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What does this mean?

stand took to world.
I you throw  the
Number Sets. Expression k € N [read as “k is an element

of N” or “k in N”| means that k is a natural number; a natnum.
Expression N 3 k [read as “N owns k”| is a synonym for k € N.

N = natural numbers = {0,1,2,...}.

Z = integers = {...,—2,—-1,0,1,...}. For the set
{1,2,3,...} of positive integers, the posints, use Z,. Use Z_
for the negative integers, the negints.

Q = rational numbers = {% |p€Zand g € Z,}. Use Qy for
the positive rationals and Q_ for the negative rationals.

R = reals. The posreals Ry and the negreals R_.

C = complex numbers, also called the complexes.

For weC, let “w > 5” mean “w is real and w > 5”. [Use
the same convention for >, <, <, and also if 5 is replaced by any real
number.|

Use R = [-00,+0] i= {00} URU{+x}, the extended re-
als.

An “interval of integers” [b.c) means the intersec-
tion [b,c) NZ; ditto for open and closed intervals. So
le.2m] = {3,4,5,6} = [3..6] = (2..6]. We allow b and ¢ to
be £ o00;s0 (-0o..-1]is Z_. And [-co0.-1],is {-co} UZ_.

Floor function: |7| =3, |-7w| =-4. Ceiling fnc: [7] = 4.
Absolute value: |-6| = 6 = |6] and |-5 + 2i| = v/29.

Mathematical objects. HI Seq: ‘sequence’.
poly(s): ‘polynomial(s). irred: ‘irreducible’. Coeff: ‘coefficient’
and var(s): ‘variable(s) and parm(s): ‘parameter(s).  Expr.:
‘expression’. Fnc: ‘function’ (so ratfnc: means rational function,
aratio of polynomials). trnfn: ‘transformation’. cty: ‘continuity’.
cts: ‘continuous’.  diff’able: ‘differentiable’. CoV: ‘Change-of-
Variable’.  Col: ‘Constant of Integration’.  Lol: ‘Limit(s) of
Integration’. RoC: ‘Radius of Convergence'.

Soln: ‘Solution’.  Thm: ‘Theorem’.  Prop'n: ‘Proposition’.
CEX: ‘Counterexample’.  eqn: ‘equation’.  RhS: ‘RightHand
side’ of an eqn or inequality. LhS: ‘lefthand side’. Sqrt
or Sqroot: ‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn:
‘partition’, but pt: ‘point’ as in “a fixed-pt of a map”.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value
Thm’. MVT: ‘Mean-Value Thm’.

Webpage http://people.clas.ufl.edu/squash/

The logarithm defined  for

'z do
log(x) ::/1 (FL.

For x>0, then, exp (log(m)) =z = €'°5(®) For real ¢, naturally,
log(exp(t)) =t = log(e").

PolyExp: ‘Polynomial-times-exponential, e.g, [3 + t*]-e".
PolyExp-sum: ‘Sum of polyexps’. E.g, f(t) = 3te*" + [t*]-e’ isa
polyexp-sum.

Prefix nt- means ‘non-trivial’. E.g “a nt-soln to f' = 5f is
f(t) = €% a trivial soln is f = 0.”

function, >0, is

Its inverse-fnc is exp( ).

Phrases. WLOG: ‘Without loss of generality’.  |FF: ‘if

and only if. TFAE: ‘The following are equivalent’. | TOf: ‘In
Terms Of.  OTForm: ‘of the form’. FTSOC: ‘For the sake of
contradiction’. And 3% =“Contradiction”.

IST: ‘It Suffices To’, as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: exempli gratia, ‘for example’. i.e: id est, ‘that
is’. N.B: Nota bene, ‘Note well. interalia: ‘among other things’.

QED: quod erat demonstrandum, meaning “end of proof”.

Def: n! :=n-[n—1]-[n—2]--- 2-1; so 0! = 1.
Rising Fetrl: [z K] =a [z +1]-[z+2] - [z + [K-1]],
Falling Fctrl: [+ | K] =[x —1]-[x—2] - [z — [K-1]],
for natnum K and z€C. E.g, [K | K] = K! = [11K].
N.B: Forn € N: If K > n then [n| K] =0.
Note [z 1 K] = [z + [K—1] | K].

Factorial.

Learn from the mistakes of others. You can’t
live long enough to make them all yourself.
—Eleanor Roosevelt

Some differentiation formulas. Below, italic
boldface parameters a, b, ¢ and f represent numbers.
Here, differentiation is w.r.t variable ¢.

1.1: t-efle = [et/c-[ct—c2]]/.

1.2:  t2.elle =
C

1.3: =
a-+ bt

Use expressions E(t):=e®, S(t):=sin(f-t) and
C(t) == cos(f-t), below. The number f can be thought
of as “frequency” and, in some contexts, the a can be
thought of as “attenuation”. We have

/
[et/c [et? —2¢%t + 2c3]] .

[% -log(a+ bt)}l.

1.4: [a® + £?] -/E-S = E-[aS — fC].

1.5: [a2+f2]-/E-C’ = E-[fS + aC].
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Introduction

[Use NSS9 for the 9" edition of the Nagle,Saff,Snider text-
book. Use, e.g, #7193.NSS9, to refer to problem #7 on
page 193 of NSS9.| [Use ZW 8 for 8" edition of Zill & Wright,
using e.g, #7193 ZW8, to refer to problems.]

For the following algorithms, the unknown func-
tion is y = y(t). For a DE of form

Foc(y,y,y",...) = G(),

we will call G() the tarGet fnc.

Use D for the differentiation operator; there-
fore T:= DV is the identity operator. And D3(y)
means D(D(D(y))), iey”. SolI(y) = Dy) = y.
[See §5.2-NSS9, P.243.|

Use DE: ‘Differential Equation’, LDE: ‘Linear DE’,
ODE: “Ordinary DE' and PDE: ‘Partial DE'. |VP:
‘Initial-Value Problem’.

Use boldface 1 = [t + 1], for the constant-1 fnc.
For the identity function, use Id(t) = t. Differenti-
ating, Id' = 1.

The Easy Scan

Below, «, 3, A, B, r range over all numbers; R or C,
as appropriate.
Before we work on solving a DE with U.F y(t), let’s
glean some properties of 8, the soln-set of the DE.
What is the name of: The indep.var? The U.F?
What are the parameters in the DE? And: What is
the order of the DE?

Types of functions.
al: Is the zero-fnc a soln? Are there constant-solns?
a2: Are there non-constant polynomial solns? |This

usually involves examining how the DiffOp affects the de-

gree of a polynomial.]

a3: Could a nt-exponential, A-eP! with B#0 and
A#£0, be a soln to the DE?

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex
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Closure properties of S.

bl: Is 8 sealed |closed| under horizontal translation?
Le, for soln f and number r, must Ty(f) also be
a soln? Le, is the DE autonomous?

b2: Is 8 sealed |closed| under scaling?, i.e, for f € 8,
must each a.f also be a soln?

For f.g € §, must f+g € 87

[This 8 is sealed under scaling and under addition IFF
the DE can be written in form LinearOp(y) = 0.

b3: If not (H2), then is § at least sealed under av-
eraging? le, Vf,g € 8§ and all scalars «,[3 with

a+ B =1, is average [[af] + ﬁg} a soln?

b4: Special? Is the DOp linear, affine, equidimen-
sional, a CCLDOp? Is the DE autonomous, sepa-
rable, EXACT (ifiable), FOLDE, Bernoulli-type?

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex
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FEasy-Scan Example. Consider U.F y=y(t) satisfying

= %:6252-[3;—4].

Checking types (al,a2,a3). For analysis, define

operators [Left and Right]

L(y) = ¥;
= 6t2- [y —4].

[so here, L = D]

Since L(y)=0 IFF y=Constant, the only constant soln
to (x) is y=4. And for a poly y of degree N>1, neces-
sarily Deg(R(y)) = 2+ N, whereas Deg(L(y)) = N—1.
So no non-constant polynomial solns.

Lastly, L(A-eP") equals [with A,B # 0| another nt-
exponential, AB-eB!. But R(A-eP?) is not a pure ex-
ponential, because of the polynomial factor. So ()
has no nt-exponential solns.

Checking closure properties. More to
come. . . U

The Easy Scan

Prof. JLF King

Soln to (x). Our DE is separable, so we can get at
least an implicit (*)-soln. Because we did the Easy-
scan first, should our computation yield a non-trivial
polynomial or exponential answer, then we erred ei-
ther in our SoV computation... or in our Easy-

scan... OR both!

Separating (x) gives ﬁdy = 6t2dt. Let’s only
consider real solns y() with y()>4. [I'm avoiding dis-
cussing what it means to extend log() to C.] Using Col «,
antidiffing yields

log(y —4) = a + 23,

Exponentiating,
y = 4 + [e*-*].

Renaming [ := e®, then, gives

ok ys(t) = 4 + Be’,

Indeed, each BEC has (xx) satisfy (x). Let’s check. ..

Does (x%) satisfy (x) ? Abbreviating E = €2’ note

gl p o932 ie E' = 6(°E. Thus

[RhS(¥)] = ¢/ = B-6t°E.
def

Note y —4 = BE. So LhS(x) = 6t?- BE. This in-
deed equals [RhS(x)|", as desired. O

I am always ready to learn although I do
not always like being taught.
—Winston Churchill

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex
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THERE’S A DELTA FOR EVERY EPSILON

It’s a fact that you can always count upon.
There’s a delta for every epsilon

And now and again,

There’s also an N.

But one condition I must give:
The epsilon must be positive
A lonely life all the others live,
In no theorem
A delta for them.

How sad, how cruel, how tragic,
How pitiful, and other adjec-

Tives that I might mention.

The matter merits our attention.

If an epsilon is a hero,

Just because it is greater than zero,
It must be mighty discouragin’

To lie to the left of the origin.

This rank discrimination is not for us,
We must fight for an enlightened calculus,
Where epsilons all, both minus and plus,
Have deltas
To call their own.

Words and Music by: —Tom Lehrer
Video of |Lehrer performing the d-¢ song.

|Lyrics, and audio of Lehrer performing.

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex
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Separation of variables [SoV]

Consider UF f=f(t) defined on interval J := [-3,7]
satisfying IVP

fity = p)/u(f®),
with f(5) = 9.

2a:

Let K := f(J), the interval which is the f-image of J.
Together with functions 3, u, suppose we have
three other fncs B, M, MI™F satisfying:

Fncs 3, B are defined on J, with B’ = 3.

oh Fncs p, M are defined on K,
) with p#0 and M’ = p.

MInvF

Fnc M is invertible with its inverse-fnc.

Re-write the top-line of as

2c: n(f@) - f't) = B).
For each t € J, then, we have
2w [wue)-rma = [ B,

Substitution y = f(t) says LhS(2d) equals

f®
/ p(y)-dy
f(5)
And RhS(2d)) equals B(t) — B(5). Hence

M(f(t) = B() + [M(f(5) - B(5)].
Consequently, initial condition produces
2%:  f(t) M (B(#) + M(9) - B(5))

by FTC

M(f(#)) = M(£(5)) -

Separation of variables [SoV]

Prof. JLF King

Example of SoV. Consider U.F. f=f(t) satisfying

o Fl(t) = e2/® .4 B 91 /9e2/(1)
" with f(0) =9.
Soln. |Do Easy-Scan first.]| Define the following fncs:

B(t) =2t and B(t) = 2.

[2bf: w(y) =2e% and M(y) = e%.

MIvE — 1 - log.

Hence
Computing, B(t) +M(9) — B(0) = 2 +e'® — 0. Hence
: i =

Check. To verify that (2¢f) satisfies (2a]f), note

%bg(t2 4L e18) .

2t = 0 note t

: ¢ = ——— " —__mte _ °

- F) 2 [t? + 18] RN

And e2/(t) = glog(t®+e'®) — 42 4 618 Hence ¢2/(0) . ¢

equals t/[t? + e!®], which indeed equals RhS(x).
Finally, to verify the initial condition, note f(0)

equals flog(e!®) = 1.18 = 9.

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex
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CoV to SoV
A function F(z1,...,xN) is scale-invariant |or “ho-
mogeneous of degree-O”] if

3.1: Vs #0: F(szy,...

,sey) = F(z1,...,2N).

More generally, for a
deR, say that F() is “homogeneous of degree d” if

[I.e, F' is unchanged by scaling.]

3.2: Vs #0: F(sxy,.

csey) = sV F(zy, .. an).

3.3: Scale-invariant to SoV. Consider a scale-in-
variant F(z,y), U.F y=y(z), and DE

3.3a: % = F(x,y).
Define CoV and fnc G(v) := F(1,v). Solve

1 1
~.dz

using SoV. For each number «, then,

3.3c: Ya(x) = -0,(2)

solves (3.3a)). [NB: You might only obtain ¢mplicit solns.]D

Why does this work? Substitution v := ¥ yields
that

F(z,y) = F(1,%) 22 G(v).
Rewrite v := £ as y = x-v. The Product Rule gives
G(v) = % R 10+ x-%.

This separable DE, rewritten, is (3.3b)).

CoV to SoV

Page 7 of

Scale-invariant CoV Example.
y=y(x), divide by z in DE

To compute U.F

x-% = 2z + by, obtaining
dy Note RhS i
. i Y ote 1S
8 dz = 1+53. [scale-invariantl

So define G(v) :=1 4 5v. Then G(v) —v = 1+ 4v.
So (3.3b)) becomes

1 1
B30

-d = —.dz.
1+ 4v v T .

Integrating each side, using « as Col, produces

tlog(|1+4v]) = a + log(|z]).
Letting 5 = 4« gives
log(|1+4v|) = B + 4log(|z|).
Exponentiating,
1440 = &5 z*.

With ~ := +e, discard the abs.values, obtaining

1+4v = ~azt.

Recovering y, we now have that

With o = %7, multiplying both sides by x delivers

B-3d:

5 1

@) = ew® = g

Checking. Does ([3.3c]f) satisfy x-(% =2x 4+ by?
Computing its LhS,

- = x50zt — 1] = 502° — iz.

Again using (3.3¢]),

T+ 5y =z + [boz°® — Sa] 2% RhS(x). O

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex
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Scale-invar. CoV Ex.2. For¢>0, U.F y= y(¢) sat-

isfies
. 2.1, 43 3 Y 2
%3 y“y't = t° + y°. Dividing by y“t produces

2 .
B3di: o = [f} + % Note RhS is

Y scale-invariant.

