
“N th Maclaurin polynomial of G ” is the unique
polynomial p of Deg(p) ≤ N , whose first N+1 deriva-
tives agree with G’s at the origin. I.e

p(0) = G(0), p′(0) = G′(0), p′′(0) = G′′(0),

. . . , p(N−1)(0) = G(N−1)(0), p(N)(0) = G(N)(0) .

An explicit formula for p is

p(x) :=
∑N

k=0

G(k)(0)

k!
· xk .

Use MacG,N to denote this p; it is the N th Maclau-
rin polynomial of G. �

23: Convolve-Mac Thm. Consider an integrable fnc β
on [0,∞), and fix a natnum N . Let g = gN be a fnc
whose [N+1]st-derivative is β, i.e, g(N+1) = β. Then

1~[N+1] ~ β = g − Macg,N . ♦

Proof. This follows immediately from Power-of-x
Lemma, (20b), on page 40. �

Convolve-Mac 1. Compute f := [x5 ~ cos(2x)].

C-M-Soln. With β := cos(2x), note f
5! = x5

5! ~ β, so

f = 5! · [1~6 ~ β] .

A particular 6th-antideriv of β is

g := cos(2x)/26 note
=== β/26 .

Recall cos(t) = 1− t2

2 + t4

24 −
t6

6! + Plugging in
2x for t shows 1− 2x2 + 2

3x
4 − is the Mac-series

for β. Hence Macβ,5 = [1− 2x2 + 2
3x

4]. Finally,

f = 5! ·
[
g − Macg,5

]
= − 5!

26
·
[
β − Macβ,5

]
= 5 · 3

23
·
[
Macβ,5 − β

]
= 5

8 ·
[
[3− 6x2 + 2x4] − 3cos(2x)

]
. �

Derivative notation. Below, for a two-variable
function H(x, y), we use H1() to mean the partial-
derivative w.r.t the 1st variable; so H1() is a synonym
for Hx(). And H2() is Hy(). �

24a: Chain-rule Lemma. Consider equations

x = α(t) and y = β(t) and z = H(x, y) ,

for differentiable functionsα,β, H. Then composition
ϕ(t) := H

(
α(t),β(t)

)
is differentiable. Moreover,

dz

dt
=

dz

dx
·dx
dt

+
dz

dy
·dy
dt

; [Leibniz]

ϕ′(t) = H1
(
α(t),β(t)

)
·α′(t) +

H2
(
α(t),β(t)

)
·β′(t) , [Newton]

24b:

where Leibniz names the variables, and Newton names
the functions. ♦

24c: DUI: Differentiation under Integral. Consider fnc
G(x, v) defined on a rectangle U := [x0, x1]× [v0, v1]
in the plane. Suppose partial-deriv G1() is cts on U.
Then for arb. values, say, 3 and 5, in [v0 .. v1], the fnc

H(x) :=

∫ 5

3
G(x, v) dv

is differentiable, and

H ′(x) =

∫ 5

3
G1(x, v) dv . ♦

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King Convolutions [Chap4–NSS9, P.237.] Page 43 of 71

Proof. Fix, say, x=7. From a non-zero ε, form
difference quotient

H(7 + ε)−H(7)

ε
=

∫ 5

3

G(7 + ε, v)−G(7, v)

ε
dv .

Send ε → 0. In order to pass that limit through the
integral sign, note the following. Since G1(·, ·) is cts
on compact set U, our G(·, ·) is uniformly Lipschitz
in the x-direction. Hence we can use the Dominated
Convergence thm to commute the limits. �

24d: Leibniz-rule Lemma. Consider continuous func-
tion G:J×J→R; hence G1() is cts. Define

H(x, y) :=

∫ y

0
G(x, v) dv .24d∗:

Then ϕ(t) := H(t, t) is diff’able, and

ϕ′(t) =
[∫ t

0
G1(t, v) dv

]
+ G(t, t) .24d†: ♦

Proof. Notice that ϕ(t) = H
(
α(t),β(t)

)
, where fncs

α(t) := t =: β(t). Applying the Chain rule (24b),

ϕ′(t) = H1
(
t, t
)
·dtdt + H2

(
t, t
)
·dtdt

= H1(t, t) + H2(t, t) .

By DUI (24c), our H1(x, y) =
∫ y
0 G1(x, v) dv. Hence

H1(t, t) =
∫ t

0 G1(t, v) dv .

By FTC, moreover, H2(x, t) = G(x, t). Thus

H2(t, t) = G(t, t) .

These three displays, together, yield (24d†). �

24e: Leibniz corollary. Suppose α,β are differentiable
fncs on J. Then [α~ β] is differentiable, ♥12and

[α~ β]′(t) = [α′ ~ β](t) + α(0)·β(t)

by symmetry
========== [α~ β′](t) + α(t)·β(0) .

24d‡: ♦

Proof. Define G(x, v) := α(x− v)·β(v) , then H

as in (24d∗). So [α~ β](t)
def
== H(t, t). Using that

G(t, t) = α(0)·β(t), applying (24d†) yields (24d‡). �

♥12Wikipedia gives a slightly different formula, but for the
derivative of a 2-sided convolution. Our 1-sided convolution
has an edge-effect when differentiated.

24f: Convol-diff Thm. Fix a natnum N . Consider an
f ∈ CN and g ∈ CN−1. [When N = 0, we just need g

locally-integrable.] Then f ~ g is in CN, and

[f ~ g](N) =
[
f (N) ~ g

]
+
∑

j+k=N−1

f (j)(0) · g(k) ,PN :

where the sum♥13is taken over all orderedpairs (((j, k)))
of natnums. ♦

Proof. For N=0, this says [f ~ g] = [f ~ g]; true.
Now fix an N for which (PN) holds. We differenti-

ate RhS(PN), by setting α := f (N) and β := g, and
applying (24d‡). It yields that [f ~ g](N+1) equals

[α′ ~ β](t) +α(0)·β(t) +
∑

j+`=N−1

f (j)(0) · g(`+1)(t) ,

summed over ordered-pairs (((j, `))) of natnums. Setting
k := `+1, we can re-write this as

[α′ ~ β](t) +
∑

j+k=N

f (j)(0) · g(k)(t) .

Noting that α′ is f (N+1), gives (PN+1). �

♥13E.g [f ~ g]′′(7) equals [f ′′ ~ g](7) plus f ′(0)g(7)+f(0)g′(7).

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 44 of 71 Convol-GenTar Algorithm Prof. JLF King

Convol-GenTar Algorithm

[See P.237 of NSS9.] A polynomial

q(z) := CNz
N + . . .+ C1z

1 + C0z
0 ,

with CN 6= 0, hands us an operator L := q(D). We
seek a fnc y=y(t) solving DE

L(y) = G ,25a:

for a given target fnc G.

1st-step. Use CCLDE to produce a function f
solving ZeroTar L(f) = 0 , with initial conditions

f (N−1)(0) = 1/CN , and

0 = f(0) = f ′(0) = . . . f (N−2)(0) .
25b:

2nd-step. Compute y := f ~G .

What’s the magic behind Convol-GenTar algorithm? To
see that y solves (25a) note, because of initial condi-
tions (25b), that we have this:

For j = 0, 1, . . . , N−1 : y(j) =
[
f (j) ~G

]
.

And y(N) =
[
f (N) ~G

]
+ [f (N−1)(0) ·G]

=
[
f (N) ~G

]
+ [1

CN
·G] .

Using the bilinearity of convolution, (19.2), we have
that sum

∑N
j=0 Cjy

(j) [which is LhS(25a)] equals[[∑N

j=0
Cjf

(j)
]
~G

]
+ CN · [1

CN
·G] .∗:

Since
∑N
j=0 Cjf

(j) is the zero-fnc, the convolution
in (∗) is 0. Hence (∗) equals G, as requested. �

Gen soln to (25a). Recall that the general ZeroTar
solution Z() to

[
q(D)

]
(Z) = 0 has N free parameters,

α1, α2, . . . , αN ∈ C. Writing
−→α = (((α1, α2, . . . , αN))) ,

then, we denote the general ZeroTar soln as Z−→α (t).
It follows that the sum

Y−→α :=
[
f ~G

]
+ Z−→α25c:

is the general GenTar-Soln to (25a) �

The following convolution-example will be done
again using Variation of Parameters at (26.10).

Convol-GenTar Ex.1. We crave a particular soln,
for t>0, to [#7P.191,§4.6,NSS9] DE

y′′ + 4y′ + 4y = e 2t · log(t) .25a†:

Define L := D2 + 4D + 4I.

1st-step. Here, N = 2 and 1
CN

= 1
1 = 1.

Aux.poly of L is Z2 + 4Z + 4 = [Z − 2]2. Thus
f(x) := α·e 2x + β·xe 2x satisfies L(f) = 0.

Needing f(0)=0 and f ′(0)=1 makes α=0 and β=1.
Hence

�� ��f(x) = xe 2x .

2nd-step. The (25a†)-target is G(v) := e 2v·log(v).
Convolving, [f ~G](t)

def
==

∫ t
0 f(t− v)·G(v) dv. The

integrand is [t− v]e 2[t−v] · e 2vlog(v)
note
=== [t− v]e 2t · log(v).

Thus [f ~G](t) =
[
[t·A] − B

]
· e 2t , where

A :=

∫ t

0
log(v) dv and B :=

∫ t

0
v log(v) dv .

IBParting,
∫ x log = x[log(x)− 1]. Consequently,

A = t[log(t)− 1] − lim
s↘0

s[log(s)− 1] = t[log(t)− 1] ,

since l’Hôpital’s Thm shows lim
s↘0

s[log(s)− 1] is zero.

Similarly,
∫ x v log(v) dv = 1

4

[
x2[2log(x)− 1]

]
. So

B =

∫ t

0
v log(v) dv = 1

4

[
t2[2log(t)− 1]

]
,

again using l’Hôpital’s. Hence [t·A] − B equals

1
4

[
t2[4log(t)− 4]

]
− 1

4

[
t2[2log(t)− 1]

]
, so

y(t) = 1
4t

2
[
2log(t)− 3

]
· e 2·t

is a particular soln to (25a†).

VoP, at (26.10), solves the same problem. Which
method is easier?

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King Convol-GenTar Algorithm Page 45 of 71

Convol-GenTar Ex.2. We seek the gen-soln to

3h′′ − 4h′ + h = exp .25a‡:

So q(z) := 3z2 − 4z + 1 = [z − 1] · [3z − 1] is the
aux-poly of our DiffOp, L := 3D2 − 4D + I.