With v := ¥, then, this RhS is G(v) := % + v. Then
Gv)—v = U% So ([3.3b) becomes

1
3301 vi-dv = St
Integrating each side, using o as Col, produces
%v‘g = o+ log(t).

Let 8 := 3a. Then

v = [B—i—?;log(t)r/?)

Consequently,

B3} ys(t) = t-[B + 3log(t)]

1/3

Checking. Does (3.3cft) satisfy (x)?
With S := [ + 3log(t)], note
y = [t-SY3) = 1.8Y3 4 ¢.1g%3.3
— Sl/3 + S*2/3‘

X%k

Multiplying (%) by 3%t fote 43 52/3 yields

Pyt = tSAP B8 B4 VO

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex
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3.4: Linear-CoV to SoV. A function H(), and Complex numbers

numbers P,Q, define DE [Complex arithmetic done in class.]
dy _ The number you have reached is imaginary. Please
3-da: dr H(Pz + Qu). rotate your phone 90 degrees and dial again.
—David Grabiner

WLOG, Q #0. CoV implies that

4.1:SV/Buried Treasure Problem [BTP].  Floating in

4 = P14 Q'% Bl p 4+ Q-H(z). the ocean you spy a bottle containing a pirate’s map

Apply SoV to to fabulous treasure. You sell your possessions, pur-
1 chase a robot-crewed ocean-catamaran, and sail to the

3.4b: WH(Z) dz = 1l.dz. island, discovering it is a vast plateau. The map says:

Arrigh, Matey! Count your paces from the gallows

Each number «, then, gives a soln
to the a quartz boulder, turn Left 90° and walK_ the

3.4c: va(z) = [za(z) — P-2]/Q same distance; hammer a spike into the ground.
Count your paces from the gallows to the giant oak,
to (3.4a). [These solns might only be implicit solns.| ] turn Right 90° and walk the counted distance; hammer

a silver spike into the ground.

Linear-CoV to SoV Example. Consider UF Find Ve Buried Treasure midway between the spikes.

y=y(t) fulfilling With joy, you bound up the plateau |with the treasure

: dy _ exp(t 4 y) ' you can say bye Eye. to annoying Math classes!] and immedi-
ately spot the giant oak, and quartz boulder. But the

Setting 2 == ¢ + y, note % —14 % — 1+ e*. Hence gallows has rotted away without a trace.

15122 = 1-dt. Anti-diffing gives

Nonetheless, you find the Treasure. How? O

[Hint: Using B, K, w for the Bolder’s, 0aK’s and (unknown)
galloWs’ location, write the treasure’s spot as a fnc tg x(w)
by using C addition and multiplication.| Alphabetic-order
for Col ow. While we do not know how to solve this mnemonic:

z — log(l+¢€*) = a+t,

Boulder Left old
implicit soln ezplicitly, we can rewrite it for y as oak Right silver
m 8 Y+ & = IOg(l = exp(y T t)) = a+t. SOT’\'EQZ Matthew C, Junhao Z., Hani S., 2020t. ~ Nathan T'., 2021t.

(Partial soln) Sreeram V., 2022g. Maxime A., 2023g.

By applying %, the energetic reader can verify that
this s an implicit soln to (3.4alt). Remark. The discriminant of quadratic [i.e, A7#0]
polynomial ¢(z) = Az> + Bz + C is
5.1: Discr(q) = B? — 4AC.

The zeros [“roots”] of ¢ are

5.2: Roots(q) = i{*B + /Discr(q) } :

Hence when A,B,C' are real, then the zeros of ¢ form
a complex-conjugate pair. And ¢ has a repeated root
IFF Discr(q) is zero.

A monic R-irreducible quadratic has form

53: q(z) = 22-Sz+P = [z—71] [z -7,

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex
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where r € C\R. Note & =r+T = 2Re(r) is the
Sum of the roots. And P =r - T = |r|” is the Product
of the roots. The ¢ discriminant, Discr(g), equals

54:  S?P—4PpX 1 = —4[Im(r)]?.

Completing-the-square yields

5.9: q(z) = [Z - §]2 + F2, where F':= |[Im(r)|,

which is easily checked. [Exercise] O

6: Fundamental Theorem of Algebra (Gauss and friends).
Consider a monic C-polynomial

Nfl_i_”

p(Z) = ZN+BN_1Z . —i—BlZ—l-BQ.

Then p factors completely over C as

p(z) = [z2—n1r] - [2—1r9] ... - [2—1N],
for a list ry,...,rny € C, possibly with repetitions.
This list is unique up to reordering.

If p is a real polynomial, i.e p = p, then p fac-
tors over R as a product of monic R-irreducible linear
and R-irred. quadratic polynomials. The product is
unique up to reordering.

Also: A proof-sketch is in |Primer on Polynomials on my

Teaching page. O

C-exponential [Chap4-NSS9, P.237]

The algebraic structure of R can be consistently ex-

tended to a larger field, by adjoining a sqroot of

negative 1. This is conventionally@ called i, so
= -1 = [1]°. Extending R by i produces field

C := {z1 + yi| where x and y are real} .

['ve written z1 + yi to emphasize that the additive structure
of C is that of a 2-dimensional R-vectorspace, with basis vectors
1 and i. In practice, we write 2+ 3i, not 2-1 + 3i.]

A geometric picture of C, with the real axis hor-
izontal, and the #maginary axis vertical, is called
the Argand plane or the complex plane.

“1Electrical engineers use j rather than i, as “i” is used to

represent current/amperage in EE. Also, while boldface i is a
sqroot of -1, we still have non-boldface i as a variable. E.g, we

could [but wouldn’t] write 7i + S°° . 4° 2% 7i 4 3% 442,

C-exponential

[Chap4-NSS9, P.237] Prof. JLF King

Write real-part and imaginary-part extractors
as, e.g, for z == 2 — 3i, give

Re(z) =2 and Im(z) =-3

since z = 2:1 + [-3]-i.  The absolute-value or mod-
ulus of z is its distance to the origin; so

= /Re(z

[Here, |2 — 3i| = V4+9 = V13.] The complex conju-
gate of this z is Z = 2+ 3i. For a general w = x + yi
with x,y€R, observe that

Re(w) ==z = 1%, Im(w) =y = £5%;
= Re(w) — Im(w)i;

9 Pythag. thm
of? 2hoE

2 1 Im(2)?

2 +y’ = ww.

(Complex-)conjugation w > w is an involution of C,

since W = w. For complex polynomial f(z) = Z ¢z,

define f(z) = Z cj 2, its conjugate polynomzal
=0

Thus

fz) = f(@),
since p+v =n+7v and v = fi - v for p,v € C.

Multiplying complex numbers corresponds to mul-
tiplying their moduli and adding their angles.

To write a quotient = in std = + iy form, note

& 12
o = aa = va/ld

So write va in std form, then divide by real |a|”.
See |W: Complex number, and |W: Argand plane| for arith-

metic with complex numbers.
Let’s extend the exponential fnc to C.

7a: Defn. For z € C, define
> 1
exp(z) == Zf! =1+z2+3224+37+..
n=0
RN e 4 ,
cos(z) = Z [2]4:]!'2 =1- fz + o2t =
k=0
: R L 1.3, 1.5
sin(z) '—kz: [2k+1]!'z =z — 52"+ 132" —
=0
FEach series has oco-RoC. O
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Since we have absolute convergence of each series,
we can re-order terms without changing convergence.

Fix o, € C. Then
e?.ef = fh, O

7b: Lemma.

Proof. For natnum N, recall the Binomial thm which

says that N -

* > (i) alBt =
j+k=N

[+ B

where the sum is over all ordered-pairs (j,k) of
natnums. By its defn [and abs.convergence|, evef equals

PERIREEIED P

N
—J- N=0 j+k=N "

o adg].

!
But W equals % . % Hence e*e? equals

=1 N k] by (1) = 1
>l X (0 -als] 22 Y Gla+ g
N=0""" j+k=N N=0
which is the defn of e®t5, ¢
Tc: Lemma. For 0,x,y,z complex numbers:

7.1: e’ = [cos(h) + isin(f)] = cis(d). Hence
i0 -i0 io _ -io
7.2: % = cos(0), € 21,e

7.3: e*FW = &¥. et — o . [cos(y) + isin(y)],

since cos(~y) = cos(y) and sin(~y) = -sin(y).

When 6 is real, then,
7.4: Re(e'?) = cos(d) and Im(e!?) = sin(f).

Since the coefficients in their power-series expan-
sions are all real, our exp(),cos(),sin() fncs each com-
mute with complex-conjugation, i.e
7.5:  exp(z)=exp(Zz), cos(z)=cos(Z), sin(z)=sin(z) ;

Translation-identities & addition-identities
sin(z + §) = cos(z),

cos(a) CQS(B) F si'n(a) sin(f3),
cos(a) sin(f) =+ sin(a) cos(f).

extend to the complex plane. Finally,
Range(exp) = C~{0} is the punctured C.
And Range(cos) = C = Range(sin).

cos(z — §) = sin(z),

7.6: cos(a+3)
sin(a =+ )

7.7:

All zeros of |[complex]| cos() lie in R. Hence
7.8: cos() has only one period, that of 2mw. ¢
Both statements hold for sin().

C-exponential

= Sin(e) . Also,

Page 11 of

[Chap4-NSS9, P.237]

Pf of. For Range(cos) = L C, target 5€C requires
z w1th cos(z) = 7/2. With R :=e¥*, then we need
R+ ﬁ =71,ie RP—TR+1=0. ThlS quad.eqn has
a solution R € C. As R=0 is not a soln, necessarily
R € Range(exp). ¢
Pfof (7.8). Fix a z = x4+ iy st. cos(z) = 0. Thus

0 =2cos(z) = exp(i-[z+1iy]) +exp(Hi- [z +1iy])
= exp(-y +ir) + exp(y —izx)

= e Ycis(x) + eYcis(-z) .

Since these summands cancel, they must have equal
abs.values. Since z and y are real, then,

o eV = e¥cis(x)| = &Y |cis(-x)| = €Y.
But R-exp() is 1-to-1, so () implies that -y = y.

Hence y = 0, i.e z is real. ¢

7e: Lemma. Familar derivative relations, exp’ = exp
and cos’ = -sin and sin’ = cos, continue to hold. ¢

Same-frequency cosines/sines. Consider a sum

of same-frequency cosines

Z Aj-cos(P,

where A;c R is amplitude, P;€R is phase-shift and
FEeR determines the frequency. [Courtesy (7-6), we could
include sine fncs in the sum.] We seek a phase-shift 6 and
amplitude R>0 so that

h(t) = R-cos(@ + Ft).
From ([7.4)), we have that h(t) equals

(ZA
= Re({; Aj- eiPﬂ'] -eiFt> .

Thus we are led to define S€C and X,Y € R by

[ j‘V:1Aj ’ eiPJ}

.+ Fet),

ZA Re(ells +F1)) note

7j=1

P+Ft>

E S = = X +1iY.

Since each A; and P is real,

N N
X = ZAj-cos(Pj) and Y = ZAj-sin(Pj).
j=1 j=1
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7f: Same-freq Lemma.  [With notation from above.| Set
R = S| mote /X2 1 Y2,

IfS =0, then h() is the zero-fnc; so can set 0 := 0.
Otherwise, if X = 0, then set € to 5 or -5 as Y is
positive or negative.

Otherwise: If X > 0 then set 6 := arctan(Y /X);
and if X < 0 then set 6 = 7+ arctan(Y/X).

With R, 0 defined as above

N
I: {ZAj-cos(Pj + F-t)| = R-cos(@ + Ft). ¢
j=1

Tg: E.g. Compute reals R> 0 and phase-shift 0 st.
Rcos(0+8t) = cos(% +8t) + cos(3* +8t) — \/5005(77" +8t).

SOLN: Applying (}), above,

s j 5™ ;7T Geometry .
S = el3 +el3 —\/5614 7},1.

Hence R =1i|=1 and 0 = Arg(i) = 7. O
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CCLDE Algorithm [Const.-Coeff LDE]

Initially, we only handle the [target = zero-fnc| case.

Step S0. Consider numbers Cgp,...,Cy and U.F

y=y(t) satisfying
st Ony™ +Cy_y™ ™V + ...+ Cry/ + Coy = 0,

with C # 0. Define the auxiliary polynomial

N—-1

q(Z) = CNZN+CN_1Z —l—...—l—ClZl—{—C()ZO.

We can now re-write () as

8a: [¢(D)](y) = 0.

Step S1. Let R denote the set of distinct roots
[i.e, zeros] of g(). For each root r € R, let M, € Z,
denote the multiplicity of r in ¢(). Thus > .cq My
equals N, i.e, Deg(q).

The above says that our polynomial factors as

CN-H[Z—I‘]Mr.

reR

8b: q(z) =

Step S2. The general solution to is

Sc: y(t) = Z Z [)\r,j L .er.t] :

reR jef0.. My)

freely choosing the N many numbers, {A; ;}r ;.

Step S3. Now suppose we were given initial con-
ditions, e.g, given specified numbers for values
y(0),4/(0),4"(0),...,y™=D(0). Or perhaps we are
given the value of 3" at N different points.

Differentiate appropriately and plug in the
given points to obtain N equations [“high school” linear
equations| which you solve for the values of the N many
unknowns {Arj}r ;.

CCLDE Example. U.F. y = y(t) satisfies DE

y® — 6yW + 9y® 4 10y — 36y + 24y = 0.

Define p(z) = 2% — 621 +92% + 1022 — 362! +242; the
aux-poly of the above DE. We can re-write the DE as

Balf: [p(D)](y) = 0.

CCLDE Algorithm [Const.-Coeff LDE|

Page 13 of

Step S1. Factor polynomial p as

p(z) = [22-3[z-2P

b = [z-U]-[z-V] [z -2,

where U := /3 and V :=-U. Le, R = {U,V,2} and
My =1, My =1 and My = 3.

Step S2. For five arbitrary [possibly complex| num-
bers a, 8, A\g, A1, A2, the function

2
: y(t) = oVt + eVt 4 [Z Aj - tjeﬂ
=0
is the general soln to (8alf).

Step S3. Consider IVP (8alf) with

Solving for the coefficients in ) gives

8d: a=0=1; X=X =0; A=-1.

Consequently, the soln to this IVP is

[e\/§~t] + [ef\/??-t] _

8e:  y(t) = [t% ] .

Complex-root Example. Your experiments with
ﬂuid—ﬂowlc_?l produce U.F. f = f(t) such that

8f:  f" —[2+i)f"+[L+4i]f +[2—if = 0.
Defining the auxiliary polynomial, then factoring,

gives
q(z2) = 28— 24122 + [1 +4i]z + [2 -]

8g: 2
- [2—1} -{2—[2—1]}.
The solns, f(t), to are the linear-combinations of

elt ’ telt : e[2—1]t .

If desired, write e~ as e’ . [cos(t) — isin(t)],
since cos() is an even-fnc and sin() an odd-fnc.

“2Wine, with a Milk chaser. . .
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Polynomial target UNDETERMINED COEFFS

[In NSS9 §4.4, “Undetermined coeffs.”.] We study DE

V(f) = G, where the target-poly is
K i Write V = ¢(D)
_ Y rie q
9a: G(t) - Zj:() BJt *  using aux-poly

a(z) = 3 Cuz",

for natnums L < N with Cy, £ 0 and Cy # 0.

Since CCLDOp V() carries polys to polys, we can
solve for the coeffs of f. Write a candidate soln as
K+L

9b: [y = > u-t?,
j=L

for undetermined numbers W = (ug,u1,...,ux).
Equating coeffs in V(f) = G gives K+1 “high school”
[e.g, linear| eqns in the K'+1 unknowns u. This system
will have (exercise!) a unique soln.

Polynomial-Target 1. U.Poly f = f(t) satisfies

f"4+5f +4f = 8t 4+22. SoV :=q(D), where
g(z) = 22 +5z+4 = [z—-4]-[z2--1].

Hence L = 0 and N = 2. Our target G(t) := 8t + 22
has degree K=1. So poly f has form

[OD}: ft) = wt+u

for undetermined numbers w,u. Thus
Why?

V(f) =—
[Why? Did you detect that D*(f) = 07|

Set 4wt + [bw—+4u] equal to target, 8t + 22, giving
eqns 4w = 8 and Sw + 4u = 22. Reading L-to-R,
w=2 and u=3. Le, f:=2t+3 issent by V() to G.

5D +41)(f) = 4wt + [5w + 4u] .

(P-T 1 continued) IVP. Mystery fnc h=h(t) satisfies

1 ' +5h +4h = 8t+ 22,
*2: h(0)=0 and A'(0)=-1.

together with

From (Oaf), we know that e and e are each
mapped to 0 by V(). Consequently, the general soln,
h, to (x1) has form

h(t) = ae™ +Be™ + [2t+3],

Polynomial target

Prof. JLF King

UNDETERMINED COEFFS

for constants «,3. Eqns (x2) yield a = 2 and = -5.
Thus fnc

h(t) 2¢4 — 5et + [2t + 3]

is the unique soln to Mystery-IVP (x1,*2).

Polynomial-Target 2. U.Poly f = f(t) satisfies

f'+3f = 92 +6t—3. SoV:i= 3¢(D), where
g(z) = 2243z = [2-0]-[2—-3].

Dal:

Hence L = 1 and N = 2. Target G(t) := 9t* + 6t — 3
has degree K=2. Thus polynomial f has form

[Ob}:: f@) = wtd +ot? +ut

for not-yet-determined numbers w,v,u. Computing,
V() = f+3f = 9wt® + [6w+6v]t + [20+3u] .

Equating coeffs with G := 9% + 6t — 3 produces

w =9 and 6w+6v=6 and 20+ 3u=-3.

Hence w =1, so v =0, thus v = 1.
THE UpsHOT: Function f = t3—t is sent by
V() to G. Consequently, the general (9aft)-solution is

fap(t) = a+ Be +[3 —1].

P-T 2, alternative. Fnc h := f’ satisfies b’ + 3h = G.
Since Deg(h) = Deg(G) = 2; our h = Pt? + Qt + R, for some
numbers P,Q,R. Consequently,

by DE

9t + 6t — 3 [D +3I](h) = 3Pt* + [2P +3Q]t + 3R.

Hence 9 = 3P; so . And 6 = 2P + 3Q = 6 + 3Q); thus

. Lastly, -3 = 3R, whence . THE UpsHOT
IS. ..
f 2/ = /[3t2—1]dt =3 —t,

as before.
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PolyExp target

A PolyEzp is a poly xexponential; e.g F'(t) = [3+1°]-e*.

Step P0. Consider a CCLDOp L() and DE
10a: L(y) = Gi(t) Mt + Gy(t)eM2t + ... |

where each G; is a polynomial and each exponent-
Multiplier M; is a number. For each polyExp, we
will compute a fnc y; st L(y;) = G;-eMit. Then
Y1 + Y2 + ... is a particular soln to . Adding
the gen.soln z to L(z) = 0 gives the gen.soln to ,
since L is linear.

We’ve reduced the problem to solving DEs OTForm
L(y) = G-eM! where G is a poly. We'll compute a
soln OTForm y = f-eM* where f is a poly.

Step P1. For an arb.fnc f and arb.number pu, let
E = e and note that £/ = pE. Compute L(fE)
to produce a CCLDOp V,;, that depends on the num-

ber p, such that
L(f-E) = Vu(f)-E.

So L() sends f-eM! to G-eM' IFF f satisfies
Vu(f) = G.

Use , UNDETERMINED COEFFS, to solve for f.

Defn.  Call V,, =V, the operator “associated to
operator L and number p”. O

Preliminary computation. To speed up our nu-

merical example, let’s pre-compute the L-to-V,, tran-

sition for a general quadratic CCLDOp L().
Numbers rq,rs yield a quadratic poly

q(2) = [z2—r1][z —1ro] = 22 -8Sz+ P,

using the sum S := r; 4+ ro, and product P = riro,
of the roots. The corresponding operator is

L(y) = y" — Sy’ + Py.

For arb. number p and fnc f, letting E = e, note

[F-EI® = f-E;
(F-EIY = fE+ fE 22 [f + pf]- E;
[F-E]® = [ +uf1E+[f +pfl-wE = [f' +2uf +4°f] - E

PolyExp target

Page 15 of

Consequently, L(f-E) = V,(f)-E where

Vu(f) = "+ 2p =8I + [’ —Sp+Plf

BE 4 2p = SIf + la(w)f -
[The coeff of f will always be q(u).]

10b:

Consider DE
A B

PolyExp-target Example 1.

[0al: v — oy — 2y = [8t+ 22)e3" + [9¢? + 6t — 3]e?
Hence S =1 and P = -2, and

gz) = 22—-2z-2 = [z4+1]-[-2].
Thus r; =-1 and ro = 2. Courtesy ,

Vulf) = f"+ 2p—-10f + W —p-2f.

Let’s compute fncs y, and y; so that L(y,) = A and
L(yy) = B, recalling that ((10aff) defined A and B.

PolyExp A. Note Va(f) = f"+5f +4f. With
G = 81 + 22, then, we seek f such that V53(f) = G.
Happily, ) solved this; set y, = [2t + 3]-e*.

PolyExpB. Observe Vo(f) = f” + 3f’. Setting
G = 9t> + 6t — 3, we seek f for which Vo(f) = G.
A Stroke of Good Fortune! —example (9aff) to the
rescue. We can let 1/, :— [lf:)’ — t}-e%.

Assembling the pieces. Our hard work has paid
off. Recalling roots r; and ry, the (10aff) gen.soln is

Ya5(t) = ae®+ e + [2t+3]-e® + 7 —1].e*
= ae” + [2t +3]-€% + [t2 —t+ B,

Nifty! Worth the price of admission. . .
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PolyExp-tar Ex. 2. For poly ¢(z) = 22 — 7z + 12
and operator R := ¢(D), consider DE

A B ®
~ N

—— =
T0al: R(y) = 6e* + [2t —2]e3 + 60 .

Aux-poly ¢() has root-sum S := 7 and root-product
P = 12. So (10b) tells us, for each number p, that
the associated operator V,=Vg, is

%2 Vo(f) = "+ 2u—-7f + [aw)]f.

Let’s compute fncs y,, yp and y. so that R(y,) = A,
R(yy) = B, and R(y.) = €, from (L0aff).

For future reference, note ¢() factors as

¥: q(2) = [z2-3][z—14].

So €% and e* are annihilated by R().

PExp A.From (x,¥), our Vo(f) = " —3f" +2f.
We seek f s.t Vo(f) = 6; so f must have degree zero.
Writing f() := w, we see that 6 = Va(f) = 2w; thus
w=3. Le, Yg = 3e? is sent by R() to A.

PExpB. Courtesy (x,¥), our V5(f) = f"— [
A polynomial f s.t V3(f) =2t —2 has form

f(t) = wt* 4+ vt.

Computing, V5(f) = 2wt + [2w —v]. Setting this
equal to 2t —2 gives w = -1 and v = 0. Consequently,
UYp ‘= ~t2e3! s sent by R() to B.

PExp €. Note that € = 60e’!. Our (x,¥) says
Vo(f) = f"=T7f +12f; i.e, Vp=R, as it must. |Why?]

What polynomial f has Vp(f) = 60?7 Why
fO = % = 5, of course! Unsurprisingly, 7. := 5 is
sent by R() to €.

Assembly. Recalling roots 3 and 4 of our aux-
poly (¥), the general-soln to (10af) is
10b: ya5(t) = ae® + Bet + 3.e* — t2.e3 + 5.

Terms can be combined, if desired. Copasetic!

PolyExp target

Prof. JLF King

PolyExp-tar Ex. 3. For poly q(z) :== 23 — 322 +5
and operator P := ¢(D), consider DE

[I0ak¥: P(y) = t*e*.

For arb. fnc f, letting E := €%, note

[F-EI® = f-E;

[FEIY = F'E+ B 22 [f' + 2f] B

[F-EY® = [f"+2f 1B +[f' +2f)-2F = [f" +4f +4f] - E;
[FE® = [ +4f" +4f|E

+ [2fll+8fl+8f]E — [f///+6f//+12f/+8f:| E

Recall that the associated operator V=Vp 5 is defined
by (P(f-E) = V(f)-E). So

V(f) = f" 4 [6=3]f" + [12—12]f' + [8—12+5]f

10c: note "
Dote £1 1 3f" + §.
[As it must, the coeff of f is q(2)‘]

We seek a poly f solving V(f) = t2, so write

7= wt? + vt +u. Note f"" = 0. Hence
Goal

V(f) = wt? + vt + [bw +u] == t>.

Solving, w =1 and v = 0 and u = -6.

So y(t) = [t* — 6]e*! is a soln to (10af¥]). However,
the gen.soln is harder to obtain, as computing the
roots of the above ¢() is not so easy. |Cardano’s formula

can be used.]
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Linear maps

A vector space is like RXR [or CxC| with component-
wise addition: For vectors v; = (zj,y;), their sum
vi + vo is (21 + 22, y1 + y2). More generally, a vec-
tor spac is a set 'V (or it might be called W or E or
Hor...) together with an addition which is commuta-
tive and associative. Also, we can multiply a vector
by a scalar which is either a real number or, more
generally, a complex number.

Soa VSisatuple (V,+,0, -, R) when the scalars are
reals, or (V, +,0,-, (C) when we allow complex scalars.

11a: Defn.  Now consider a map L: V—W between
vector spaces (V,—i—,O,-,(C) and( ,+,0,-, ) This
map L is linear IFF:

Vvi,vo,v € V and for all scalars «,

our L satisfies
£1: L(vi+v2) = L(vi)+L(ve) and
£2: Lla-v) = a-L(v)

Equivalently: For all vectors vi,...,vy and for all

scalars aq,...,apN:

L(Z;\; ajvj)

N
Zj:l OéjL(Vj) 5 ]

11b: Span Defn. The set of all linear-combinations
[lin-combs| of a collection 8 := {v1,..., vy} of vectors
is called “the span of 8”. I.e, Span(8) equals

..,aN}

Our 8 is a linearly-independent set|an L.I-set| if
the only list 31,..., 8n of scalars satisfying

> Bvi]l = 0

is 41=0, B2=0..., Bny=0. [See §6.1-NSS9P.323, & §4.2|

Where a1, .
are scalars.

N
Span(vy,...,vy) = {Z ;v
j=1

[the ZEero vector] O

VS examples. For N a natnum or oo, let Diff¥ be the
VS of N-times differentiable fncs, with CV c DiffV
the sub-VS of fncs whose N*™-derivative is cts. So

-cc0 0 el 1 a2 .ccoo hote 00
Diff” 2 C” 2 Diff 2 C" 2 Diff* 2 ... 2 Diff* = C™.

“3 Abbreviate ‘vector space’ as VS, and ‘vector spaces’ as VSes.

Conjugate-root example

Page 17 of

E.g, fnc |z| is in CY the space of cts fncs, but is not
in Diff, since abs.value is not differentiable at the
origin. N.B: Often C is written for C°, the cts fncs.[]

Conjugate-root example

A polynomial with all real coeffs [a “real-poly” or “R-
poly”| factors into a product of R-irreducible linear and
quadratic real-polys.

The discriminant of quadratic [i.e, A#0| polyno-
mial ¢(z) = Az 4+ Bz +C'is

12.1: Discr(q) = B? — 4AC,

and its zeros [“roots”| are

12.2: i[—B + \/Discr(q) |-

When A,B,C are real, then, the non-real zeros of ¢
come in complex-conjugates pairs.

13: Same-span Lemma.  Here, Span means C-Span.
Fix J,K complex numbers [usuaHy real, in practice].
Then

Span (e[J-HK}t’ e[J—iK]t)

= Span (eJt -cos(Kt), e’t- sin(Kt))

wle ¢/t . Span (cos(Kt) , sin(Kt)) .

Indeed, for numbers «, 3, i1, v, we have

o - el/HK] + 8- el/ K]t equals

13a:
e’t [ cos(Kt) + v-sin(Kt)],

where the scalars are related by

13b: b= a+p and v = IJa—f];

13¢: o= P2 g g BRIV
2 2

Proof. Lemma ([7c) and routine algebra. ¢
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Eric’s requested IVP (R,everse engineering),

Let’s create a CCLDE whose diff-operator polyno-
mial ¢() has a specified complex-conjugate roots; say
U:=3+2i and U = 3 — 2i. Define

note

x: q(2) = [z — U] [z — U] 22 — 6z +13.

Let’s go through the steps to solve DE
*%1 f’"—6f +13f = 0

with initial conditions f(0) =1 and f/(0) = 13.
By CCLDE, the soln-set to (*x) is C-Spn(eV?, eV?).
To re-write using cos() and sin(), define expressions

E = &% C = cos(2t), S = sin(2t).
Courtesy , there are numbers p, v so that
f(t) == B-[uC + vs]
satisfies the initial conditions. This gives
1= f(0) = 1-[p1+ 0] 2.