Applying 1st-step. Here, N = 2 and 1
CN

= 1
3 .

The gen-soln to the ZeroTar DE
[
q(D)

](
f
)

= 0 is
f(x) := αex + βex/3. Solving for α,β so that f(0) = 0
and f ′(0) = 1

3 gives f(x) = 1
2 ·
[
ex − ex/3

]
. I.e

f = 1
2 ·
[
exp − Φ

]
,

where Φ(x) := ex/3.

Applying 2nd-step. The target in (25a‡) is exp.
The 2nd-step has us compute h := f ~ exp. Since
convolution is bilinear,

h = 1
2 ·
[
[exp~ exp] − [Φ~ exp]

]
.

By (21a), our [exp~ exp](t) = t · et. And cour-
tesy (21b),

[Φ~ exp](t) =
et − e

1
3
t

1 − 1
3

=
3

2
·
[
et − e

1
3 t
]
.

Consequently, our General-target Soln is

Hα1,α2

(
t
)

= 1
2te

t + α1e
t + α2e

1
3 t .25c‡:

A subtlety: We never needed to compute [Φ~ exp],
once we noticed from (21b) that [Φ~ exp] is a linear-
comb of Φ and exp. For the ZeroTar solns are all such
lin-combs, so computing this specific one is irrelevant.

Precaution is called the Mother of Wisdom;
the father was never known.
That should prove to you, at at glance,

that even Precaution once took a chance.

–Paul von der Porten, translated from the German
by his son, Arnold von der Porten.

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 46 of 71 VoP algorithm [Variation of Parameters] Prof. JLF King

Variation of
Parameters [NSS9: §4.6 & §2.4., ex.#30]

[This section assumes knowledge of matrix multiplication, and
the determinant of a square matrix.]

26.1: Cramer’s “Rule” Thm. Consider matrices H and
T, and invertible matrix M, related by matrix-eqn

M︸︷︷︸
N×N

· H︸︷︷︸
N×1

= T︸︷︷︸
N×1

.

Here, “Multipler” M and “Target” T are known, but
“Huh?” H is unknown. Let MT,r be the N×N ma-
trix M except that its rth-column has been replaced
by column-vector T. With hr the entry in the rth-row
of H, then

hr = Det(MT,r)
/

Det(M) . ♦

Proof. The Determinant fnc is multiplicative, etc. �

A list −→ϕ := (((ϕ0, ϕ1, . . . , ϕN−1))) of sufficiently dif-
ferentiable fncs engenders its Wronskian Matrix

WM(−→ϕ) :=



ϕ0 ϕ1 . . . ϕN−1

ϕ′0 ϕ′1 . . . ϕ′N−1

ϕ′′0 ϕ′′1 . . . ϕ′′N−1
...

...
. . .

...

ϕ
(N−1)
0 ϕ

(N−1)
1 . . . ϕ

(N−1)
N−1


,

also written as WM(ϕ0, . . . , ϕN−1). Its determinant,

W(ϕ0, . . . , ϕN−1) := W(−→ϕ) := Det
(
WM(−→ϕ)

)
,

is called the “Wronskian of −→ϕ ” .

26.2: Wronskian L.I. Thm. If −→ϕ := (((ϕ0, ϕ1, . . . , ϕN−1)))
is a linearly-dependent list of functions, then W(−→ϕ)
is the zero-function.

Conversely, when each ϕj is analytic [is a power-series
fnc]: If W(−→ϕ) is the zero-function, then −→ϕ is linearly-
dependent. ♦

VoP algorithm [Variation of Parameters]

Step VoP0. Consider target fnc G() and monic
complex-polynomial

q(Z) := ZN + CN−1Z
N−1 + . . .+ C1Z

1 + C0Z
0 .

The polynomial determines a differential operator�� ��L := q(D) . We seek the general solution, y, to
L(y) = G, i.e,

y(N) + CN−1y
(N−1) + . . .+ C1y

′ + C0y = G .26.3:

Step VoP1. Use CCLDE to find a linearly-indepen-
dent list

−→
Y := (((Y0, . . . , YN−1))) of fncs, with each Yj

satisfying L(Yj) = 0.
We seek a list ~f := (((f0, . . . , fN−1))) of fncs, so that

this sum-function
s :=

N−1∑
j=0

fj ·Yj26.4:

satisfies (26.3); that is, that L(s) = G.

VoP2. Let hj := f ′j . Define column-vectors

H :=


h0

...
hN−2

hN−1

 and T :=


0
...

0
G

 .26.5:

Compute the Wronskian matrix M := WM(
−→
Y). Then

H satisfies
M︸︷︷︸
N×N

· H︸︷︷︸
N×1

= T︸︷︷︸
N×1

.†:

Solve for each hj , either via computing the inverse-
matrix of M, or via Cramer’s Rule (theorem, actually).

VoP3. Anti-differentiate to compute each function
fj :=

∫
hj . Then, parametrized by a list of numbers

−→α := (((α0, α1, . . . , αN−1))), the general soln to (26.3) is

y−→α :=
[N−1∑
j=0

αjYj
]

+
[N−1∑
j=0

fj ·Yj
]
.26.6:

Why does this nifty VoP algorithm work? Matrix-
eqn (†) says, for k = 0, 1, . . . , N−2, that∑N−1

j=0
hj · Y (k)

j = 0 .‡(k):

Differentiating (26.4) says that s′ equals

N−1∑
j=0

[
f ′jYj + fjY

′
j

] note
===

[N−1∑
j=0

hjYj
]

+
[N−1∑
j=0

fjY
′
j

]
.

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King VoP algorithm [Variation of Parameters] Page 47 of 71

By (‡(0)), then,

s′ =
∑N−1

j=0
fjY

′
j .

Differentiating again, then using (‡(1)), shows that

s′′ =
∑N−1

j=0
fjY

′′
j .

Continuing, we conclude, for k = 1, 2, . . . , N−1, that

s(k) =
∑N−1

j=0
fjY

(k)
j .∗:

Differentiating one last time produces

s(N) =
[N−1∑
j=0

hjY
(N−1)
j

]
︸ ︷︷ ︸

=: Bob

+
[N−1∑
j=0

fjY
(N)
j

]
.∗∗:

Eqns (26.4), (∗) and (∗∗), together, imply that

L(s) = Bob +
[N−1∑
j=0

fj · L(Yj)
]
.

But each L(Yj) = 0. Our end result is that

L(s) =
∑N−1

j=0
hjY

(N−1)
j .26.7:

And L(s)
want
==== G. Hence we need to require that H

satisfies
∑N−1
j=0 hjY

(N−1)
j = G. And this is precisely

what the bottom row of matrix-eqn (†) says.

The Upshot. This method indeed computes an s
with L(s) = G if there is a column-vector H fulfill-
ing (†). Happily, our Wronskian L.I. Thm (26.2) guar-
antees that M is invertible, since we chose

−→
Y to be

linearly-independent. So define H := M 1T . �

26.8: VoP case N=2. Here, our matrix eqn is

[
Y0 Y1

Y ′0 Y ′1

]
︸ ︷︷ ︸

M

·
[
h0

h1

]
=

[
0

G

]
.

So D := Det(M) = [Y0Y
′

1]− [Y ′0Y1]. Hence

h0 = Y1·GD and h1 = Y0·GD . Thus

yα,β = [α+
∫
h0]Y0 + [β +

∫
h1]Y1

= [α+ f0]Y0 + [β + f1]Y1

or
== [αY0 + βY1] +

[
f0Y0 + f1Y1

]
is our general soln to (26.3). �

26.9: General VoP Alg. When the DE is “not monic”,
i.e

CNy
(N) + CN−1y

(N−1) + . . .+ C1y
′ + C0y = G ,26.3∗:

then steps VoP1,2,3 remain, except that the target
col-vec becomes

T :=


0
...
0

G/CN

 .26.5∗:

The algorithm persists if the Cj coefficients are al-
lowed to be functions of the independent variable.
The only step that get harder is VoP1 [finding fncs sent
to zero by the Diff-Op] since CCLDE no longer applies.♦

CC-VoP Example 1. DE [#7P.191,§4.6,NSS9] is

y′′ + 4y′ + 4y = e 2t · log(t) ,26.10:

for t>0. Define expressions

L := log(t) and R := e 2t . Note R′ = 2R .

Our target fnc is G := R·L.

VoP1. The Op’s aux.poly is Z2+4Z+4 = [Z− 2]2.
So

Y0 := R and Y1 := tR .

is an L.I. pair of fncs annihilated by the DiffOp.

VoP2. Differentiating w.r.t t,

Y ′0 = 2R and Y ′1 = 1·R + t·[2R]

= [1− 2t]R .

So the Wronskian-determinant D := W(Y0, Y1) is

D = R·[1− 2t]R − tR·[2R]
note
=== R2 .

Using the convenient (26.8),

h0 = 1
DY1G = R 2 · tR · RL note

=== tL , and

h1 = 1
DY0G = R 2 · R · RL note

=== L .

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 48 of 71 VoP algorithm [Variation of Parameters] Prof. JLF King

VoP3. Computing anti-derivatives,

f0 =

∫
[t · L] dt = 1

4

[
1 − 2L

]
· t2 and

f1 =

∫
L dt =

[
L − 1

]
· t .

So a fnc s sent to G by L := D2 + 4D + 4I is

f0Y0 + f1Y1 = f0 R + f1 tR

=
[

1
4

[
1− 2L

]
+
[
L− 1

]]
· t2R

= 1
4 [2L− 3]t2R = 1

4
[2log(t)− 3]t2e 2t.

The gen. yα,β := αY0 + βY1 = [α + βt]R is annihi-
lated by L. Hence, the gen. sα,β with L(sα,β) = G is

sα,β = [α + βt]R +
[

1
4 [2L− 3] · t2R

]
=
[
[α + βt] + 1

4
[2log(t)− 3] t2

]
· e 2t .

Convol-GenTar, at (25a†), solves the Same Prob-
lem. Which method is easier?

A Wonderful Bird is the Pelican
His bill holds more than his belican.
He can take in his beak,
Enough food for a week,
But I’m damned if I see how the helican.