Diff’ing gives f'(t) = 3E-[uC+vS]+ E-[22uS+2vC)].
So 13 = f(0), which equals

3:[u+0] + 1-[-2u-0 + 2v-1] = 3p + 2v

= 3+ 2v.
Hence v = 5. Thus the soln to the IVP is
1 f(t) = e [cos(2t) + 5sin(2t)]

by (139) e . . .
9 y (139 151 3421t 4 1451 ol3-2ilt

Prefer a single trig-fnc with phase shift? Kasily,
cos(2t) + 5sin(2t) = cos(2t) + 5cos(2t — §)

R - cos(6 + 2t),

where R = V12 +52 = /20 =~ 5.099,

and 6 = arctan(2) = —arctan(5) ~ -1.373. O
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Mass-spring  [NSS in §4.1, §4.2, §4.9]

Abstract /concrete units. Symbol :: means “has

abstract units of”. E.g, [Height of Little Hall| :: (d).

@ in inches
(I)  sec seconds

@3 gal gallons
@ kg kilograms

ft, mi feet,miles cm, m (centi)meters

min minutes hr hours

lit liters=1000cm? [Volume]

[HIHSS]

@) Ib pounds 0Z ounces l;icg] [Weight, force]
® °F Fahrenheit °C Celsius
@ Dimensionless (?) Units depend on application

CONVENTION: These notes will typically write zero

without units, i.e, 0 rather than Omin or 0';5:;.

Harmonic motion. Our parameters are

M :: @ Mass of object. [>0]
B : @/@ Damping coefficient. [>0]
K : @/@2 Hooke’s constant of the spring. [>0]
y=y(t) = @ Position of the mass at time t¢.
.. radian;
w1/ (Angular) frequency, “35208.

An unforced spring has DE

14: My// + By’ + Ky = 0. Here, let 0 implicitly

take on units of force.

The corresponding aux-poly is
q(2) == Mz% + Bz + K, with
A = Discr(q) = B* —4MK : [%]2 and

Roots(q) = % + ‘2/—5 = % +

[CASE: A <0, underdamped} Set

w = \g;MK and R =
Roots(q) = -R £ iw.
Thus the soln-set to is

Sl
|98}
S

e Rt Span(cos(wt), sin(wt))
— e R . Span (eiwt7 e—iwt)

— Span<e[*R+iw]t7 e[*Rfiw}t) '

[CASE: A = 0, critically dampcd] Aux-poly has
one real root, negative, of multiplicity 2. Etc.

[CASE: A >0, overdampeoU Aux-poly has two
(distinct) negative real roots. Etc.

Mass-spring

mph:’l‘:—ri

[NSS in §4.1, §4.2, §4.9]
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Viewing M and K as fixed. The natural un-
damped, B = 0, frequency is wnat = \/%. The
critical-damping coeff is B := 2/ MK.

Pendulum. Consider a length L::(d) pendulum, un-
der a uniform acceleration [gravitional| field A : %])2 . Let
0=0(t) denote its angle w.r.t vertical. At time t, the
observed acceleration of the bob is L-6”(t), whereas

the acceleration from A is -A-sin(0(t)), giving DE

15: 0" = *% -sin(0) .

If the maz-value of () is small, then we can use

sin(6)

approximation =~ ~ 1 to get approximating DE

16a: 0" = f% 0.
This Harmonic.DE has w = % = %
Adjoined paragraph: With 60 the time-zero displace-

ment (initial angle), our ({L6al) has soln

with angular
speed

[ cos(w-t) — Ogsin(w-t)] - w.

9(t) =
0'(t) =

asin(w-t) + 6g cos(w-t),
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The FOLDE algorithm [First-Order LDE]
[§2.3-NSS9.|

Step F0. Write the DE in the form
17a: dy + [Cx)-y] = G(z)
3 e y] = .

Pick [i.e, compute|] an antiderivative B() of C(), i.e
17b: B(z) — / 0.
For later use, store this multiplier functior@ M:
17c: M(x) = eB) — [simplified]| .
Observe that M’ = M - C. Hence
M-yl = [M-C-y|+[M-y]
= M-|[[Cy] + ]

by (17a) M-G.

Step F1. Define product P(z) = M(x)- G(z).

Compute an antiderivative,

17d: Qz) = / “P().

Step F2. Now, for a := [an arbitrary constant], the
following definition of y will satisfy equation (|17al):
a Q(z)

17e: y() = yalz) = M) 4 M)

Step F3. Use (17¢) to compute 3. Plug in to (17a))
to see if your formula for y satisfies it. [It is at this point

that I sometimes find that I have made a computational error.]

Step F4. If the problem asks that y satisfy —in
addition to (17a)— an initial condition of the form
y(zo) = yo, then substitute x = z¢p and y = yo
into (17¢]) and solve for . You will get that

17f: a = [yo-M(zo)] — Qo).

That’s all there is to it! It’s all copasetic.

“4Using functional notation, we could write M := expo B.

The FOLDE algorithm [First-Order LDE]

Prof. JLF King

FOLDE Example. Given DE
3,/ 2 8 5 o
z’y + %y = Tx® — x°, re-write it as
17ajf:
f+ly = TS -2,

to fit form (I7d). So G(z) = [Tz — 2?].
Applying step (F0), we have C(z) = 1/x, and can
define B := log. Hence

: M(x) def glog(z) mofe
Step F1. Define P(x) = x - [T2® — 2?] = 72® — 23.

Antidifferentiate to get
7 Q@) = ol - Lat.
Step F2. For each constant, «, the function

176t yao(z) = 2y [z® — 127
x
is supposed to satisfy (17ajf). Check that it does!

Step F4. Imagine we are given initial condition

17g: y(2) = 66.5.

For the corresponding «, compute

« (0%
2) = —4+64 -2 = — + 62.

Hence /2 = 66.5 — 62 = 4.5, so (o= 9], Alterna-

tively, formula (171) gives

66.5- M (2)] — Q(2)
= [66.5-2] — [128 — 4]
= 133 — 124 ¢ g,

THE UPsHOT: The unique soln to IVP ([I7aff ,[17g) is

(0% =

y(z) = [9/2] + 2 — 1z,
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FOLDE Trig-Example. U.F. y=y(t) satisfies log-CoV to FOLDE  [Change-of-Variable]
T7al: Y+ cos(2t)y = cos(2t) Consider a positive-valued fnc y=y(t) satisfying DE
Applying (FO0) conveniently hands us 18a: y —[GEt)-y] = -C(t)- ylog(y).
I7Df: B(t) = /tCOS(QT) dr 2 2sin(2t). Happily, we can convert this to a FOLDE, by setting
z :=log(y). Divide by y and re-order as

To lessen writing, define expressions W/l + C)logly) = G(t).
c = cos(2t) and s = sin(2¢).
Our substitution allows us to re-write this as
Thus our multiplier is
X 18b: 2+ Ct)z = G@),
[T7cl: M(t) = e2®,
which has form ([I7a]). Its general soln z,() hands us

and the corresponding product is P(t) = c- e3%. An

antiderivative is 18c: Ya(t) = e*® = exp(za(t)) -
T7d: Qt) = e3® 2 M (1),

0 Example of CoV-to-FOLDE. For t>0, we seek a
so g7 = L. positive-valued fnc y=y(t) satisfying

THE UpsHOT: For each constant «, function

[[Salt: ty = 2t% + [ylog(y)].

T y(t) = palt) = aes™) 41 . _
Dividing by t-y and re-ordering gives
will satisfy (L7alf). £ — [1-log(y)] = 2t.
CHECKING: Note [2s]’ = c. Hence differentiat-
ing (17€ff) gives Substitution z := log(y) gives
-1
y = o[ And [I8hi: 2 —[2.z] = 2.
cy = ae3.c + ¢

Matching to (17a)), we define

Their sum is , which indeed is (17alf). G(t) = 2t, C(t) = %’ B :=-log,

and M(t) == eB® = 1.

Step (F1) gives P(t) := -2t = 2, hence Q(t) = 2t.

For an arbitrary constant c, then,

176}t zo(t) = at + 2tt.
“Un-substituting” [returning to y|, then, yields
18] Yo (t) = eo‘t+2t2 c

Have you checked that this really satisfies (18alf) ?
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Bernoulli eqn using FOLDE

Given fnes C and G, we seek solutions y() >0 to
19a: Yy +Cy = G /y[N—l} :

where N € R with N # 0. [When N is zero, the DE
is ¥ + C-y = G-y. This rewrites as y' + [C — G|y = 0, the
easy ZeroTar case of F OLDE.]

To convert to a LDE, multiply both sides by
N-yV=1 o get

Ny[Nfl]-y/ +NC~'-yN = NG.

With CoV z = 4", this becomes

19b: 72+ N.-Ct)-z = N-G@).
——— ———
C(t) G(t)

Apply the FOLDE algorithm to obtain a general
soln z,. Finally, take the (positive) N*P-root to get

19¢: Yo = [2a)'V.

Bernoulli eqn Example.

[0}

So N =3 and C(t) = 2 and G(t) = t. Change-of-
variable z = y3 gives [via DE 3y%y + 6y° = 3]

So B(t) := 6t and M (t) = e%. Thus product

U.F. y=y(t) has

y/+2y = t-y72&tet/y[371].

Z +62z = 3t.

P(t) = M(t)-3t 22 3t.e5

Courtesy (|1.1]), one antiderivative of P is

t 1
Q1) = &% [5 — ﬁ} .
For a an arbitrary number, then,
[T7el: zo(t) = ae® + [L — L], Hence
19¢jj: Yalt) = [aeﬁt + L - 1—12}1/3.

Bernoulli eqn using FOLDE

Prof. JLF King

ZeroTar FOLDE. |[This uses notation from the (I7a))

paragraph.| Because a “W” looks a bit like an upside-
down “M”, when FOLDE-ing I'll sometimes define

1 recall -RB (z)

W(x) = @)

In this notation, soln ([17¢]) is

Yolz) = aW(z) + Q(z)W(x).

In particular, when target fnc G from ((17a)) is zero,
our general soln reduces to y,(z) = a-W(x). So if we
just need one non-trivial soln, we can let a=1, giving

W(z) = 1/eP@.
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The EXACT algorithm

[§2.4-NSS9. §2.4-ZW8.| Write your DE in form
20a: N (z,y) - g—g] + M(z,y) = 0.

Our goal is to describe y as an implicit solution:
We seek a non-trivial function F(-,-) so that each so-

lution y to (20a)) satisfies
20b: F(z,y(x)) = «,

for some constant . [If we are interested in complex-valued

solutions, then we will allow «a to be a complex number.]

Step E1. Does

20c: o = g ?

Ox oy
If yes, then (20a) is “an exact DE”; this means

[courtesy of our theorem| that there exists a differentiable
fnc F(x,y) such that

F F
pod: E N aa E oM
oy Ox
In this case, proceed to step (E2). Conversely, if (20a))

is not exact, go to (E1.1) and (E1.2).

Step E2. Compute F() as follows. Compute two
antiderivatives, and their difference:

Ba.y) = [N@)dj :

Awy) = [MEE ;
Diff(x,y) = B(z,y) — A(z,y) .

Since (20d)) holds, this difference Diff(x,y) can be
written as the difference between a pure function of y
and a pure function of . We do that next.

Step E3. Find functions ¢g(y) and h(z) so that [this

can usually be done by inspection]
20d: Diff(z,y) = g(y) — h(x).

[The pair of functions g, h is almost unique —adding a constant
to g and the same constant to h, gives another a soln—pair.]
One can compute a function F() which satisfies (20d),
by either

F(z,y) = Alz,y) +9(y)  or

20e:
F(z,y) = B(x,y) + h(z).

The EXACT algorithm
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Step E4. Now use to discern what you need
to know about y(z), such as asymptotic behavior
as r — +o0o. You might do this by solving ex-
plicitly for y(z), or you might use qualitative methods.

EXACT Example. U.F y=y(z) is a soln to

ROak: [8y +sin(z)]y’ + yeos(z) — 322 = 0.
With A := 8y + sin(z) and M := ycos(z) — 322, note
Ny = 0+4cos(z) = cos(x) +0 = M,y;

happily (20a}) is exact.

Anti-differentiating w.r.t y, then z, gives
Y note 2 q
B(z,y) = /N = 4y* + ysin(z);

A(z,y) = /m./\/l ot ysin(z) — 2.
B—A=47+2° =gy — hiz),

Thus

where

we can define g(y) := 4y? and h(z) := -23. Hence
F(z,y) = Blz,y) + h(z)
= 4y° + ysin(z) — o” B2 Adw,y) +9(y).

Consequently, each soln y() to (20a}«), satisfies
2 .
A 4 o] — o = @

for some number «.
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Step E1.1. [§2.5-NSS9. §2.4-ZW8.| When ([20a)) is
not exact, check to see if we can create an exact-ifying
fnc W (x), as follows. Compute

Na(2,y) — My(z,y) .

20f: C(x,y) = NG )

Simplify C(z,y) to see if it is a fnc of x only. If “no”,
then cannot be made exact by multiplying by a
pure fnc of z. Try (E1.2), later in these notes.

If “yes”, then write C(z) = C(x,y).
ifying factor W (z) is a soln to DE

An exact-

= W'(z) + C(z)W(z) = 0.
Applying FOLDE, define B() := [C(). Then
20g: W(z) = 1/e5@

satisfies (x).
Finally, define two new functions

—

— .ﬁ\\/(m,y) = N(z,y)-W(x) and

Automatically, differential eqn
20dl1: (N(z,y)- %] + M(z,y) = O0.

is exact. Apply steps (E2,E3,E4) to (20al1).

EXACT Example of (E1.1)

Prof. JLF King

EXACT Example of (E1.1)
Consider DE

RO&f: @412y + 3[+y’] = 0.

Is this Exact? Applying (E1), note
204 No — M, = 2y —6y 2 4y

is not the zero-fuc, so (20aff) is not an exact DE. To
attempt an exact-ifying factor, (E1.5), we compute

74y
[z + 1]-2y

201 C(z,y) = = 2/[z+1].

This is a pure fnc of x, so we anti-diff w.r.t = and get
B(z) :=-2-log(z + 1). Our exact-ifying factor is thus

Wi(z) = e B 2 154 )2,
Good! We now have Exact DE (20al1)), where

N(.’L‘,y) = [w+1]3-2y and
M(z,y) = 3-x+1%[5+4%.