–Dixon Lanier Merritt

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King Roo algorithm [Reduction of order] Page 49 of 71

Equidimensional operators

Motivation.Here, we act on functions of t. Equidimen-
sional operators are designed to annihilate a power of
t; some tr, where r need not be an integer. Indeed, if
we only consider values t>0, then we can allow r to
be complex, recalling that tr

def
== exp

(
log(t) · r

)
. �

Defn. An “equidimensional operator of order 2”
[EquiDim-Op] has form

E(y) := At2y′′ + Bty′ + Cy

where A 6=0,B,C ∈ C and y=y(t). [See §4.7 in NSS9,
where such operators are called Cauchy-Euler operators as
well as equidimensional.]

A Generalized EquiDim-Op [abbrev. Gen-
EquiDim-Op] has form

E(y) := AtΛ+2y′′ + BtΛ+1y′ + CtΛy

for some Λ ∈ C.
For a number r ∈ C, observe that

E(tr) = AtΛ+2·r[r− 1]tr−2

+ BtΛ+1·rtr−1 + CtΛ·tr

= tΛ+r · q(r) ,

27a:

where q(Z) := AZ2 + [B −A]Z + C �

is the “characteristic polynomial of E” .
The quadratic formula gives the roots, r1 and r2, of q. Hence

E sends tr1 and tr2 to the zero-fnc. If Discr(q) = 0, i.e r1 = r2,
then we can apply the below Reduction-of-order method. This
will give us a fnc s() which is L.I of tr1 s.t E(s) = 0.

Roo algorithm [Reduction of order]

Consider coefficient-functions Cj = Cj(t), defining
linear Diff-Op

L(ϕ) := ϕ′′ + C1ϕ
′ + C0ϕ .

Suppose we have a fnc Y , which is not identically-zero,
satisfying L(Y) = 0.

Given a target fnc G, we seek a fnc s which is
linearly-indep of Y , s.t L(s) = G . This s will have
for Y ·f for an f we will compute. We start by com-
puting h := f ′ by means of FOLDE.

Step Roo1. Compute an anti-deriv B1 :=
∫
C1,

then let
M := Y 2 · eB1 .

Roo2. If G is identically-zero, then set

h :=
1

M
note
===

1

Y 2
· e B1 .

Otherwise, define

h :=
1

M
·
∫
MG

Y
note
===

1

M
·
∫ [
Y · eB1 ·G

]
.

Roo3. Compute an anti-derivative

f :=

∫
h . Finally, define s := Y ·f .

Why does the Roo alg. work? We solve for a fnc f
such that s := Y ·f satisfies L(s) = G. Let h := f ′.
Differentiating

s = Y ·f produces

s′ = Y ′f + Y f ′

note
=== Y ′f + Y h . Thus

s′′ = Y ′′f + Y ′f ′ + Y ′h+ Y h′

= Y ′′f + [Y h′ + 2Y ′h] .

Thus L(s)
def
== s′′ + C1s

′ + C0s equals

L(Y)·f + [Y h′ + 2Y ′h] + C1Y h

since L(Y) = 0
============ Y h′ + [2Y ′ + C1Y]h .

Consequently, h satisfies Y h′ + [2Y ′ + C1Y]h = G.
Dividing by Y yields FOLDE

h′ +

FOLDE coeff-fnc︷ ︸︸ ︷[
[2 Y ′

Y] + C1
]
· h =

FOLDE target-fnc︷︸︸︷
G
Y .27b:

Note Y ′

Y =
[
log(Y)

]′, so 2Y
′

Y = [2log(Y)]′ =
[
log(Y 2)

]′.
Thus the FOLDE anti-deriv of the coeff-fnc is

B :=

∫ [
2Y
′

Y + C1
] note

=== log(Y 2) +B1 .

Hence the FOLDE multiplier-fnc is

M := Y 2 · eB1 .

The last FOLDE-step gives the two formulas
in Roo2. �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 50 of 71 Roo algorithm [Reduction of order] Prof. JLF King

Equidim+Roo Example 1. For t>0, let’s find
the gen.soln ϕ=ϕ(t) of DE

t2ϕ′′ − 5tϕ′ + 9ϕ = 0 .27c:

Operator E(y) := t2y′′ − 5ty′ + 9y is equidimen-
sional. Its char-poly is, from (27a),

Z2 + [5− 1]Z + 9 = Z2 − 6Z + 9 = [Z − 3]2.

Hence Y (t) := t3 is sent to 0 by E(). Checking:

E(t3) = t2 · [3 · 2t] − 5t · [3t2] + 9 · [t3]

= 3t3 · [2 − 5 + 3]
note
=== 0 .

Roo1. We make a monic version of the operator
by defining L := [1/t2] · E, i.e

L(y) := y′′ − 5
t y
′ + 9

t2
y .

With C1(t) := −5
t , then

B1(t) :=

∫ t

C1 = 5 · log(t) .

So exp
(
B1(t)

)
equals t−5. Thus

M(t) := [t3]2 · t−5 = t .

Roo2. Our target fnc is the zero-fnc, so we simply
compute

h(t) := 1/M(t) = 1/t .

Roo3. Antidifferentiating gives f :=
∫
h = log.

Consequently, the theory tells us that

s(t) := f(t) · [Y (t)]
note
=== log(t) · t327d:

is sent to the zero-fnc by L [hence also by E], and is L.I
of Y (t)=t3. Did you check?
Checking: Let G := log(t). Then

s = Gt3 . Thus

s′ = 1
t t

3 + G · 3t2 = [1 + 3G]t2 , so

s′′ = 3
t · t

2 + [1 + 3G] · 2t = [5 + 6G]t. Summing

9s = [0 + 9G] t3 with

5ts′ = [5 − 15G] t3 and with

t2s′′ = [5 + 6G] t3

is the defn of E(s). The sum is indeed zero.

Measure twice, cut once. –Proverb

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King Roo algorithm [Reduction of order] Page 51 of 71

Roo Example 2. For ϕ = ϕ(x), define operator

L(ϕ) := ϕ′′ − tan(x)ϕ′ −
[
1 + tan(x)2]ϕ .

Given that L(tan) = 0, we seek the general solution
g = g(x) to

L(g) = 1 .28a:

As tan() blows up at ±π2 , we restrict to x ∈ (π
2 ,
π
2).

Note that cos() is is positive on (π
2 ,
π
2).

Sanity check. Define abbreviations

C := cos(x), S := sin(x), T := tan(x)
note
=== S

C .

Let’s verify that what we were given is true. Note

T′ = [1 + T2] , hence T′′ = 2T[1 + T2] .

Thus L(T) equals

2T[1 + T2] − T[1 + T2] − [1 + T2]T ,

which is indeed zero. �

Gen. ZeroTar soln. To find a fnc s = s(x) st. L(s) = 0
and pair {T, s} is L.I (linearly indep), the Roo method
has us compute a fnc f so that s := T·f achieves these
goals. This f :=

∫
h for an h that we now compute.

Computing h. Using Roo notation, C1 = T and
C0 = −[1 + T2]. Note B1 :=

∫
C1 = log ◦C. Con-

sequently, eB1 = exp ◦ log ◦C
note
=== C. Our FOLDE

multiplier is thus M := T2 · eB1 = T2 ·C = S2/C.
In the ZeroTar case, Roo says

h = 1/M = C/S2 . Thus

f
def
==

∫
h = 1/S .

Roo says to define s := T·f note
=== 1/C. But since

the target is zero, and L is linear, we may freely mul-
tiply by a non-zero constant. Hence, we shall define s
as s := 1/C.

Check: To verify that s is annihilated by L(), note

s′ = 1
C T . Thus,

s′′ = [1
C T] ·T + 1

C [1 + T2] = 1
C [1 + 2T2]. So,

L(s) = 1
C ·

[
[1 + 2T2] − T·T − [1 + T2]·1

]
note
=== 0,

as predicted by the theory. �

Remark. To solve L(g) = 1 we could start with either
ZeroTar soln; T or 1

C . But since we have already
computed the multiplier-fnc for T, we will use T. �

Solving L(g) = 1. Recall M = T2 ·C, when using
ZeroTar T. Roo asserts that our h is

h :=
1

M
·
∫
MG

T
,

where, now, G ≡ 1 is our target function. The inte-
grand is T·eB1 ·G = T·C·1 = S. Hence

h =
1

M
·
∫

S =
1

T2 C
· [C] =

1

T2
. Thus,

f(x)
def
==

∫ x

h = 1
T + x . Consequently,

g(x) = T·f(x) = 1 + [xT] .

It is tedious, but easy, to verify L(1 + xT) = 1. So

gα,β(x) := [1 + x tan(x)] + α tan(x) +
β

cos(x)
28b:

is the gen.soln to L(gα,β) = 1. �

Other methods. We solved DE (28a) via Roo+Roo.
Alternatively, we could have used Roo+VoP or algo-
rithm Roo + Convol-GenTar. �

Tarantulas tarantulas
Everybody loves tarantulas
If there’s just fuzz where your hamster was
It’s probably because of tarantulas

–chorus of “The Tarantula Song” –Bryant Oden

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

https://www.youtube.com/watch?v=DX_rgHHWwv8

Page 52 of 71 Operators Prof. JLF King

Stopped at a traffic light, the car in front has vanity
plate ML8ML8 . What color is the car?

7i

Operators

We already know operators D and I=D0. Use 0 for
the zero-operator. I.e, 0(y) = 0 [the zero-fnc] for every
fnc y.

Translation. Use T for the family of translation
operators. For a number α ∈ C, operator Tα acts on
an arbitrary fnc ϕ to produce a new function, which
is ϕ but translated [to the “right”] by α. E.g,

T5(ϕ) =
[
t 7→ ϕ(t− 5)

]
.

[So T0 = I.] For instance, we know that cos() and sin()
are translates of each other. Specifically

Tπ/2
(
cos
)

= sin and T−π/2
(
sin
)

= cos .

A [complex] number β is “a period of f ” if Tβ(f) = f .
E.g, T2π(cos) = cos. And T2πi(exp) = exp.

Multiply-operator. Use M for the family of mul-
tiply operators. So M5 multiplies its argument by
[the constant fnc] 5, e.g M5(y) = 5y, i.e M5 = 5I. More
generally, for a function f , let Mf

(
y
)

:= f ·y. That is

[
Mf

(
y
)]

(t) = f(t)·y(t)
abbrev.
====== f(t)·y .