B

Applying (E2), then (E3).
w.r.t y, respectively, x gives

Anti-differentiating

B(z,y) = /yﬁ L P VKR TaE

Alz,y) = / M 2 [z 4+ 1[5+ 4?]. Thus
B— AZE 5 [z+1]° = g(y)— h(x), where

we can define g(y) := 0 and h(x) := 5 [z + 1]?. Fi-
nally, (20€) tells us that F = A + g 22 A,
Checking. Consider a fnc y=y(x) satisfying

[z + 1% [5+y()?].

xok 2 Const =
Applying (%U hands us

0 = 3lz+ 1[5+ y@)?] + [z +1>2y(x) v/ (z).

Nice. . .

Dividing by [z + 1]? yields (20alt).
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Step E1.2. When step (E1.1) fails, check for an
exact-ifying fnc W (y), as follows. Compute

My(xv y) - Nw(xvy) ]

20i: C(z,y) = M)

Simplify C'(z,y) to see if it is a fnc of y alone. If “yes”,
write C(y) := C(x,y). This time, exact-ifying factor
W (y) satisfies DE

+: W'(y) + ClyW(y) = 0.
Applying FOLDE, define B() := [C(). Then
W(y) = 1/eB®

fulfills (x).

Define two new functions

20;: ﬁ(:v,y) = N(z,y)-W(y) and
M(z,y) = M(z,y)-W(y).

Apply steps (E2,E3,E4) to DE
20a] 2: [ﬁ(xvy)%] + M\(xvy) = 0,

which is exact.

EXACT Example of (E1.2)
Consider y=y(x) in

. 2 0 2 _
20alf: 2y [y* + 2zy] 0.
N(y) M(y)

Firstly,
No = My = 20— [-{2y + 2a]) 22 2y + 24]
is not the zero-fnc, so (20alf) is not exact. Secondly,
2 [y +2q]

ratio
N N 22

is not a pure fnc of z, so (E1.1) is inapplicable.
Applying (E1.2), we compute C(z,y) as

o0t My—ng*[Q[y—FQm” gz
M * + 22y y

Yes! —this is a pure fnc of y. Applying FOLDE, we

anti-diff w.r.t y, obtaining B(y) = 2 - log(y). Our

exact-ifying factor is thus

W(y) = e BW) 2 /2,

EXACT Example of (E1.2)
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Multiplying (20aff) by y% gives exact Ny + M = 0,

where

N

—

N(z,y) =

and

Q@M‘ 8

20}
M\(x,y) = 7[1 + 2;} )

Applying (E2,E3).
and x, yields

y 2
Bla,y) = [N 22 -,

Anti-differentiating w.r.t y

Y
c 2
Az, y) = / M e *{x + %} . Thus
B-A = z = g¢g(y)—h(x), where

we define ¢g(y) := 0 and h(x) := -z. Finally, (20¢€) tells
us that F = A4 g 22 A,
Checking. Consider a fnc y=y(x) satisfying
2
x
*k: a = —|lr+ —|,
[ y(l‘)}

for some number «. Applying (‘f—x produces that

0 =-1+

2ry — 2y note 22y — 2zy — y?
y? | Y '
Multiplying by %2 yields (20alf), as desired.
In this instance, we can actually solve (xx) for y()
as 2

-
Yal) = a+z’

Nifty. . .
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Exactifying-factor theory
For fncs N=N(z,y) and M=M(z,y), suppose DE

[N y + M = 0} is not exact. What property would
a fnc W=W/(z,y) have to possess in order that DE

B WNW]Y + [MW] = 0
be exact? Exactness requires equality of

INW], 2 NW, + N,W with
MW], =2 MW, + M,V

That is, (T) is exact IFF

B0 = NWe— MW, + [Ny — MW,

Alas, PDE (1) is likely as difficult as the original DE.

IDEA: Could a pure fnc of x be an exactifying-
factor? If W=W/(x), then Wy, is zero, so (}) becomes
fot 0 = W, + &My,

This effectivel forces ratio w to be z-pure.
Hence (i,) is a FOLDE |[the easy =0 case|. This explains

where coeff-fnc (20f) came from. Similarly, were W a
pure fnc of y, then (1) reduces to

My—Nz
Iy 0 = W, + =W,

explaining coeff-fnc (201)).

Y% Weasel word alert! T'll explain in class.

Exactifying-factor theory

Prof. JLF King

2-variable exactifying-factor. Verify that pair

N = N(z,y) = 5xy? +32% and

20k.1: .
M = M(z,y) = 2y° + 3xy

is not an exact-pair. Show that [H = H(z,y) = xy2j

is an exactifying-factor for the (N, M) pair.

Soln to 2-V E-F. Firstly, derivatives

N, 22 542 4+ 322 and
M, 2 232 + 3z

are not equal, showing pair (N, M) not exact.
Define products

N = NH 2 52204 1 3432 and
M = MH 2 2xy° + 3x2y3.
Observe that these derivatives,

[//\[\]x fote 5-21’y4 + 3-3m2y2 and
[M\]y 2% 2. 5ayt + 3-322y2,

are indeed equal.

In the spirit of IAATYDM TWIAYTD, applying the
EXACT algorithm produces fnc

F(z,y) = 2% + 2%y°

st Fy = N and F, = M. In consequence, each
[complex| number « gives implicit soln

F(a:,y(m)) = a
to DE
N (z,y(@)) ¢/ (@) + M(z,y(2)) = 0,

for the N and M defined in (20k.T)). ¢
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Logistic model [§3.2-NSS9, P.98]

Suppose p = p(t) measures the size of a population at
time ¢. Let (9 be a placeholder for the units of p. [If
p(t) measures the weight of bacteria in a petri dish at time ¢,
then (?) might mean ounces. If p(t) is a count of individuals
then (7 indicates no units.] Suppose the population has
natural birth multiplier B>0, in units 1/(0). [Agree

that B :: /1“ means that B is in abstract units 1/@] Were
there no constraints, the DE@ would be

= B.p, withsoln p(t) = po-eB*

A more realistic model has a carrying capacity C>0
[with C :: (®], which is the maximum population that
the environment can sustain. As long as 0 <p() <C,
the population continues to grow, albeit more and
more slowly. When p>C, then the population de-
clines [deaths exceed births|, asymptotically approach-
ing C. The form of the DE might be

dp

2 = BFE®)]-p0).

where B-F(p(t)) is the birth-mult @¢. This F'() has
lim F(p) = 0, limF(p) = 1, and likely should be
p—C p\0

continuous, and strictly decreasing, for 0 < p < C.
The simplest such F'is F(p) := 1 — &. This engen-
ders the |Logistic model D

12a:

12b: d _ B-[1 -

at clp.

Solving (12b). Define ¢(t) := % Thus

¢ = ¢ =B[l-q - gp=B[l-qlq ILe

dg
— B-[1 -

This DE separate as =g dg = Bdt. Antidiffing

RhS gives Bt. [EX(I DE 1-} is autonomous and 1%*-order,

so we don’t need a Col. VVhy?] Partial-fractioning gives
1 1 1

%2 — = -+
q-[1—q q

12c:

1—q°

“6Sometimes called the Malthusian model because of ideas
in An Essay on the Principle of Population, 1798, by | Thomas Robert]
Malthus. However, | am unaware of evidence that Malthus wrote
down a differential-eqn.

“TUsually attributed to |Pierre-Francois Verhulst in 1838.

Qngividing by ¢-[1 — ¢] loses solns ¢ =0 and ¢ = 1; i.e, loses

=0® and p = C. We'll regain these two equlhbrlum solns later.

Logistic model [§3.2-NssS9, P.9g]
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When 0 < g < 1. Expression () antidifferenti-
ates to [log(q) — log(1 — ¢q)]. Exponentiating gives

T: Bt — 4 note L
1—gq 1—g¢q

A soupgon of algebra yields
eBt 1

1= Biy1 =~ 1Bt

Un-substituting, and using autonomy, hands us

C
1 + e Bt —7Hail’

12d:  p(t) =

where p(7af) is half of C.

Otherwise. If ¢ > 1 then (x) antidifferentiates to
[log(q) — log(¢ —1)]. Exponentiating produces =4

OTOHand, if ¢ < 0 then (x) antidifferentiates

to [log(-¢) —log(1 — ¢q)]. Exponentiating results in
qu mote q%l Hence both ¢g>1 and g< 0 produce

. Bt _ _9
It e -1

Routine algebra cheerfully delivers

C
1 — e Bt —7asymp]’

12e: p(t) =S

where this p() has a vertical-asymptote at t=Tagymp -

Algebra. Both (12d}f12¢€)) rewrite as p(t) = w\ﬁjﬁ,
where M

by eB.THa‘lf by 7eB‘T;\«vmp

- Y - ' )

respectively. Plugging t=0min into (12dl12¢]) says py

- __c
1 + eB'THalf ? l — eiB'T:\m'm])

respectively. In both cases, then, M = % —1. O

Unifying. The above algebra yielded a uniform
description of (12d)), (12€) and the p() = C forward-

stable equilibrium soln, as
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C
1+ [%—1]-e‘B't’

12f: p(t) =

where po denotes the population at time 0.
Multiplying top&bottom by pg unifies with the for-
ward-unstable p() =0 equilibrium soln, giving

pt) = o P
pPo + [C — po)-e B
12g: -
C-po-e

C + po-[eBt — 1] i

Although derived in R, please check, for all com-
plex numbers po,B,C with C#0, that (12f12g) sat-

isfy DE (12b)) for a;l]@ complex times t.
Cool stuff. ...

Exer: Doubling-time. Haffoweria bacteria have
an unconstrained (Malthusian model) doubling
time”'"| of 30min. Compute the birth-multiplier, B,
for Haffoweria.

Soln. Define Tpp) := 30min. [It is often, but not always,
good to give conceptual names to values]

The Malthusian model gives p(t) = po-eB. So

9 _ P(TDbI) _ exp(B - Tpp1)
p(0 min) 1 '

Logarithmizing gives

log(2 log(2
B = 0g(2) = ,Og(_) ~ 0.023-L. ¢
TDbl 30 min mn

“OWell —. . . essentially. If B=-> or C=py, then the soln is

constant. When B;é% and C#po, then the soln has a single
(complex) time, Tasymp, when the (12f)-denominator is zero.
“10 Apparently, doubling time is also called generation time.
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Exer: Population-sampling. Reproduction of the
fascinating Diff Theorya bacteria closely follows the
logistic model . Sharon Scientist designs a pro-
tocol to estimate B and C for Diff Theorya:

She put initial population pg=p(0Omin), into a petri
dish, then measured the pop. at two later times t <ts.
Prior to this, she used DiffyQ to derive the simplest
time-ratio p = f—j for her protocol. What time-ratio
P = % Inot nec. an int(‘,gorl did Dr. Scientist use?

Pop-samp, Theory. Formula ([121),

e p(t) = C _

suggests studying ratio

p(0min) note 1 + Me™B?

, where M = & —1.

pt) 1+ M Po
Can we isolate B? Observe that
0 mi n _ M
H(p) = POMN) ) note Be g .
p(t) 1+ M
Define [We are not dividing by zero, as t; #Omin] ratio
R — H(tg) . e Btz _ ]
T H(t,)  eBt _1°
With N = e Bt [for Negative-expon], note Np = e Btz
Thus p
R = N -1 When p is a
TN -1 posint, then,
-1 )
R=N"+N""+. . . +N+1.
So the simplest useful ratio is P ‘= :—? = 2, whence

R =N+1| [Excr: What is wrong with using p=1 ?]

BirthMult. Recall Rdzef%. Hence
P p 1P2
N-—R_1 ;2—;? X s P1P0 — P2Po
B - R PoP2 — P1P2
p1
It’s more convenient to work with &€ := % fote eBt

the rEciprocal, whence

1 _ t
& = = [pl PO} @ noze 0. Thus,
R -1 P2 — P11 Po
12h: | (8)
og 1 P1 —Po] P2
- 8 _ L (2o00]. B
t1 ty P2 —P1' Do

Logistic model [§3.2-NssS9, P.9g]
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CarryingCapacity. Recall that & = eBt1. Plug-

ging t; in formula gives p; = ﬁ
PO

Solving for C delivers

=9
—
E -1
C =p;- Eipl Algebra gives
Pc

12i:

L 4

Our € and
S are scale-
inv fncs of

Po, P1, P2-

PoP1 + P1P2 — 2poP2
P1P1 — PoP2

S =

Pop-samp computation. Dr. Sharon used t; = 13min
and po := 20z, measuring p; := p(13min) = 5.792 oz,

and pg := p(26min) = 11.987 0z. Formulas ((12h}l12i]

and floating-point arithmetic gave her
'+ B= 0.099999994# and C ~ 20.0000080z .
Not bad, as I had employed formula-(x) with

B = 1

10 min

and C = 20o0z.

As a responsible researcher, Dr. S. repeats her ex-
periment, this time exceeding the estimated Carrying-
Cap, initializing pg := 50 oz.

She measures p; := p(8 min) = 27.382 oz, then later
p2 == p(16 min) = 22.756 0z. [The pop. is dying off.|

Trusty dusty floating-point produces
g B~ 0.09999992ﬁ and C = 19.9999960z,

which is consistent with (7). ¢
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12j: Questions. For Diff Theorya with pg := 50 0z:
LQ1: When (in past time) is the vertical asymptote?
How could we verify it experimentally?

In the petri dish, Sharon observes that Mys-
teria bacteria stabilizes at 300z.  Seeded with
Po = 20z, sherecords p; = 7.274 oz just 10 min later.
LQ2: What is the birth-mult for Mysteria? Started
from 2 oz, how many minutes later is the dish at half
CarryCap for Mysteria? Il
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Hyperbolic trigonometric functions

The hyperbolic versions of cos and sin are written
cosh [rhyming with “josh”] and sinh [pronounced “cinch”].
For z,a,8 complex,

e* + e~
cosh(z) = € e mote cos(iz),

13a: sinh(z) = e;Qe‘ fote -isin(iz),

exp(+z) = cosh(z) + sinh(z).
The corresponding facts about cos(),sin() give

cosh(z + 27i)

: ( =
13b: sinh(z 4+ 27i) = sinh(z);

136 SopE T = oM antperiod il

13d: cosh(z + i) = isinh(z); [translation-scale]
13e: cosh? — sinh? = 12. [Pyruacoras]

13f: cosh(a + ) = cosh(a) cosh(f) £ sinh(«) sinh (),

All zeros of cosh & sinh are pure imaginary. Further,

13g:  Range(cosh) = C = Range(sinh).

Easily,
cosh’ = sinh, sinh’ = cosh,
13h:

1 . " .
cosh” = cosh, sinh” = sinh.

Routinely, the Maclaurin series are

cosh(z) = 1+§+I+“ = Zn 0 2n

13i: . Z2n+l
. _ ol 2
s1nh(z)—Z+31+5!+" _ZnOQn—i-l

Posting race: Translation? We know that sin()
is a translate of cos(); ie sin(z) = cos(z — 7).
Dis(Prove): Function sinh() is a translate of cosh().
I.e, 3T € C so that sinh(z) = cosh(z — T).

Inverse hyperbolic functions on R. To build in-
vertible fncs, we restrict domains so that the restric-
tions are 1-to-1. Define restricted cosh, ResCosh,
to be cosh restricted to the non-negative reals, and
define ResSinh, restricted sinh,cosh, to be sinh but
only on the reals. l.e

ResCosh := cosh |9 o) and ResSinh :=sinh |g

Hyperbolic trigonometric functions

sinh(a + ) = cosh(a) sinh (/) + sinh(«a) cosh(/3).
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Easily, ResCosh and ResSinh are strictly increasing
on their domains, indeed, are bijections

ResCosh:[0,00)<>»[1,00) and ResSinh:R—>R,
hence have inverse fncs

acosh := ResCosh™  and asinh := ResSinh™*

13j: Hyperbolic inverses. Function acosh() bijects
[1,00) onto [0,00), and asinh:R<»R, by

: acosh(t) = log (t + V2 ) acosh’(t t;f =
I: asinh(t) = log (t + V2 + ) asinh’(t) = %ﬂ O

Pf for acosh. Target t € [1, 00) asks for the z € [0, 00)
note

with cosh(z) = t. Set £ :=e* > e’ = 1. Expanding,
E+ % = 2t. Thus E? — 2tE + 1 = 0. Hence F is one
of [t £ Vt2 —1].

Were E = [t —Vt?2 — 1], then t — Vt? — 1 > 1, i.e,
t —1>+/t?— 1. Both sides are non-neg., so squar-
ing preserves order, giving t* + 1 — 2t > t? — 1. Thus

1 > t; but that branch of square-root does not extend
to [1,00). So E =t + +/t>— 1, whence LhS({). 4

Proof for asinh. For target t € R we seek the z € R
with sinh(z)=t. With F :=e* then, F — % = 2t,
so B? —2tE —1=0. Thus F € [t +t? + 1]. But
[t —Vt?+1] is not >0. Hence E =t + Vt*>+1,
whence LhS(7). ¢

Pf for asinh’. The Chain rule says [f o g = [[ o g] ¢
With f :=sinh and ¢ := asinh, for t€R note

sinh’(asinh(¢)) = cosh(asinh(t))

cosh? (asinh(t))

sinh?(asinh(t)) + 1 = V2 + 1.

[Eqn (+*) holds, since sinh(t) is real, and cosh() is non-negative
on R.| Multiplying both sides by asinh’(#) produces
1 2 [sinhoasinh]'(t) =

t24+1 - asinh/(¢).

The proof for acosh’ is similar. ¢
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Hyperbolic cosh , sinh solve certain classic DfyQs.

13k: Lemma. For v complex, fnc f(z) := sinh(z — «)

is a soln to
72 =1+ 2

The only other analytic solutions [courtesy FTODE| are
constant functions f() = +i.
Integrating f shows that the non-constant analytic

solns to
I 9" =17+ [g.
are ¢(z) = [+ cosh(z — ), for B, € C. O

Proof. As sinh(z)? = Q—E[e% +e2% — 2}, S0

12 + [sinh(2)]* = % [e2z +e® 4 2}

= [cosh(z)]? £ [sink/(2)]2. ¢
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Derivation of hanging cable

Consider a hanging cable whose position is the graph
of height fnc y=h(z). As usual, use ¢/ for h/(z).
SETTINGS: A hanging cable (HC) only supports
its own weight; the curve is called a catenary. In the
suspension bridge cable (SBC) setting, the cable
supports the (horizontal) suspension-bridge deck; we
assume a massive deck compared to the cable-weight.
To normalize the notation, arrange the coordi-
nate system so that the lowest point of the cable is
above =0 and hence 1/ is zero. Call this lowest
point (0, h(0)) the vertex of the cable. We define

three physical constants:

T is the tension in the cable at its vertex. (The cable

is horizontal here, so this is also its horizontal component

of Tension.) This T has units .

S is the weight-per-distance (ie, denSity) of the load
at the cable’s vertex. (So S is the limit as z\0

of % times the weight on the cable-system above inter-

val [0,z].) This S has units )/(d).
R is the ratio S/T : % Use Q= & =T/S :: (.

Cable tension. Let 7 = 7(z) denote the tension
in the cable above x. Let Tve and Ty denote
the vertical and horizontal components of tension; so
T, TVer, THor all have units ).

Gravity acts only vertically. Were there points
ro<r1 with 7o (20) # THor(21), then the cable
above interval [zg,z1] would move horizontally.
Since it does mnot, the fnc T () is a constant.

So . Since ratio % equals the cable

slope 1/, necessarily
f: VO = T Tve() -

Different values of T engender different cable
shapes. [We’ll discover that the suspension bridge cable is

a parabola; different T-values produce different parabolae.]

Cable loading. Let W (z) denote the weight of the
cable above interval [0, z]. We will describe W () as a

product W(z) = S-A)

so A(x) has units (d). The meaning of A(5ft) is the
length which, were the cable-loading to have constant
density S, would weigh the same as the cable-system
above the interval [0ft, 5ft].

Derivation of hanging cable
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Weight and tension. For 0<zy<x;, the loading
on the cable above an interval [zg, 1] must equal the
difference 7ver (1) — Tver(z0) of the vertical compo-
nents of tension. As x=0 is the lowest pt of the ca-
ble, necessarily Tver(0) is zero. For all x € R, then,
Tver(z) equals W(x). Hence

/@) 22 W@ = +-5A@),
We rewrite this as
” J( = R-A(), with
J/(0) =0, and y(0) =0,

where we tacked on initial conditions that the cable-
vertex has horizontal tangent, and height zero.

This is our IVP for cable problems with ar-
bitary loading. We now solve it for two A() load func-
tions.
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The Suspension Bridge solution

For the suspension bridge, W(z)=S-z. So A(z) = z.
Integrating thus produces height

15: h(z) = %R-xQ = %%xz

Note that the RhS has unitsé -(d)%. This equals (@),
which indeed is the abstract unit for height.

The Hanging Cable (catenary) solution

Prof. JLF King

The Hanging Cable (catenary) solution

For the hanging cable, whose only load is itself,

W(z) = S-[Cable arclength above [0,z]] .

Consequently,
"
A(z) = /\/12+h’(§)2 dX. ByFTC, then,
HC: 0
A o= 1+ ).

Rather than compute the integral, we instead differ-
entiate DE to produce

W= RoJ1+ ).

Squaring this gives

= (A2 = R*-[1+ [W]7] 22 1+ [W]7])/Q%

CLAIM: [h(m) = %cosh(Raz)J satisfies ().

Note h/(z) = cosh’(Rz). And h”(z) = Rcosh”(Rz).
So

[h”(l’)]Q — R2 [(:OSh”(Rx)]2
R” |1 + [cosh'(Ra)]’]
= R2[1+ (@),

as desired. Further, h’'(0) = sinh(0) = 0. Thus: In
the HC case, the soln to is catenary |recall Q = %]

h(z) = Q- [cosh(%) —1].

Or, letting vertex-
height be non-zero,

16a: z

h(z) = Q-cosh(a) = < cosh(2 2).
16b: Lemma. The length of cable above interval
[x0,x1] is

_ Qfsin(®) — sinn (0

Len(cable) = Q [smh( Q) s1nh( Q )] O

Proof. Eqn says our A(x) equals
Q-1 () Q-sinh(%). ¢
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16¢: Distance between poles? An 80ft cable hangs
between two 50ft poles, with lowest point 20ft above
the ground. How far apart are the poles? %

We give symbolic names to the

Prelim to (|16d]).

quantities. Let

I — [ArcLength from} — 1.80ft — 40ft :
vertex to a pole 2
Vo= [Vertlcal dist. from} _ [50 _ 20]ft _ 30&;
vertex to pole top
. [Horizontal distance]
z = [from vertex to pole} - [NOt et /mown] ’

Good eng. practice; LOWER/UPPER BNDS ON z:
£: L-V <z < VL2-V2,

Lower BND: The poles would be closer if the cable
ran down the pole, then horizontally out to the vertex.

The poles would be further apart
if the cable ran straight from the pole-top
to the vertex. This distance, says Pythagoras,
VL2 — V2 = /42 — 32 . 10ft = /7 - 10ft ~ 26.457ft.

UPPER BND:

We expect pole-separation, 2z, to satisfy
££: 20ft < 2z < B3ft.

If our computation yields a value not in this range,
we temporarily halt pole construction, and figure out
WHaT WENT WRONG? WHERE?: The Four W's. O

The Hanging Cable (catenary) solution
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Soln to ([16¢). We’ll prove that the corresponding Q
is

2 LQ_v2

I6d1: Q Y

— 35
— 35,

Lemmal[l6h applied with z;:=2z and z(:=0ft,
gives

L/Q = sinh(z/Q).
asinh(L/Q) = z/Q. So,
z = Q-asinh(L/Q).

Hence

[I6d 2:

As the question asks for 2z, our (16c.1|) would give

2-v: L -2V
:Ll.. 27z = T 0 ablllll<w>
by @) L> — V2 . :
1B PV (et + T 1)

= Pretog(¥ + iFE1) [
=2 - log(7)ft ~ 45.4046ft.

Proving (16c¢[1). Our (16a) and (16b) give, respec-

tively,

RV = cosh(Rz) — cosh(R-0ft) = cosh(Rz) — 1,
RL = sinh(Rz) — sinh(R-0ft) = sinh(Rz).

Thus 1 = [cosh? — sinh?] equals
[RV +1]> — [RL]?> = [R?V2+4 2RV +1] — R?L2.

Subtracting 1 from both sides, then dividing by R,

ield
Yo 2V = R[L? - V?].

Multiplying by % delivers (|16c1)), as desired. ¢
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16d: Same poles: Tension. The previous cable has den-
sity S == é 'flg What is the cable-tension at the vertex?

What is the highest tension in the cable; where? ¢

Soln to (|16d]). From our defn of Q, the vertex-tension
is def def 16| 1)
T & e (0) & 5. 24D

1lb 35¢ _ 7
Since Tor() is constant, the highest (in both senses!)
tension is where the cable joins the pole; where Tver()
is highest. That value is

I6dl1:

TVer(Z) _ [Cable weight from} —S.I, = 8lb.

vertex to pole
Pythagoras tells us
*3 7'(:}/;)2 =T+

[7ver (2))?

In particular, 7(z)* = [SQJ2 + [SL

sion is
M6 2: =S\/Q+1I? =

]?. Thus, max ten-

125¢ _ 25
S-2°ft = Zlbe
Alt (16d)). Note Tver(z) = T-h'(x) = T-sinh(g).
So (¥) and identity T2-[12+sinh?] = T2 cosh?
give

16d13: 7(x) = T - cosh(z/Q).
Maximum tension is thus

16dl4: 7(z) = T -cosh(z/Q).

[Exer: % The righthand sides of (I6d[2) and (I6d[4) are
equal.] ¢

The Hanging Cable (catenary) solution

Prof. JLF King

16e: Breaking point. On a planet with sur-
face acceleration A :=10_7, an 80m long cable has
mass 16kg. Its breaking tens1on is 100 N. [A Newton is
N = [kg:m]/[sec?].] What is the maximum span before
this cable breaks? O

Prelim to (|16¢€]). Looking at half the cable, from vertex
to one pole:

L = %-SOm = 40m, is the arcLength;

7 — [HoriZontal distance] o [Nt . B ]
"~ |from vertex to pole | 'OV YL AROWNY,

W = [Weight of half the cable] = 8kg-A = 80N;
X = [Maximum tension] = 100N.

W/L =23},

Om < z < L=40m. The 1** in-
equality is strict, since the length of cable hanging straight down
needed to break the cable is & = 100m = 50m St;“ L. The 274
inequality is also strict, since the breaking tension is strictly

S
less than oo. OJ

The cable weight-density is S =

LowER/UPPER BNDS are:

Soln 1-) We need z to satlsfy T(z) = X.

From , then, X2 = $?Q? + [SL]>. And (T6d[)

says SL W Hence

Q_;-m:ngom.
Thus assures
z = Q-asinh(é) = 30m-asinh(33) < 33m.
So the span is 2z T 66m. ¢
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17.1: Unequal poles. ~ We have pole-0 and pole-1 of
heights 0 < V{),V1, not both zero. Running between is
a length-A cable, long enough that the vertex lies be-
tween the poles; just touching the ground. For k=0,1,
use £, for the arclength from pole-k to vertex, and zj
for the horizontal distance. Compute £. O

Prelim. Define height difference D = V; — 1. [

17.2: Theorem. When V; # Vj, the £y arclength is

by = [yie[A2 - D2 - VAl 0

Plausibility. Exchanging subscripts gives

B = [y a? - (D7) - via].
Adding (1) to (f) shows that
£ L+8 2 LA — A] £ A

We now vary a Vi, which will vary D. Must it also
vary A [making derivatives harder to calculate|]? N ol As (1)
does not directly mention either z;, we can vary pole-
separation to keep A constant [with vertex touching the
ground].

Setting Vp =0 [i.e, the vertex is at pole-O] gives

units of (@2
——
&[V0 - 0] £ 0.

Loly,—0 =

[No gain to setting V1 =0 in (1), as (£) shows we will get A.|[]

The Hanging Cable (catenary) solution
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Sending Vi—Vy. [Our derivation of () uses Vi#Vo, so we
need to take a limit.] The limit has the poles of equal
height, so we ezpect that the limit-value of £y is A/2.

Since D = Vi — V), derivative (‘fTDl =1 = %. Let
P denote 1, V- [A? — D?]. Then I'Hopital’s tells us
that lim £y equals the limit of ratio

Vi—=Vo
divl[\/_ - A‘/O] note ddTl[\/F] Chain 1 dP
LD 1 rule ﬁm

Also, lim P = VoVo-A2, so limv/P = VpA. Thus

Vi—Wo Vi—=W
the limit of RhS(x*) equals
1 s A
L VhA2 L
2- VoA Vo 2’
as predicted. O
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Unequal soln. From ([16a)), the cable’s Shap is
h(z) = L. [cosh(rz) — 1].
This, and (16b)), yield

rVi, + 1 = cosh(rzy) and
rf, = sinh(rzg).