By slight abuse of notation, we can also use an ex-
pression as a subscript, e.g, Mt2

(
y
)
means t2y; well,

actually, the function
[
t 7→ t2y(t)

]
.

29.1: Lemma. Easily, M0 = 0 and M1 = I = T0.
Also:

i : Each Tα is invertible, and [Tα] 1 = T α.

ii : When f is no-where zero, then Mf is invertible,
with inverse M1/f . ♦

Commutation relations. Boldface symbols

D, I, 0, T? and M?

denote operators with fixed meanings. We’ll use san-
serif letters L,P,Q,U,V for operator-variables; vari-
ables that we can assign operators to. Make the con-
vention that, e.g, VP means V ◦ P, and V3 means
V ◦ V ◦ V. Hence V0 = I.

Use “�” to mean ‘commutes with’. So U � V
means that UV = VU.

29.2: Op-commutation lemma. Here α,β ∈ C, and f,g
are functions.

a: Translation-ops are linear and commute with each
other. Indeed, TβTα = Tβ+α = TαTβ .

b: Multiply-ops are linear and commute with each
other. Specifically, MfMg = Mf ·g = MgMf .

c: Each translation-op commutes with D.

d: Operator Mg commutes with D IFF g is constant.
The general commutation relation is

D Mg = Mg′ + [Mg D] , E.g,

D Mt = I + [Mt D] .

e: Operator Mf commutes with Tβ IFF β is a pe-
riod of f . The commutation relation [written with
composition symbol ◦, for clarity] is

Tβ ◦Mf = MTβ(f) ◦Tβ . ♦

Proof of (c). Exercise. Use the Chain rule. �

Pf of (d). Well, DMg(y) = D(g·y) = g′y+ gy′, which
equals Mg′(y)+[MgD]

(
y
)
, i.e,

[
Mg′ + [Mg D]

](
y
)
.�

Pf of (e). Let fβ := Tβ(f) and, for y an arbitrary fnc,
let yβ := Tβ(y). So MTβ(f) = Mfβ . Thus

MfβTβ

(
y
)

= fβ·yβ = Tβ

(
f ·y
)

= TβMf

(
y
)
,∗:

yielding the stated commutation relation.
Now, if Mβ�Tf then MfTβ = TβMf = MfβTβ ,

by (∗). Evaluating at the constant function 1 shows
that Mfβ (1) = Mf (1). Consequently fβ = f . �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King Operators Page 53 of 71

Example. Numerical expressions can be simplified [e.g
7 + 1 equals 8], as can fnc expresions [e.g cos2 + sin2 equals
the constant-fnc 12], and so too can operator expressions.
For example, the above lemma allows this

M5DMsinD
by (29.2d)
======== M5

[
Mcos + MsinD

]
D

by (29.2b)
======== M5 cosD + M5 sinD2 .

Another: Note that

Tπ/2 Mcos
by (e)
==== MTπ/2(cos) Tπ/2 = Msin Tπ/2 .

Hence
Tπ/2 Mcos T3π/2 = Msin T2π . �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 54 of 71 Matrix exponential Prof. JLF King

Matrix exponential

Fix posint N and let Mat denote the set of N×N ma-

trices. Use 0,I ∈ Mat for the zero-matrix and

identity-matrix. For M ∈Mat, define

exp(M) := eM :=
∞∑
k=0

[
1
k! ·M

k
]
.∗:

30.1: MiniChallenge: MatrixExp by hand. Fix an
α ∈ C and set S :=

[
α α
0 0

]
. Compute eS and etS. �

Soln. Let’s do this for α := 5; we’ll see the pattern.
Always, S0 is the identity matrix

[
1 0
0 1

]
. And for

k ∈ Z+, easily
Sk =

[
5k 5k

0 0

]
.

Writing S0 in the same pattern, then,

S0 =

[
50 50

0 0

]
+ C , where C :=

[
0 1
0 1

]
.

Applying defn (∗), our etS equals

1
0! ·t

0·C +
∑∞

k=0

1
k! · t

k ·
[
5k 5k

0 0

]

= C +


∑∞

k=0

1
k! · t

k5k
∑∞

k=0

1
k! · t

k5k

0 0

 .
This

∑∞
k=0

1
k! t

k5k is just the Taylor series of e5t, so

etS =

[
0 1
0 1

]
+

[
e5t e5t

0 0

]
note
===

[
e5t e5t − 1
0 1

]
.

Nothing was special about the complex number 5,
so for our original S we conclude that

etS = exp
(
t ·
[
α α
0 0

])
=

[
eαt eαt − 1
0 1

]
.30.2:

Plugging in t=1 gives

eS = exp
([

α α
0 0

])
=

[
eα eα − 1
0 1

]
.30.3:

By the way, at t=0, note that (30.2) is the identity
matrix. Coincidence? Space aliens? I think not! �

Defn. An N×N matrix M is nilpotent if ∃k ∈ Z+

such that
�� ��Mk = 0N×N . The smallest such k is the

“nilpotency degree of M” , written NilDeg(M). [Thus
“NilDeg(M) =∞” means M is not nilpotent.] Always:

The nilpotency degree of a nilpotent
N×N matrix is ≤N .

Matrices A,B ∈ Mat are similar♥14 [to each other]
if there exists♥14 an invertible U ∈Mat such that

B = UAU 1 . Write this
relation as

A ∼ B .

Easily, relation ∼ is an equivalence relation.
This A is diagonalizable if A is similar to some

diagonal matrix.
Read A� B as “A commutes with B” i.e, AB = BA.�

31: MatExp theorem. Series (∗) always converges.
Moreover, for scalars α,β and A,B,R,D ∈Mat:

a: Exp() of a diagonal matrix D :=

α1
. . .

αN


yields diagonal matrix

eD =

[
eα1

. . .
eαN

]
, so etD =

[
eα1t

. . .
eαN t

]
.

Thus e0 = I.

b: If matrices A� B, then eA+B = eA · eB.
Hence, every eR is invertible, and

[
eR
] 1

= e R.
Also, e[α+β]R = eαR · eβR.

c: For R arbitrary and U invertible, let D := U 1RU;
so R := UDU 1. Then

�� ��eUDU 1
= UeD U 1 . I.e,

[Conjugation by U] commutes-with exp().

From above, tR = U · tD · U 1, since scalars com-
mute with matrices, and thus

etR = U · etD · U 1 .

d: Function
[
t 7→ etR

]
is differentiable, and

d
dte

tR = R·etR = etR·R . ♦

♥14We also say “A and B are conjugate to each other” , or
“matrix U conjugates A to B.” In general, U is not unique;
there could be an invertible W 6=U s.t WAW 1 = B = UAU 1.

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King Matrix exponential Page 55 of 71

32.1: MiniChallenge: CEX to eA+B = eAeB.
Find 2×2 matrices A and B which form a counterex-

ample (abbrev. CEX) to assertion eA+B = eAeB. �

Soln. MatExp (31b) tells us to search among non-
commuting pairs; that is, AB 6= BA. About the sim-
plest non-commuting pair there is, is

A :=

[
1 0
0 0

]
and B :=

[
0 1
0 0

]
.32.2:

Is this pair a CEX ?! (This is so exciting !)
Since A is a diagonal matrix, our (31a) says

eA =

[
e1 0

0 e0

]
=

[
e 0
0 1

]
.

Our B has nilpotency-degree 2 [i.e B2 = 02×2], so

eB = 1
0!I + 1

1!B = I + B =

[
1 1
0 1

]
.

Before even computing eA+B, note that

eA · eB =

[
e e
0 1

]
6=

[
e 1
0 1

]
= eB · eA .32.3:

Since A+B does equal B+A, this implies that –in one
order or the other– we indeed have a CEX.

To find out which, we compute eS, where the sum

S := A + B
note
===

[
1 1
0 0

]
.

Our previous work, (30.3), says that exponential

eS =

[
e1 e1 − 1
0 1

]
note
===

[
e e− 1
0 1

]
.32.4:

So: No two of eAeB, eBeA, eA+B are equal. �

33: Lemma.Consider a mystery vector-valued function

Z(t) =


x1(t)
x2(t)
...
xN (t)

 .
Suppose Z satisfies Z′ = R · Z, where R is an N×N
matrix of numbers. Then each column, Y, of etR sat-
isfies Y′ = R·Y. Hence the soln to Z′ = RZ is

Z(t) = etR · Z(0) .33a: ♦

34.1: Diagonalizable Example. Unknown fncs x=x(t)
and y=y(t) satisfy

x′ = 5x+ 9y and

y′ = 6x+ 10y .
34.2:

So the coeff-matrix is R :=
[

5 9
6 10

]
. Magic [or a nice

guy] produces a conjugating matrix U :=
[

3 1
2 1

]
s.t

D := U 1RU
note
===

[
1 0
0 4

]

is a diagonal matrix.♥15 Hence etR = UetD U 1. I.e,

etR = U

[
et 0

0 e4t

]
U 1

note
===

[
3et − 2e4t 3et + 3e4t

2et − 2e4t 2et + 3e4t

]
.

34.3:

Our general soln, parameterized by numbers α and β,
is

xα,β
(
t
)

= [3et − 2e4t]·α + [3et + 3e4t]·β ,

yα,β
(
t
)

= [2et − 2e4t]·α + [2et + 3e4t]·β .
‡:

As they must, α = x(0) and β = y(0). �

35.1: Nilpotent Example. UFs x = x(t) and y = y(t)
satisfy

x′ = 2x − y and

y′ = 4x − 2y .
35.2:

Hence the coeff-matrix is R :=
[

2 1
4 2

]
. Note R2 = 0.

[I.e, R has nilpotency-degree 2.] Thus

etR = I + tR
note
===

[
1 + 2t t

4t 1 − 2t

]
.35.3:

Therefore, the soln to (35.2) is[
x(t)
y(t)

]
=

[
1 + 2t t

4t 1 − 2t

]
·
[
x(0)
y(0)

]
.‡: �

♥15Note that U 1 =
[

1 1
2 3

]
Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 56 of 71 Matrix exponential Prof. JLF King

Defn. The characteristic polynomial of an N×N
matrix M is

℘M(Z) := Det(M − ZI)36.1:

And the trace of M is

Trace(M) :=
[Sum of elements on
main diagonal of M

]
.36.2:

Consider Q :=
[
a b
c d

]
. Then Trace(Q) = [a + d].

And Q − ZI =
[
a− Z b
c d− Z

]
. Hence

℘Q(Z) = Z2 − [a + d]Z + [ad− bc]

note
=== Z2 − Trace(Q)·Z + Det(Q) .

36.3:

For a general N×N matrix M: If we write

℘M(Z) = [1]NZN + ΩN−1Z
N−1 + . . .+ Ω0 ,

then Ω0 = Det(M) and ΩN−1 = [1]N−1·Trace(M).
I.e,

℘M(Z) = [1]NZN + [1]N−1Trace(M)ZN−1

+ ΩN−2 Z
N−2 + . . .+ Ω1 Z + Det(M) .

36.4:

Over C, our char-poly factors as

℘M(Z) = [1]N ·
[
Z − α1

]
·
[
Z − α2

]
· · ·
[
Z − αN

]
.

This list α1, α2, . . . , αN of (possibly complex) numbers
is the list of eigenvalues of M. If M is diagonalizable,
then

M ∼
[
α1 . . .

αN

]
.

Moreover, the only diagonal matrices to which M is
similar are those whose main diagonal is some permu-
tation of α1, . . . , αN . �

36.5: Distinct-roots Thm. Suppose that the char-poly

℘R(Z) =
[
Z − β1

]
·
[
Z − β2

]
· · ·
[
Z − βN

]
·[1]N

of N×N matrix R has N distinct (possibly complex)
roots. β1, . . . , βN .♥16 Then R is indeed similar♥17 to
diagonal matrix

[
β1 . . . βN

]
.

♥16Recall, these are the eigenvalues of matrix R.
♥17Alas, it may be difficult to compute a conjugating matrix.

In particular, for column-vector Z(t) :=

x1(t)
...
xN (t)


satisfying DE Z′ = RZ, each xj(t) is simply a linear-
combination of exponentials eβ1t, . . . , eβN t .

Letting m denote the maximum of the real-parts
of the eigenvalues, it follows that no xj(t) can grow
faster than [constant times em·t], as t↗∞. ♦

36.6: Example. Consider X′(t) = B·X(t), where,

B :=

115 207 54
72 130 34
24 45 13

 .
The char-poly of B is

℘B(Z) = −[Z + 5] · [Z2 − 3Z + 8] .

The discriminant of quadratic q(Z) := Z2 − 3Z + 8 is
Discr(g) = [3]2 − 4·1·8 = 23. The roots of q are thus

S := [3 +
√

23 i]
/

2 and S
note
=== [3−

√
23 i]

/
2 .

So ℘B(Z) = −[Z − 5][Z − S][Z − S] in std form.
Since the three ℘B-roots are distinct, the Distinct-

roots thm tell us that B is similar to diagonal matrix[
−5

S
S

]
.

So each entry in X(t) is a lin-comb of e−5t,eSt,eSt. The
max of the real-parts of 5, S, S is 3

2 . As t↗∞, then,
no soln grows faster than Const · exp(3

2 t). �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King Recoding: Exchanging dimension for DE-order Page 57 of 71

Recoding: Exchanging dimension for DE-order

For numbers Ωk ∈ C and U.F x=x(t),

x(N) =
∑N−1

k=0

[
Ωk · x(k)] .37a:

is an N th -order DE in 1-dim’al space. Define col-vec

Z(t) :=


x(t)
x′(t)
...

x(N−2)(t)

x(N−1)(t)

 ,
which is N×1. We can restate (37a) as

Z′ = R · Z , where R is N×N matrix♥1837b:

R :=



0 1
0 1

0 1
. . .

. . .

0 1
Ω0 Ω1 Ω2 . . . ΩN−2 ΩN−1


.37c:

[The unshown entries are zero. The cyan entries form the main
diagonal.] The solution to (37a,37b) is

Z(t) = et·R · Z(0) = exp(t·R) · Z(0) .

But of course, we can solve (37a) with CCLDE, and
do not need the matrix-exp. Here is a more interesting
example:

♥18See “Companion matrix” in Wikipedia.

37d: Recoding Example. Imagine U.Fs x=x(t) and
y=y(t) related by DEs

x′′′ − 2x′′ − 3x+ 4y = 0 , and

y′ + 5x′′ + 6x′ + 7x− 8y = 0 .
37a†:

We can cheerfully recode this system as a 1st-order
DE in 3+1 = 4 dim’al space, with U.F Z=Z(t), as
follows.

Note Z′ = R·Z , where Z :=


y
x
x′

x′′

 and37b†:

R :=


8 7 6 5
0 0 1 0
0 0 0 1
4 3 0 2

 .37c†:

Hence the soln to (37a†, 37b†) is Z(t) = et·R · Z(0).
In this instance, et·R is not so easy to compute, but

it can be polynomially approximated by, say,

exp(t·R) ≈
∑50

k=0

[
tkRk

/
k!
]
,

with easily computable error-bounds. �

Aside. Into WolframAlpha, typing

{{8,-7,-6,-5},{0,0,1,0},{0,0,0,1},{-4,3,-0,2}}

i.e {{ 8, -7, -6, -5},
{ 0, 0, 1, 0},
{ 0, 0, 0, 1},
{-4, 3, -0, 2}}

indicates that ℘R() has two real eigenvalues and a complex-
conjugate pair of eigenvalues. As t ↗ ∞, the growth rate of
every soln is absolute-bnded by Const+Const·exp

(
10.7 · t

)
.�

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 58 of 71 MacFOLDE Prof. JLF King

MacFOLDE

Let’s generalize.

38: Product-rule Lemma. Suppose A(t) is a J×K ma-
trix, and B(t) is a K×N matrix, each differentiable
fncs. Then J×N matrix P(t) := A(t) ·B(t) is differen-
tiable, and

P′(t) =
[
A′(t)·B(t)

]
+
[
A(t)·B′(t)

]
. ♦

N.B. I.e, P = [A′ B] + [A B′]. Matrix-mult is not
commutative, so it is likely that P fails to equal, e.g,
[BA′] + [AB′]. �

39.1: Warning! Consider the matrix-valued fnc,

B(t) :=
[
3 2t
0 0

]
, so B′(t) =

[
0 2
0 0

]
.

Observe that
B(t)·B′(t) =

[
0 6
0 0

]
, yet B′(t)·B(t) =

[
0 0
0 0

]
.

Consequently, B′(t) does not commute with B(t). In
symbols, B′ 6� B. �

39.2: Lemma. Consider a differentiable matrix-val-
ued function B(t) where, for each t, our B(t) is an
N×N matrix. At each time t, suppose B′(t)� B(t).
Then

d
dt eB(t) = B′(t) · eB(t) = eB(t) · B′(t) . ♦

With C a matrix of numbers, and B(t) := C · t, note
that B′(t) = C. Hence B′(t) does commute with B(t).

This “constant coefficient” case is the case that in-
terests us, so I call the following the Matrix-CC-
FOLDE algorithm, abbreviated MacFOLDE , even
though the algorithm does apply whenever, for each t,
matrix B′(t) commutes with B(t).

Step MFOL0. We have U.F Z=Z(t) which is a
time-varying N×1 matrix. Write the DE in the form

dZ

dt
+ [C · Z] = G(t) ,40a:

where C is an N×N matrix of numbers, and G(t) is
an N×1 time-varying fnc. An antiderivative of C is
B(t) := t·C.

Define multiplier function

M(t) := eB(t) note
=== etC .40b:

Observe that M′(t) = M(t) · C. By (38), then,

[M(t) · Z]′ = [M(t)·C · Z] + [M(t) · Z′]

= M(t) ·
[
[C·Z] + Z′

]
= M(t) · G(t) .

∗∗:

Step MFOL1. Define the column-vector function
P(t) := M(t)·G(t), then compute

Q(t) :=

∫ t

P() .

For an arbitrary column-vec −→α =

α1

...
αN

 of numbers,
[where M=M(t), Z=Z(t), Q=Q(t)]

M · Z = −→α + Q .

Multiplying by M 1 note
=== e tC, and putting the t back

in the notation, we have that

Z−→α (t)︸ ︷︷ ︸
N×1

= e tC︸︷︷︸
N×N

·
[−→α︸︷︷︸
N×1

+ Q(t)︸︷︷︸
N×1

]
.40c:

And if we arrange that Q(0) =
−→
0 , by defining

Q(t) :=

∫ t

0
P() , then

Z(t)︸︷︷︸
N×1

= e tC︸︷︷︸
N×N

·
[
Z(0)︸︷︷︸
N×1

+ Q(t)︸︷︷︸
N×1

]
.40d:

Aside: Since C is constant, our e tC is simply M(t).

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King MacFOLDE Page 59 of 71

41.1: Revisiting (35.1), from P.55. Imagine unknown
fncs x = x(t) and y = y(t) satisfying system

x′ = 2x − y and

y′ = 4x − 2y + 2 .
41.2:

Setting Z(t) :=
[
x(t)
y(t)

]
and C :=

[
2 1
4 2

]
and G(t) :=

[
0
2

]
,

we can rewrite (41.2) as

Z′ + C·Z = G .∗:

With this Z and C, our (35.2) example from page 55,
was Z′ + C·Z =

[
0
0

]
. As before, NilDeg(C) = 2.

Thus

M(t) := etC = I + tC =

[
1 − 2t t

4t 1 + 2t

]
,40b†:

since C is negative the R from (35.1). Computing,

P := M·G =
[
1 − 2t t

4t 1 + 2t

]
·
[
0
2

]
=
[

2t
2 + 4t

]
.

Integrating

Q :=

∫ t

0
P =

[
t2

2t+ 2t2

]
note
=== t·

[
t

2 + 2t

]
.

In preparation for (40d), product e tC·1tQ equals

e tC = M(t)︷ ︸︸ ︷[
1 + 2t t

4t 1 − 2t

]
·
[

t
2 + 2t

]
note
===

[
t

2− 2t

]
.

Thus
e tC · Q =

[
t2

2t− 2t2

]
.

With initial condition x(0) = 0 = y(0), then,

x(t) = t2 , and

y(t) = 2t− 2t2 .

So the gen.soln to (41.2) is e tC
[
x(0)
y(0)

]
+ e tCQ, i.e

x(t) = [1 + 2t]·x(0) − t·y(0) − t2 , and

y(t) = 4t·x(0) + [1− 2t]·y(0) + [2t− 2t2] .
‡:

Compare this with (35.1 ‡), on P.55. �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 60 of 71 A APPENDIX: MISC EXAMPLES Prof. JLF King

§A Appendix: Misc examples

These may be cited from anywhere.