Courtesy Pythagorus
12 = [tV + 17 — [r)%.

Subtracting 1 from both sides, then dividing by r,
yields 0 = rV3%2 + 2V, — r-£,°. Solving for r,

Y R
r o 2V,
Thus E(fz‘;ovoz = 312‘;1‘/12. Cross-multiplying, then
subtracting, D
—_—
Vido? — Vobi? + VoWi? = Vilp? = 0.

Since £1 = A — £y, our £ is a root of polynomial

f(t) = Vit? — VoA —t]*> + VoWiD
= Dt* + 2VoAt + Vo[ViD — A?].

Computing the polynomial’s discriminant,
IDiser(f) = 1 [[2VA]? — 4-D-Vp[ViD — A?]
— VO[VOA2 - D[vlp—Aﬂ]}
= Vo|[Vo+ DJA* — V1 D?]

= V[ViA? — Vi D?]

The roots of f are

&5 2% £ 2Ms[a2 — D2]]

= 5[+ vin[az - D] - v,

ol

Our £y is non-negative, hence (7).

def vertex-densit s
ve made r = YL ORI Jgwer-case, as it is currently

vertex-tension

01117

unknown.
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The Hanging Cable (catenary) solution

Difficulties mastered are opportunities won.
—Winston Churchill

18.1: Bent outta shape? A 22m cable, whose min-
imum bending radius (see |W: Bendingradius), is 3m

has its two ends attached to a
track in the ceiling of a workshop. Bringing the ends
together lowers the cable-vertex. How low can the
vertex be before transgressing min—Bend-radius some-
where along the cable? O

Curvature.  Consider an oriented-curve C, point Py
on C, and have P(s) be the point along C at arclength
distance s from Py. [So s::(@.] Relative to horizontal,
let 0(s)=0c(s) be the angle of the tangent-line at P(s).
Writing

t: 0(s) =

is sometimes called a Whewell equation for the
Its derivative

Som(‘—l)ur‘ri(:uhu‘—F()rmula(5‘)

curve (William Whewell, pron. “Hu—well”).
w.r.t arclength,

it k(s) = ke(s) = 0'(s),

gives the curvature at P(s). This (f) is called a
Cesaro equation (Ernesto Cesaro) for C. As we ex-
pect, H(S)Zié, since curvature is the reciprocal of
radius-of-curvature. O

Prelim. [This “Bent” problem is kinda hokey, as our derviation
of a hanging-cable assumed oo flexibility, whence min-Bend-
radius should be zero. But we proceed anyway. . ]

We seck the curvature of cable h(z) = Qcosh(g)-
We could use the annoying Carc-I formula

h/l
3/2

B = ————e
1+ n2]

More natural and elegant is derive a Cesaro formula
for our beloved catenary. O
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18.2: Catenary curvature lemma. Consider catenary
h(z) = Qcosh(g),

where x,Q :: (d). Measuring from the vertex by arc-
length s,

18.3: Ocat(s) = arctan(s/Q) and
Q
18.4: /ﬂ}cat(s) = m

are the Whewell and Cesaro formulae, respectively.

Proof. Previous work shows that
Slope = h'(x) = sinh(g) and
Arclength = s(x) = Qsinh(g).
Thus s / Q gives slope ITOf arclength. Hence is
the angle at arclength s. Differentiation and algebra

produces (|18.4]). ¢

Bent soln. With L = 227'“ half the cable-len, and min
Bend-radius B := 3m, I claim max-vertical-drop is

‘/I\’I‘(LX — \/L2%’B2 — B
= [V112+32 — 3m =~

[Were min-Bend-radius zero, we’d expect the max drop to be

18.5:
84m.

the cable going straight down, then straight back up again. And
indeed, Virax(0m) = L.| Here’s the argument for (|18.5)):

Formula says max-curvature occurs at the
vertex (unsurprisingly), so the min radius-of-curve is Q.

[The next time I teach this course, I will exchange names R
and Q, making R min—mdius—of—curve.]

We seek to maximize ceiling-to-vertex vertical
drop, v, without violating min-Bend-radius. As for-

mula (16¢|1)) gives 12 _ 2

Qv) = “op

we maximize v such that Q(v) > B. |[The graph of

2 /e
Q(v) = L/ _ %v is a hyperbola with one asymptote verti-

v

cal [send v—0] and the other with slope % [send v—o0]. This
hyperbola twice intersects the horiz-line at height-Q: At a neg-
ative value less than -L, and (the value we seek) at a positive
value less than L.| Rewrite inequality B < Q(v) as

v? + 2Bv — L? < 0.
As a fnc-of-v the poly’s discriminant is 2%[B? + L?],

whence its roots +v/L? + B> — B. Thus (18.5). 4
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[Chap4-NSS9, P.237.]

To a man who has only a hammer, every problem
looks like a nail. —MarK‘Twain (paraphrased)

Convolutions  [cChaps-Nss9, P.237.]

Recall the identity fnc Id == [t — t]. So Id*(x) = 2,
and Id” is the constant-fnc 1. Below, let J := [0, 00).

Convolution defn. Given (locally-integrable) fncs
f.g:J—C, their one-sided conwvolution is the fnc
mapping J—C by

19.1: [f®gl(t) = /Otf(t—v) -g(v)dv.

Easily, we get these algebraic properties:

Convolution is commutative and associa-
tive. Convolution is bilinear”!, in that
fi+fh)leg = [Hiog+heg,
pfleg = b5[fegl,
for arb. fncs £, 1, f5 and arbitrary scalar, 5.
Convolution commutes with complex-
conjugation: f®g = f®7.

19.2:

We also have this cty property |[more is true|:

19.3: If f,g continuous, then [f ® g] is cts.

CAVEAT: We do not have a formula for how convo-
lution interacts with multiplication; we have no nice
formula for F & [g - h].

Powers. As a shorthand, the “n** convolution

power of £,
" = fefe 2. ®f,

is the result of convolving together n copies of f. In
particular, 1%"*1 is the n'M-antideriv of 1 (ie, z°)
whose derivatives are zero at the origin. So

:L,TL

= %-Id” e [xHF}

20as: 18]

We get this nice corollary.

“!n the other order, f ® [g1 +ga] = [f ® g1] + [f ® go]; in
other words: “Convolution distributes over addition”. Also,
f®[7g] =7[f ® g]; i.e: “Scalars factor-out”.

Prof. JLF King

20b: Power-of-x Lemma. Consider a continuous func-
tion B3:J—C, and a natnum N. Then

g [fld"]®B = B,

where By is the unique function such that

i1 0 = By(0) = Bi(0) = B%(0) =...= B{(0).

and BN = 8. O

Proof.  For an arbitrary fnc g, the FTC says that
[1® g](t) d:effgg is the antideriv G of g such that
G(0) = 0. Courtesy (20a), our [+ 1d"] @ 3 is

l®[1le Vfl1wg...],

using the associativity of convolution. Hence
[+1d"] @ B is indeed the By defined by (f). ¢

Alt Pf. Just for fun, here is an alternate proof using
a derivative-of-convolution formula, , that we’ll
shortly deduce.

Defining v () = t¥/k!, note (o, 1] = ay. Fix a
natnum K satisfying (fg). Differentiating,

[axi1®8] [[aK+1], ®ﬁ] + [aK+1(O) : 5}
= [ag ® 3],

since ae+1(0) 18 0, as K +1 is positive. So [ax 41 ®,@]/
is Bi. Thus

by FTC

a1 ®B](t) = /Ot Bk Bry(t).

Hence (fx,1). We've shown that (fr) = (fx41), as
desired. ¢

Bz.C1. Note that & ([5+1 —v] - e¥) = [5—v] - €*. So

el dzef/ot[t —vl-e"dv = [[t+1 -] - €"] :j;
= ¢t — [t+1]. 0
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Ez.C2. Let f(x) = 22 and B(z) := 30[z* + x]. Then

[f@pl(t) = /Ot [t —v]? - 30[v* + o] dv.

The integrand is a poly, which we could multiply-out,
then integrate. Alternatively, cheerfully apply (1),
and antidiff 3 thrice to get

302"  302' &l N 5z
567 234 7 4
Multiply by 2! to conclude that
2 5
[foBlt) = Z4" + 3t O

Bz

Ez.C3. Let’s convolve exponentials f(z) := e and

g(x) == e“*, where B,C € C.

(Case: B=¢]
ing [f® f](5) is eB[5_U]-eB” fote eB‘5; constant.
Its integral is thus 5 - B, Hence
o ™20 = [fOAE) =
fef =

The integrand for comput-

t-ebt.
Id-f.

21a:

In functional notation,

[In the B=0 case, this says 1 ® 1 = Id, which is indeed correct.]

CASE: B # C| Define difference D := C' — B. The

[f ® g](5) integrand is eBlP—v].eCv WES B DD T
eB5 D-U|U:5 . eB5 [eD_5 _ 1].

integral is <5~ - e ve0’ 1€ P
This equals %[eC'5 —eB]. Consequently,
[f ® ](t) B [eCt o eBt] - [eBt o eCt]
21b: BT Tc-B T B-C
Le, f®g = gchf = fBng
This is symmetric in B and C, as it must be. [l
A shorthand. Tl write ‘[9z] ® €3* equals. ..’ to mean:

Let f(u) := 9u and g(z) = e®.
Then [f ® g](z) equals. . .

Le, I will sometimes use the same letter for the input-
vars, and the output-var. ]

[Chap4-NSS9, P.237.]
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Ez.CJ.1. We seek to compute H := [9z] ® 37 .

Let’s solve this just by using properties of convo-
lution. Let G := €3*. Since [[3G] = G + Const, and
G|, is 1, it follows that

t: 1®[3G] = G-1.

Since convolution is bilinear,

H =9z®G|] = 2®[9G]
= [1®1]®[9G]

= 1®[1®[9G]],
since ® is associative. Computing the inside-convolu-
tion,
_ by (1) _
1®[9G] = 3-[1 ® [3G]] 3G —-1] = 3G -3.

So, H = 1®[3G — 31]
= [1®3G] — 3:[1®1]
=[G-1-3z = &2 -1-3z . O

FEx.CJ.2. The preceding example showed that
[G — 1], and
[G — 1—3z].

113G =
129 G =

Ol= W=

Continuing, [1%3 ® G] is one-ninth of

leGl-[1®l]-31®a

2

X

=iG-1] — 2 - 35
2

1 2 T
=3[G - 1-32 - 3]

i 1 [3z]° [3z]' [32]?
5[(;_ o 1 2 ]

Hence

o” , Bl | ol

1
®3 _ . _
oG = {G { ol 1 5

27

The pattern is clear:
For each natnum N, with G denoting €37,

ﬁ_[xN ® G recall 1®[N+1] ® G
22a: 1 N [31’]k
:3N+1G_k§;0 k! ]
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Rewriting,

N!
. N 3 _
22b: V' ®eT = ST

3T _ ivz [iﬁ]k]

k=0

The above sum, Z{gv:o Blui,]k, we recognize as the
N'_Maclaurin-polynomial of e3*; see below. Before
generalizing this result, let us compute an example
with [shudder| actual numbers.

Let R:=[6 — 9z + 542%] ® €3*. Then

R = 6[1®G] - 9z®G] + 54z ® G].

From (22b)), or (1), note

6-[1®G] =6-3-[G—1] =2G—2, and
9-z®G] =94 [G-1-32] = -G+1+3z, and

54-[%2 ® G] = 54-3%3!-[Terms] = 4[G —1—3x— %xz}
Adding these together says that

R = 5e¥ — [5+ 9z + 18:1:2] . O

Maclaurin polynomial. For a natnum N, consider a
function G which is N-times differentiable. Then the
“N* Maclaurin polynomial of G” is the unique
polynomial p of Deg(p) < N, whose first N+1 deriva-
tives agree with G’s at the origin. l.e

p(0) = G(0), #(0) = G'(0), p"(0) = G"(0),
V() = GY(0), pM(0) = 6(0).

An explicit formula for p is

(k)
p(e) = Zi\fzo G k!(O) ok

Use Macg,y to denote this p; it is the N Maclau-
rin polynomial of G. [l

23: Convolve-Mac Thm. Consider an integrable fnc 3
on [0,00), and fix a natnum N. Let g = gy be a fnc
whose [N+1]*"-derivative is 3, i.e, gVt = 8. Then

1®[V+1] ®B = g— Macyn. O
Proof. This follows immediately from Power-of-x
Lemma, (20b)), on page . ¢

[Chap4-NSS9, P.237.]

Prof. JLF King

Compute f = [25 ® cos(27)].
C-M-Soln. With 3 := cos(2x), note % = gg—? ® B, so

Convolve-Mac 1.

f=5-[1%@a].
A particular 6™"-antideriv of B is
g = —cos(2w)/2° 2% -3/26

Recall cos(t) = 1—%—1—;—1—%—?—&—....

2z for t shows 1 — 222 + %x‘l — .... is the Mac-series
for 8. Hence Macg; = [1 — 222 + %:1:4]. Finally,

Plugging in

f = 5!-[g — Macys] =
= L?? : [MaCB,E) == /3}
=3 {[3 — 627 + 22"] — 3(:05(2:1:)} . ¢

—2 - [B — Macgs]

Derivative notation. Below, for a two-variable
function H(zx,y), we use Hi() to mean the partial-
derivative w.r.t the 15 variable; so Hi() is a synonym
for H,(). And Hy() is Hy(). O

24a: Chain-rule Lemma. Consider equations

and y = B()

for differentiable functions ., 3, H. Then composition
o(t) == H(ax(t),B(t)) is differentiable. Moreover,

x = aft) and z= H(z,y),

at  ~ dedt | dy ar o
24b: , ,
¢'(t) = Hi(a),B(t) o (t) +

Hy(a(t), B()-8(¢) , [Newton]

where Leibniz names the variables, and Newton names
the functions. O

24c: DUL: Differentiation under Integral. Consider fnc
G(z,v) defined on a rectangle U = [xg,z1] X [vg, v1]
in the plane. Suppose partial-deriv G1() is cts on U.
Then for arb. values, say, 3 and 5, in [vg ..v1], the fnc

H(z) = /35 G(z,v)dv

is differentiable, and

H'(z) = /:Gl(a:,v)dv. O
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Proof. Fix, say, x=7. From a non-zero e, form

difference quotient

H(T4+¢e)—-H(T) /SG(7+€,’U)—G(7,U)dU
€ 3 € '

Send £ — 0. In order to pass that limit through the
integral sign, note the following. Since Gi(,-) is cts
on compact set U, our G(+,-) is uniformly Lipschitz
in the z-direction. Hence we can use the Dominated
Convergence thm to commute the limits. ¢

24d: Leibniz-rule Lemma. Consider continuous func-
tion G:JxJ—R; hence G1() is cts. Define

R4dk: ) = /OyG(x,v)dv

Then o(t) .= H(t,t) is diff‘able, and

t
PAdt: (1) [/0 Gi(t,v)dv] + G(t,1). O

Proof. Notice that ¢(t) = H(«(t),3(t)), where fncs
a(t) .=t =: B(t). Applying the Chain rule ,
A = Hit)-§G + Ht1)g
= Hi(tt) + Ha(t,t).
By DUI (24d), our Hy(z,y) = [{ G1(z,v) dv. Hence
Hi(t,t) = [1Gi(t,v)do.