42: Poly-coeffs yet ∃soln not C2. Find a non-C2 func-
tion y = y(t) that, for t ∈ R, satisfies

y′y + y2 = G , where

G(t) := t4 − 2t3 + 2t− 1 .
42a:

Aside: This DE has form P ·y′y + Q·y2 = G. The coeff-fncs
P ,Q and target-fnc G are C∞; indeed, polynomials; and P ,Q

are constant. Nonetheless, this DE admits a soln that is not
even twice-differentiable. �

Soln. Easy Scan: The DiffOp is invariant under
negation; if f is a soln, then so is f .

Could a degree-N poly satisfy (42a)? Well, the y2

term forces N ≥ 2. Thus Deg(y′·y) = 2N − 1 and
Deg(y2) = 2N , so N must be 2. The method of Un-
determined Coeffs applies and we find that

f(t) := [t− 1]242b:

satisfies (42a). Thus [t− 1]2 is also a soln.
Idea: The 0th and 1st derivatives of these solns

agree at t=1, which are the only derivatives used by
the DiffOp. So: At t=1, we can stitch these solns
together. This gives this new soln:

y(t) :=

{
[t− 1]2 if t ≥ 1

[t− 1]2 if t < 1

}
note
===

∣∣∣t− 1
∣∣∣ · [t− 1] .†:

Its derivative,

y′(t) = 2 ·
∣∣∣t− 1

∣∣∣ ,
fails to be differentiable at t=1. So (†) is not twice-
differentiable, hence not C2.

Let’s check that (†) satisfies (42a). Computing,

y′· y = 2·[t− 1]3 = 2t3 − 6t2 + 6t− 2 ,

y2 = [t− 1]4 = t4 − 4t3 + 6t2 − 4t+ 1 .

Adding these together produces (42a). �

42c: N.B:.Our three fncs, (†) and ±[t−1]2, each solve
first-order DE (42a), and : Their 0th and 1st deriva-
tives agree at t=1. So even possession of two initial

conditions to a first-order DE, need not be sufficient
to uniquely specify a soln.

Aside: Our G(t) factors as [t− 1]3 · [t+ 1]. �

A Flea and a Fly in a Flue

Were imprisoned, so what could they do?
Said the fly, “let us flee!”
Said the flea, “let us fly!”
So they flew through a flaw in the flue.

–Ogden Nash

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King Calculus applications Page 61 of 71

§B Binomial coeffs & the Product rule

For a natnum n, use “n!” to mean “n factorial ” ; the
product of all posints ≤n. So 3! = 3 · 2 · 1 = 6 and
5! = 120. Also 0! = 1 = 1!.

For natnum B and arb. complex number α, define

Rising Fctrl: Jα ↑ BK := α·
[
α+ 1

]
·
[
α+ 2

]
· · ·
[
α+ [B−1]

]
,

Falling Fctrl: Jα ↓ BK := α·
[
α− 1

]
·
[
α− 2

]
· · ·
[
α− [B−1]

]
.

E.g, JB↓BK = B! = J1↑BK. Two further examples,

r
2
7

y 4
z

=
2

7
· 5

7
· 12

7
· 19

7
and J1 ↓ 3K = 1 · 0 · 1 = 0 .

In particular, for n ∈ N: If B > n then Jn ↓ BK = 0.
We pronouce J5 ↓ BK as “5 falling-factorial B”.

Binomial. The binomial coefficient
(7
3

)
, read

“7 choose 3”, means the number of ways of choosing
3 objects from 7 distinguishable objects. Emphasising
putting 3 objects in our left pocket and the remaining
4 in our right, we may write the coeff as

(7
3,4

)
. [Read

as “7 choose 3-comma-4.”] Evidently(
N

j

)
with k := N− j
============

(
N

j, k

)
=

N!

j! · k!
=

JN ↓ jK
j!

.†:

Note
(7
0

)
=
(7
0,7

)
= 1. Finally, the Binomial theorem

says

[x+ y]N =
∑

j+k=N

(N
j,k

)
· xjyk ,£:

where (((j, k))) ranges over all ordered pairs of natural
numbers with sum N.

For natnum N, binomials satisfy this addition law:

(
N+1

B+1

)
=

Pick last object.︷ ︸︸ ︷(
N

B

)
+

Avoid last object.︷ ︸︸ ︷(
N

B+1

)
.∗:

Extending this to all B∈Z forces:(
N

B

)
= 0,

when B > N
or B negative.

Case B>N is automatic in formula
(N
B

)
= JN↓BK

B! .

Multinomial. In general, for natural numbers
N = k1 + . . .+ kP , the multinomial coefficient(N
k1, k2, ..., kP

)
is the number of ways of partitioning

N objects, by putting k1 objects in pocket-one, k2

objects in pocket-two, . . . putting kP objects in the
P th pocket. Easily(

N

k1, k2, . . . , kP

)
=

N!

k1! · k2! · . . . · kP !
.‡:

Unsurprisingly, [x1+. . .+xP]N equals the sum of terms(N
k1,...,kP

)
· x1

k1 · x2
k2 · · ·xP kP ,££:

taken over all natnum-tuples ~k=(((k1, . . . , kP))) that sum
to N. [That is multinomial analog of the Binomial Thm.]

Define the sum S` := k1 + k2 + . . .+ k`. Then
multinomial LhS(‡) equals this product of binomials:(

N

k1

)
·
(

N− S1

k2

)
·
(

N− S2

k3

)
· . . . ·

(
N − SP−1

kP

)
·

[The last term is
(kP
kP

) note
=== 1.]

Calculus applications

Bi/Multi-nomials appear in differentiation formulas.

43a: Product Rule. For natnum N , and N -times
differentiable functions f and g:[

f · g
](N)

=
∑

j+k=N

(N
j, k

)
· f (j)· g(k) ,∗:

where (((j, k))) ranges over all ordered pairs of natural
numbers with sum N . ♦

E.g:
[
f ·g
](4)

= fg(4) + 4f (1)g(3) + 6f (2)g(2) + 4f (3)g(1) + f (4)g.

43b: Lemma. For posints N, J,K with J+K = N+1,(N
J−1, K

)
+
(N
J, K−1

)
=

(N+1
J, K

)
.U: ♦

Proof. The LhS(U) equals

J
J ·

N !
[J−1]! K! + N !

J ! [K−1]! ·
K
K = [J+K] ·N !

J !K! ,

which equals RhS(U). �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 62 of 71 Calculus applications Prof. JLF King

Pf of (43a). At N=0, our (∗) says fg = fg; a tautol-
ogy. Fixing N for which (∗) holds, note

[
f · g

](N+1)

equals
∑
j+k=N

(N
j,k

)[
f (j)· g(k)

]′, which equals

A︷ ︸︸ ︷∑
j+k=N

(N
j,k

)
f (j+1)g(k) +

B︷ ︸︸ ︷∑
j+k=N

(N
j,k

)
f (j)g(k+1) .

Letting J := j+1 and K := k, rewrite A as

A =
∑

J+K =N+1,
J ≥ 1

(N
J−1, K

)
· f (J)g(K) .†:

Similarly, with K := k+1 and J := j, rewrite B as

B =
∑

J+K =N+1,
K≥ 1

(N
J, K−1

)
· f (J)g(K) .‡:

Separating out theK=0 term from (†) and the J=0
term from (‡), says that A+B equals(N

N, 0

)
f (N+1)g(0) +

(N
0, N

)
f (0)g(N+1)

+
∑

J+K =N+1,
J,K≥ 1

[(N
J−1, K

)
+
(N
J, K−1

)]
· f (J)g(K) .

Use the lemma, (U), to rewrite the summand. Thus
A+B equals

f (N+1)g(0) + f (0)g(N+1) +
∑

J+K =N+1,
J,K≥ 1

(N+1
J, K

)
· f (J)g(K) .

And this equals
∑

j+k=N+1

(N+1
j, k

)
· f (j)g(k), as desired. �

Larger product. Given a tuple J = (((j1, . . . , jP))) of
natnums, let +++J := j1 + · · ·+ jP . With N := +++J ,
let

(N
J

)
mean multinomial coeff

(N
j1, j2, ..., jP

)
. Finally,

given a tuple ~f := (((f1, . . . , fP))) of differentiable fncs,
let ~f (J) abbreviate this product of derivatives:

~f (J) := f
(j1)
1 · f (j2)

2 · . . . · f (jP)
P .

[When tuple J is used this way, it is called a multi-index.]

43c: Gen. Product Rule. Fix natnum N , posint P , and
N -times differentiable functions, ~f := (((f1, . . . , fP))).
Then

[
f1 · . . . · fP

](N)
=

∑
J : +++J=N

(N
J

)
·~f (J) .VP : ♦

Proof. Eqn (V1) asserts tautology f (N)
1 = f

(N)
1 . We

proceed by induction on P . Fixing P such that (VP),
we now establish (VP+1).

Fix P+1 fncs f1, . . . , fP , g, and let Φ := f1 · . . . · fP .
Then

[
f1· . . . ·fP · g

](N) is
[
Φ · g

](N). By (∗), it equals∑
s+k=N

(N
s, k

)
· Φ(s)· g(k) ,∗1:

where (((s, k))) ranges over all natnum-pairs with sumN .
Courtesy (VP), our Φ(s) equals∑

J : +++J = s

(s
J

)
·~f (J) , where J = (((j1, . . . , jP))).

Plugging this in to (∗1) gives

∑
s+k=N

[∑
J:+++J = s

(N
s, k

)(s
J

)
·~f (J)· g(k)

]
.∗2:

But product
(N
s, k

)(s
J

)
equals multinomial

(N
j1,...,jP ,k

)
.

Renaming k to jP+1, and g to fP+1, writes (∗2) as∑
j1 +...+ jP + jP+1

=N

(
N

j1, . . . , jP+1

)
· f (j1)

1 · . . . ·f (jP)
P ·f (jP+1)

P+1 ,

which indeed is RhS of (VP+1). �

Deriv(product). Consider f(t):= 3t, g(t):= sin(5t)
and h(t) := e7t. The 6th-derivative, [f ·g·h](6), is a sum
of terms. What is the coeff of the f ′′ · g′ · h′′′ term?
Soln. By the generalized product rule, (43c), the
coefficient of f (2)g(1)h(3) is(

6

2, 1, 3

)
note
===

(
6

2

)(
4

1

)(
3

3

)
=

6·5
2·1
· 4

1
· 1 = 60 .

Continuing, note:

f (2) = [log(3)]2·f ; g(1)(t) = 5 cos(5t); h(3) = 73·h.

So one summand in the sum forming [f ·g·h](6), is

60 · log(3)2 · 5 · 73 ·
[
3t · cos(5t) · e7t

]
. �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King C ORDER-3 VOP Page 63 of 71

§C Order-3 VoP

CC-VoP Example 2. U.F s = s(t) satisfies

s′′′ − s′′ = tet .44a:

A good approach is to define q := s′′, solve DE

q′ − q = GU:

where G(t) := tet, then anti-diff twice. First-order
DE (U) can be solved via FOLDE (17a), or Poly-
Exp (10a), or Convol-GenTar (25a)P.44, or VoP (26.4).

But for illustration, I’m going to solve the origi-
nal (44a) by VoP. Set E := et and L := D3 −D2.

VoP1. The aux.poly of L is [Z − 0]2[Z − 1]. So
{Y0 := 1, Y1 := t, Y2 := et} is an L.I. triple of fncs
annihilated by L.

VoP2. The Wronskian-matrix of (((1, t, et))) is

M :=

1 t E
0 1 E
0 0 E

 . So D := Det(M) = E .∗:

We compute fncs h0,h1,h2 satisfying matrix-eqn
M·H = T, where

H :=

h0

h1

h2

 and T :=

0
0
G

 .
Cramer’s thm has us examine matrices0 t E

0 1 E
G 0 E

 ,
1 0 E

0 0 E
0 G E

 ,
1 t 0

0 1 0
0 0 G

 .
Their determinants are, respectively,

GE[t− 1], GE, G .

Dividing each by the (∗)-Wronskian, E, gives

h0 = G[t− 1], h1 = G, h2 = G/E .

VoP3. Computing anti-derivatives,

f0 =

∫
h0 =

∫ t

xex·[x− 1] dx = et[t2 − 3t+ 3], and

f1 =

∫
h1 =

∫ t

xex dx = et[1− t], and

f2 =

∫
h2 =

∫ t xex

ex
dx =

t2

2
.

So a soln to (44a) is

s = f0Y0 + f1Y1 + f2Y2

= et[t2 − 3t+ 3]·1 + et[1− t]·t + t2

2 ·e
t

=
[
t2

2 − 2t + 3
]
· et .

Recall L(et) = 0, so L(3et) = 0, and we may thus use
the simpler soln

s =
[t2

2
− 2t

]
· et

to (44a).

You have to do your own growing no matter how
tall your grandfather was.

–Abraham Lincoln

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 64 of 71D IT’S ABOUT BRINE, IT’S ABOUT SPACE, IT’S ABOUT BRINE MOVING PLACE TO PLACE...Prof. JLF King

§D It’s about Brine, it’s about Space,
it’s about brine moving place to

place...

The rather cute theme song.

Remark. Brine is saline-water, NaCl in H20.

The Cascading tanks on the next page is an in-
stance of Compartmental analysis. �

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

https://www.youtube.com/watch?v=DsJhBn0I9U4&t=4s

Prof. JLF King Compartmental analysis [§3.2–NSS9] Page 65 of 71

Compartmental analysis [§3.2–NSS9]

Brine with 1.3 lb
gal salt flows at rate 4 gal

min into a tank
that initially holds 12gal of 2 lb

gal -salt brine. The tank
is well-mixed, and brine is flowing out at rate 4 gal

min .
We seek a formula for y(t), the number of lbs of salt
in the tank at time t.

Henceforth, use italic boldface 0 to mean 0min.

Units: Symbol: Description:
lb y(t) Salt in tank@ t.
gal W (t) Water in tank@ t.

U := W (0) Initial amount of water.
lb/gal S Input salinity.

σ(t) Salinity in tank@ t.
D := σ(0)− S Initial Difference in salinities.

gal/min R Input flow-rate of water.
ρ Output flow-rate of water.

A := R− ρ Accumulation flow-rate.
L := ρ− R = A Loss flow-rate.

min E := U
/

L Time-to-Empty, when L>0 gal
min .

1/min Γ := R
U A useful constant.

By definition of the quantities involved

W (t) = U + At and σ(t) =
y(t)

W (t)
.45a:

Our salt-fnc y satisfies DE

y′(t) =

Input︷︸︸︷
R·S −

Output︷ ︸︸ ︷
ρ·σ(t)

note
=== SR − ρ

W (t) ·y(t) .45b:

To match our FOLDE notation, let

G := SR and C(t) :=
ρ

W (t)
.

So we can re-write (45b) as

y′(t) + C(t)y(t) = G .

Case: R=ρ, not zero. Hence C() is the con-
stant Γ := R

U 6= 0. Step (F0) of FOLDE has us anti-
diff, then exponentiate, to get

M(t) := eΓ t .45c:

Step (F1): Anti-diff’ing product G·eΓt gives

Q(t) :=
G

Γ
· eΓ t note

=== SU · eΓ t .

For an arb.constant α, then, step (F2) gives

y(t) = e Γ t ·
[
α + SU·eΓ t] =

α

eΓ t
+ SU .45d:

Divide through by U, and rename α
U to α [which is, after

all, arbitrary] to get

σ(t) =
α

eΓ t
+ S .

Solve for α, and re-order, to obtain that

σ(t) = S +
D

e[RU · t]
.45e:

Or use SoV. Alternatively, write (45b) as

dy
dt

= G − Γ·y

and separate variables to get

1
G−Γy

· dy = 1 · dt .

Only considering when G− Γy > 0, we anti’diff to get
1

Γ
· log

(
G − Γy

)
= t + α ,

using arb.constant α. Cross-mult then exponentiate to get
G − Γy = 1/eΓt+Γα. Replace e Γα by α [skipping some de-
tails] to get

G − Γy =
α

e[Γ· t]
.

Solve for y=y(t), giving

y(t) =
α

eΓ· t +
G

Γ

note
===

α

eΓ t
+ SU .

And this is RhS(45d).

Case: R 6=ρ. I.e, A 6= 0, so W () is not constant.

In this section, we only consider values of t
where W (t)

note
=== U + At is positive.

∗:

Step (F0): Anti-diff C(t) = ρ
U + At to get

B(t) :=
ρ

A
· log(U + At) ,

using (∗). Setting θ := ρ
A , then, exponentiating gives

M(t) = [U + At]θ .

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 66 of 71 Cascading tanks Prof. JLF King

Step (F1): Anti-diff’ing product G·M(t) hands us

Q(t) :=
G

A · [θ + 1]
· [U + At]θ+1 .

Note [Aθ] + A = R and G
R = S. Step (F2) has us add

an arb.constant α, then divide by M(t), giving

y(t) = 1
M(t) ·

[
S·[U + At]θ+1 + α

]
.

Dividing by W (t)
note
=== [U + At] yields

σ(t) = S +
α

[U + At]R/A
,

since θ + 1 = R
A . Dividing top and bottom by [U]R/A,

and solve for α to arrive at this:

σ(t) = S +
D

[1 + A
U ·t]R/A

,45f:

The A rate is positive:negative as the tank is fill-
ing:draining. When draining, it is convenient to ex-
press this formula in terms of the Loss flow-rate, L,
and time-to-Empty, E. Since A

U = −L
U = −1

E , our (45f)
becomes

σ(t) = S + D·
[
1 − 1

E·t
]R/L

,45g:

Plausibility. Soln (45f) handles when A 6= 0. Do
we get our A=0 soln, (45e), as a limit when we send A
to zero? Let’s check, by applying L’Hôpital’s rule to
the denominator of (45f). Let

L := lim
A→0

[
1 + A

U ·t
]R/A

.

Since log is continuous, log
(
L
)

= L̂ , where

L̂ := lim
A→0

R
A · log

(
1 + A

U ·t
)
.

Applying L’Hôpital’s, L’Hôpital’s rule

lim
A→0

log
(
1 + t

U ·A
)

A

l’Hôp
==== lim

A→0

[
1

1 +
t
U ·A

]
· tU

1

= lim
A→0

[t

U + t·A

]
=

t

U + [t · 0]
=

t

U
.

Hence L̂ = R · tU . Consequently

L = e
R
U · t ,

which indeed equals the denominator of (45e).

Cascading tanks

Calling the above tank “tank-1”, we generalize to have
tank-1 feed into tank-2, which feeds into tank-3 etc.
Each tank has constant input and output flow-rate R.
The amount of water in each tank is U.

Use σN (t) for the salt-concentration in tank-N at
time t, and use [recall that italic boldface 0 means 0min.]

DN := σN (0) − S . As a convenience,

D0 = S − S
note
=== 0 lb

gal and

σ0(·) ≡ S ,∗:

by imagining that the source is an ∞-volume tank-0.

We will show, for N = 0, 1, 2, . . ., that♥19

σN (t)
?
= S +

fN (t)

eΓt
, where

fN (t) :=
∑N

k=0

1
k! ·DN−k · [Γt]k

note
===

∑N−1

k=0

1
k! ·DN−k · [Γt]k,

45h:

since D0 is zero. To illustrate this defn:

σ0(t) = S ;

σ1(t) = S +
D1

eΓt
;

σ2(t) = S +
D1Γt + D2

eΓt
;

σ3(t) = S +
1
2D1[Γt]2 + D2Γt + D3

eΓt
;

σ4(t) = S +
1
6D1[Γt]3 + 1

2D2[Γt]2 + D3Γt + D4

eΓt
.

N.B: The numerator in σ4(t) is

D1[Γt]3

3!
+

D2[Γt]2

2!
+

D3[Γt]1

1!
+

D4[Γt]0

0!
.

♥19Note that Deg(fN) ≤ N−1, since D0 is zero.

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King Cascading tanks Page 67 of 71

For future use, verify this recurrence relation:

[fN+1]
′ = Γ ·fN .∗∗:

Specifically,

fN+1(t) = DN+1 + Γ ·
∫ t

0
fN .∗∗∗:

For convenience, we we restate. . .

σN (t) = S +
fN (t)

eΓt
, where

fN (t) :=
∑N

k=0

1
k! ·DN−k · [Γt]k

note
===

∑N−1

k=0

1
k! ·DN−k · [Γt]k,

45h:

Proving (45h). Product Γt is unitless, so fN (t) is
in lb/gal; hence so is S +

[
fN (t)/eΓt

]
, as it should be.

Secondly fN (0) = 1
0! · DN−0 · 1

note
=== DN . Thus

S + fN (0)
e0 equals S + DN , which indeed equals σN (0),

as it should. What remains, is for us to verify
that (45h) satisfies the appropriate DE.

Base case. Note f0(·) = 1
0! · D0

note
=== 0 lb

gal . Hence
σ0(·) is the constant-fnc S, as (∗) indeed says.

Induction. Fix a natnum N for which (45h)
holds.

�� ��Here, let y and σ denote yN+1 and σN+1.
Our (45b) DE becomes

y′(t) =

Input︷ ︸︸ ︷
R · σN (t) −

Output︷ ︸︸ ︷
R · σ(t) .

Divide by U, the [constant] amount of water in each
tank, to get FOLDE

σ′(t) + Γ·σ(t) = Γ·σN (t) .45i:

As in (45c), FOLDE gives multiplier-fnc M(t) := eΓ t.
We wish to anti-diff product

P (t) := eΓt · Γ · σN (t)

by (45h)
====== SΓ· eΓt + Γ·fN (t) .

Courtesy (∗∗), we can choose anti-deriv

Q(t) :=

∫ t

P = S · eΓt + fN+1(t) .

Adding the appropriate salinity constant α, then di-
viding by M(t)=eΓt, produces

σN+1(t) = S +
α + fN+1(t)

eΓt
.

We’ve already checked that (45h) gives the correct
value at t = 0 , hence α must be 0 lb

gal . The conclusion
is that formula (45h) is correct at stage N+1. QED

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 68 of 71 F INTRO TO CALCULUS OF VARIATIONS Prof. JLF King

§E Matrix-exp: A bit further

46.1: If eAeB = eBeA, must A� B? No. The following
example is from Prof. Howard Haber’s [UC SantaCruz] notes.

CEX. With τ ∈ C non-zero, let T :=
[
τ 1
0 0

]
. For

k = 1, 2, . . ., note Tk =
[
τk τk/τ
0 0

]
. Furthermore,

[
1 0
0 1

]
= T0 =

[
τ0 τ0/τ
0 0

]
+ C , where C :=

[
0 1/τ
0 1

]
.

Our defn eT
def
==

∑∞
k=0

1
k! ·T

k results in

eT
= 1

0! ·C +
∞∑
k=0

1
k! ·

[
τk τk/τ

0 0

]

= C +

[
eτ eτ/τ

0 0

]
=

[
eτ [eτ − 1]/τ

0 1

]
.

Let Tn be this matrix T when τ := n·2πi and n ∈ Z;
since eτ = 1, each exp(Tn) = I, the identity matrix.

Last step. Matrix A :=
[
2πi 0
0 0

]
, is diagonal, hence

eA =
[

e2πi

e0

]
note
=== I .

With B := T1, observe A+B = T2. From above,
then, eB = I = eA+B. Consequently,

Each of eAeB, eA+B, and eBeA, equals I.

Yet A and B do not commute. For with τ := 2πi,

AB =
[
τ2 τ
0 0

]
6=

[
τ2 0
0 0

]
= BA . �

§F Intro to Calculus of Variations

(In progress.)

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King INDEX FOR DIFFYQ Page 69 of 71

§Index for DiffyQ

Stated theorems are in the ToC.
Applications of theorems may
appear in this index.

~, see convolution
≈, approximately equal,
≡, identically equal,
[b .. c), see interval of integers
Jx ↑ KK, see rising factorial
Jx ↓ KK, see falling factorial
{Object | Property}, set-builder,
∼, i.e: asymptotic to
∼, seesimilar matrices54
::, has units of. . . , e.g Height :: d©,
d©, t©, m©, w©, p©, abstract unit of

distance=length, time,mass,
weight=force, temperature,

/©, no units, dimensionless,
?©, units depend on application,

amplitude, 11
Argand plane, 10
asinh,acosh, 31
auxiliary polynomial, 13

binomial coefficient, 61
birth multiplier

natural, 27

carrying capacity, 27
catenary, 33
Cauchy-Euler, see equidimen-

sional operator
Cesàro equation, 39
CEX, see counterexample
char-poly, seecharacteristic poly-

nomial1
characteristic polynomial, 49, 56
circular reasoning, see tautology
cis(), cosine + i·sine, 11
Completing-the-square, 10
complex conjugate, 10
complex plane, 10
Convol-diff thm, 43
convolution, 40

cosh, 31
counterexample, 55
CN, fncs with N th-deriv cts, 17

Det(), determinant of a matrix,
DiffN , N -times diff’able fncs, 17
D, differentiation operator, 2
discriminant, 9, 17
Discr(), see discriminant
Dixon Lanier Merritt, 48
Dominated Convergence thm, 43
doubling time, 28
DUI thm, 43

Eggs, 1, 4, 5, 9, 39, 40, 45, 48, 50–
52, 60, 63, 67

eigenvalue, 56, 57
EquiDim-Op, 49
equidimensional operator, 49
exact DE, 23
exact-ifying fnc, 24
exp(z)=ez, exponential fnc, 10
exponential

complex, 10
matrix, 54

falling factorial, 1, 61
frequency, 11
FTC = Fund. Thm of Calculus,
Fund. thm of Algebra , 10

Gen-EquiDim-Op, 49
Generalized EquiDim-Op, 49
generation time, see doubling time

homogeneous function, 7
hyperbolic sinh,cosh, 31

I, identity operator, 2
identity function, 2, 40
Im(ω), imaginary part of ω∈C, 10
implicit solution, 23
interval of integers, 1
IVP, i.e: Initial-Value Problem

IVT = Intermediate-Value Thm,

L’Hôpital’s rule , 66
L.I, see linearly-independent
LhS(), lefthand side of. . . ,
Leibniz corollary, 43
Lewis Carroll, see Volkswagen
lim
(
erick

)
, 60

linear mapping, 17
linear-comb, lin-comb, i.e: linear-

combination
linearly-independent set, 17
logarithm, 1
Logistic model, 27

Maclaurin polynomial, 42
Malthusian model, 27
Matrices

diagonalizable, 54
nilpotent, 54, 55
similar, 54
trace, 56
Wronskian, 46

ML8, see Lewis Carroll
multi-index, 62
multinomial coefficient, 61
multiply operators, 52

nilpotency degree, 54
nilpotent, see Matrices
NilDeg(M), 54

phase-shift, 11
poly, i.e: polynomial
PolyExp, 1, 15
PolyExp-sum, 1
polynomial

auxiliary, 13
discriminant, 9
Maclaurin, 42

Power-of-x Lemma, 42
Product Rule thm, 61, 62
Proof

circular, see circular reasoning

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Page 70 of 71 INDEX FOR DIFFYQ Prof. JLF King

Re(ω), real part of ω∈C, 10
recoding a system of DEs, 57
restricted sinh,cosh, 31
RhS(), righthand side of. . . ,
rising factorial, 1, 61

Same-freq Lemma, 11
Same-span Lemma, 17
scalar, 17
scale-invariant function, 7
similar matrices, 54
sinh, 31
span of a set of vectors, 17
suspension bridge, 34

tarGet fnc, 2
tautology, see Proof, circular
Theorems

Convol-diff, 43
Dominated Convergence, 43
DUI, 43
Fund. thm of Algebra, 10
L’Hôpital’s rule, 66
Leibniz, 43
Power-of-x, 42
Product Rule, 61, 62
Same-freq, 11
Same-span, 17

trace of a matrix, 56
translation operators, 52

vector space, 17
Volkswagen, 52
VS, see vector space

Whewell equation, 39
Wronskian, see Matrices

zero-operator, 52

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

Prof. JLF King INDEX FOR DIFFYQ Page 71 of 71

That’s All, Folks! –Bugs Bunny Filename:

Problems/Analysis/Calculus/diffq-algorithms.latex
As of: Monday 31Aug2015. Typeset: 15Mar2023 at 21:20.

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex

https://www.youtube.com/watch?v=AYZz_qYw_j4

	Introduction
	The Easy Scan
	Separation of variables [SoV]
	CoV to SoV
	Complex numbers
	red[2]blueSYellowOrangeVBuried Treasure Problem [BTP]
	C-exponentialto black[Chap4–NSS9, P.237]
	redSame-freq Lemma
	CCLDE Algorithm[Const.-Coeff LDE]
	Polynomial targetto Undetermined coeffs
	PolyExp target

	Linear maps
	Conjugate-root example
	redSame-span Lemma
	Mass-spring to black[NSS in §4.1, §4.2, §4.9]
	The FOLDE algorithmto[First-Order LDE]
	log-CoV to FOLDEto [Change-of-Variable]
	Bernoulli eqn using FOLDE

	The EXACT algorithm
	EXACT Example of (E1.1)
	EXACT Example of (E1.2)
	Exactifying-factor theory

	Logistic modelblack[§3.2–NSS9, P.98]
	Hyperbolic trigonometric functions

	Derivation of hanging cable
	The Suspension Bridge solution
	The Hanging Cable (catenary) solution

	Convolutions black[2][Chap4–NSS9, P.237.]
	redPower-of-x Lemma
	redConvolve-Mac Thm
	redChain-rule Lemma
	redDUI: Differentiation under Integral
	redLeibniz-rule Lemma
	redLeibniz corollary
	redConvol-diff Thm
	Convol-GenTar Algorithm

	Variation of Parametersblack[NSS9: Maroon§4.6 & ForestGreen§2.4., ex.#30]
	redCramer's ``Rule'' Thm
	redWronskian L.I. Thm
	VoP algorithmto [Variation of Parameters]
	Equidimensional operators
	Roo algorithmto [Reduction of order]

	Operators
	redOp-commutation lemma

	Matrix exponential
	redMatExp theorem
	Recoding: Exchanging dimension for DE-order
	MacFOLDE

	Appendix: Misc examples
	Binomial coeffs & the Product rule
	Calculus applications
	redProduct Rule
	redGen. Product Rule

	Order-3 VoP
	It's about Brine, it's about Space, it's about brine moving place to place...
	Compartmental analysisblack[§3.2–NSS9]
	Cascading tanks

	Matrix-exp: A bit further
	Intro to Calculus of Variations
	Index for DiffyQ