By FTC, moreover, Hy(z,t) = G(z,

Hy(t,t) = G(t,1).
These three displays, together, yield ) ¢

t). Thus

24e: Leibniz corollary. Suppose «, B are differentiable
fncs on J. Then [a ® B] is differentiable, @nd

la®Bl(t) = [o @Bt + a0)8()
DI a® B)(t) + alt)B8(0).

paGe

Proof.  Define G(z,v) = a(z —v)-8(v), then H
as in (24dk). So [a® B]() dof H(t t). Using that

G(t,t) = a(0)-8(t), applying ([24d}) yields (24df). 4

V12Wikipedia gives a slightly different formula, but for the
derivative of a 2-sided convolution. Our 1-sided convolution
has an edge-effect when differentiated.

[Chap4-NSS9, P.237.]
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24f: Convol-diff Thm. Fix a natnum N. Consider an
f ¢ CVN and g € oL [When N = 0, we just need g
Iocally—integrable.] Then f ® g is in CN, and

By: [feg™ = fMeg + Y f90) g¥,
jtk=N-1

where the sunrmis taken over all ordered pairs (j, k)
of natnums. Q

Proof. For N=0, this says [f ® g| = [f ® g]; true.
Now fix an N for which (Fy) holds. We differenti-

ate RhS(Py), by setting o := f(™) and 8 = g, and

applying ([24d}t). It yields that [f ® g](V 1 equals

[o ® B](t) + )+ Y £

jHl=N-1

(Z—H) (t) ,

summed over ordered-pairs (7, £) of natnums. Setting
k = f+1, we can re-write this as

[ ) + Z fJ) g(k ().

Jjt+k=

Noting that o/ is fN*+1 | gives (Py1). ¢

YIE.g [f ® g]”(7) equals [f” @ g](7) plus f'(0)g(7)+£(0)g’ (7).
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Convol-GenTar Algorithm

[See P.237 of NSS9.| A polynomial

q(2) =

with Cy # 0, hands us an operator L := ¢(D). We
seek a fnc y=y(t) solving DE

25a: Lly) = G,

CNZN—i-...—i-ClZl +CoZO,

for a given target fnc G.

15t-step. Use CCLDE to produce a function f
solving ZeroTar L(f) =0, with initial conditions

FN=D0) = 1/Cy, and

25b: _ ..f(N_Q)(O).

2nd_step. Compute y = f® G .

What's the magic behind Convol-GenTar algorithm? To

see that y solves ([25a)) note, because of initial condi-
tions (25b)), that we have this:

For j=0,1,...,N-1: ¢ = [fDeq].
= fMed + &Gl

Using the bilinearity of convolution, (19.2]), we have
that sum Z;-V:O C;jyl) [which is LhS(@5d)| equals

. [[Zj,vzocjfm}@e] b Gy e

Since Z;-V:O C; fU) is the zero-fnc, the convolution
in (%) is 0. Hence (%) equals G, as requested. ¢

Gen soln to (25a)). Recall that the general ZeroTar
solution Z() to [¢(D)](Z) = 0 has N free parameters,

a1, ae,. .., ay € C. Writing
%
a = (ag,ag,...,ay),

then, we denote the general ZeroTar soln as Z5(t).
It follows that the sum

25¢: Yo = [f®G] + Zg
is the general GenTar-Soln to ([25al) O

Convol-GenTar Algorithm

Prof. JLF King

The following convolution-example will be done
again using Variation of Parameters at (26.10)).

Convol-GenTar Ex.1. We crave a particular soln,
for t>0, to [#77191,84.6,NSS9| DE

[25alf:

Define L := D? + 4D + 4I.

Y +dy +4y = et log(t).

15t-step. Here, N =2 and 1 =1=1.
Aux.poly of L is = +4z+4 = [z —-2)2
f(x) = a-e?® + B.xe™?® satisfies L(f) = 0.
Needlng f(0)=0 and f’(0)=1 makes a=0 and S=1.

Thus

2nd_step. The (25alt)-target is G(v) := e 2"-log(v).
Convolving, [f ® G](t) def J3 f(t —v)-Gv )d@. The
[t=v] . e 2¥]og(v) 22 [t — v]e " - log(v).

FOCH) = (4] - B e, where
t t

:/log(v) dv and B ::/vlog(v) dv.
0 0

IBParting, [*log = z[log(x) —

integrand is [t — v]e™?!

Thus

1]. Consequently,
A = t[log(t) — 1] — li{(I(l) sllog(s) — 1] = t[log(t) — 1],
S
since I'Hépital’'s Thm shows hi% sllog(s) — 1] is zero.
S

Similarly, [*vlog(v)dv = §[z%[2log(z) —

t
B = — 142 _

/Ovlog(v) dv 1[t°[2log(t) — 1]]

again using I'Hepital's. Hence [(-A] — B equals

L[t [4log(t) — 4]] — L[t*[2log(t) — 1]], so

y(t) = 1t*[2log(t) — 3] - e

is a particular soln to (25alf).
VoP, at (26.10]), solves the same problem. Which

method is easier?

1]]. So
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Convol-GenTar Ex.2. We seek the gen-soln to Precaution is called the Mother of Wisdom:;
the father was never known.

25alt: 3 —4h + h = :

+ xp That should prove to you, at at glance,

So q(z) =322 — 4z + 1 = [z—1]-[32—1] is the that even Precaution once took a chance.

aux-poly of our DiffOp, L :=3D?—4D + L —Paul von der Porten, translated from the German

by his son, Arnold von der Porten.

Applying 15¢-step. Here, N =2 and g =

The gen-soln to the ZeroTar DE [¢(D)](f) =
f(x) = ae® + Be*/3. Solving for a3 so that f(0)=0
and f/(0) :% gives f(x) = % [e® — ez/S]. o

where ®(z) := e%/3.

Applying 2"9-step. The target in (25alt) is exp.
The 2"d-step has us compute h = f & exp. Since
convolution is bilinear,

h =1 [[exp@exp] - [@@exp]] .

By (21a), our [exp®exp|(t) = t-e'. And cour-

tesy (21D},
et — g3t 3 ¢ 1
= = —_ . _— 3
[ ® exp](t) 1 = [e e ] .

Consequently, our General-target Soln is

1
258t Hopa,(t) = 3t€" + ane’ + aged’.

A subtlety: We never needed to compute [® & exp],
once we noticed from that [® ® exp] is a linear-
comb of ® and exp. For the ZeroTar solns are all such
lin-combs, so computing this specific one is irrelevant.
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Variation of
Parameters [NSs9: §4.6 & §2.4., ex.#30]

[This section assumes knowledge of matrix multiplication, and

the determinant of a square matrix.]

26.1: Cramer’s “Rule” Thm. Consider matrices H and
T, and invertible matrix M, related by matrix-eqn

M - H = T .
~— ~—~
NxN Nx1 Nx1

Here, “Multipler” M and “Target” T are known, but
“Huh?” H is unknown. Let My, be the NxN ma-
trix M _except that its rth_column has been replaced
by column-vector T. With h, the entry in the r*-row
of H, then

h, = Det(Mt,)/Det(M). O

Proof. The Determinant fnc is multiplicative, etc. ¢

Alist G = (0, ¢1,-..,on_1) of sufficiently dif-
ferentiable fncs engenders its Wronskian Matrix

¥0 ¥1 PYN-1

0 Yh o PN

WI(B) = | @0 i W |
No1) (N1 N-1

P A i

also written as WM(¢g, ..., on—1). Its determinant,

W(o, .-, on-1) = W(E) = Det(MM(F)),
is called the * Wronskian of 3 7,

26.2: Wronskian L.I. Thm. If @ = (0, ¢1, . - - oN—1)
is a linearly-dependent list of functions, then W(@)
is the zero-function.

Conversely, when each ; is analytic |is a power-series
fc]: If W(@) is the zero-function, then @ is linearly-
dependent. O

VoP algorithm

Step VoPO0. Consider target fnc G() and monic
complex-polynomial

[Variat ion of Parameters]

q(z2) = 2N+ Cy_12V 4+ 4+ Ozt 4+ o2

VoP algorithm

Prof. JLF King

[Variation of Parameters|

The polynomial determines a differential operator
L .= ¢(D)|
L(y) = G, i.e,

We seek the general solution, y, to

26.3: y™N) + Oy 1y NV 4.+ C +Coy = G.

Step VoP1. Use CCLDE to find a linearly-indepen-
dent list = (Yo,...,Yn_1) of fncs, with each Y}
satisfying L(Y;) = 0.

We seek a list f = (fo,---, fn—1) of fncs, so that

this sum-function N_1
26.4: s =) fi'Y
=0

satisfies (26.3)); that is, that L(s) = G.

VoP2. Let h; = fJ’ Define column-vectors

ho 0
26.5: H:= |: pal ol —

hn—2

h]vfl G

Compute the Wronskian matrix M := V\M(?) Then
H satisfies

T2 M-H = T.
~— ~—~
NxN Nx1 Nx1

Solve for each hj, either via computing the inverse-
matrix of M, or via Cramer's Rule (theorem, actually).

VoP3. Anti-differentiate to compute each function

f; = [hj. Then, parametrized by a list of numbers

o = (oo, 01,...,an_1), the general soln to (26.3) is
N—

26.6:

J

1 N—-1
ya = [z% a;¥;] + [z% ).
= =

Why does this nifty VoP algorithm work? Matrix-

eqn says, for k =0,1,..., N—2, that

N-1
(k): ijo hj.yj(k) = 0.

Differentiating (26.4]) says that s’ equals

N

[ay

_ N—1 N—-1
[FY; + f7]] 2 [ZO hY) + [ZO fYj).
J= J=

=0 i—
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By (1(0)), then,

r N-1 /
g = Zj:() fJYJ

Differentiating again, then using (f(1)), shows that

no_ N=1 . on
s = ijo f]Y} :

Continuing, we conclude, for £ =1,2,..

) k) _ NV y(R)
i sk = ijo fiY;

Differentiating one last time produces

., N—1, that

N-1 N—-1
wxs s — [Z ijj(N‘l)} I [Z ijj(zv)}'
j=0 J=0
=: Bob

Eqns (26.4), (%) and (*x), together, imply that

N-1
L(s) = Bob+ [> f5-L(¥))].
j=0

But each L(Y;) = 0. Our end result is that

26.7: L(s) = Zj.v:_ol ij»(N_l).

J

want

And L(s) == G. Hence we need to require that H

satisfies Zﬁ\:}l ijj(Nfl) = (7. And this is precisely

what the bottom row of matrix-eqn (1) says.

The Upshot. This method indeed computes an s
with L(s) =G if there is a column-vector H fulfill-
ing (). Happily, our Wronskian L.I. Thm (26.2) guar-

antees that M is invertible, since we chose to be

linearly-independent. So define : ¢

26.8: VoP case N=2. Here, our matrix eqn is

Yo vi| [ho|
Yy Y| |m o

———
M

So D := Det(M) = [YoY]] — [YyY1]. Hence

VoP algorithm
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ho = —Yl.% Thus

= [a+ [holYo + [B+ [M]V1

= [a+ fo]lYo + [B+ fil11

= [aYp + Y1) + [foYo + f1Y1]

is our general soln to . (|

26.9: General VoP Alg. When the DE is “not monic”,
ie

and h; = YO%

ya:ﬁ

263  Cny™ +Cnoiy™V TV 4+ Ciy + Coy = G,
then steps VoP1,2,3 remain, except that the target
col-vec becomes 0
6.5 T = :

G/0x

The algorithm persists if the C; coefficients are al-
lowed to be functions of the independent variable.
The only step that get harder is VoP1 [finding fncs sent
to zero by the Diff-Op| since CCLDE no longer applies.{

CC-VoP Example 1. DE [#77191,84.6,NSS9]| is

26.10: Yy 4y +4y = e log(t),
for t>0. Define expressions
L = log(t) and R = e?'. Note R’ = -2R.

Our target fnc is G := R-L.

VoP1. The Op’s aux.poly is z2+4z+4 = [z—-2]%.

S0 Yo = R and Y7 = tR.

is an L.I. pair of fncs annihilated by the DiffOp.

VoP2. Differentiating w.r.t t,

Y] = 2R and Y] = 1.R + t[2R]
= [1-24R.

So the Wronskian-determinant D := W(Yp, Y1) is
D = Rl —2R — tR[2R] 2 R2.
Using the convenient (26.8)),

ho = —2YiG = -R24R-RL 2 4L, and
h = 1%G = ®R2.R.RC 2= ¢
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VoP3. Computing anti-derivatives, A WONDERFUL BIRD IS THE PELICAN
His bill holds more than his belican.
fo= /[—t-L] dt = [l — 2£]-#* and He can take in his beak,
Enough food for a week,
h= /L dt = [£ —1]-¢. But I'm damned if I see how the helican.
) —Dixon Lanier Merritt
So a fnc s sent to G by L :=D? 4+ 4D + 41 is

foYo+ f1iY1 = foR + f1tR
= [ -20] + [£-1]] -2
= 1120 - 3]°R = 1[2log(t) — 3]t’e™.
The gen. yo 5 == oYy + BY1 = [a + Bt]R is annihi-
lated by L. Hence, the gen. s, g with L(sq5) = G is
Sa,8 = [+ BtIR +

[1]2£ — 3] - £*R]
= [[oz—i—ﬁt] + 3

1
1
[2log(t) — 3] #*| - e7".

Convol-GenTar, at (25alf), solves the Same Prob-

lem. Which method is easier?
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Equidimensional operators

Motiwation. Here, we act on functions of t. Equidimen-
sional operators are designed to annihilate a power of
t; some t*, where r need not be an integer. Indeed, if

we only consider values ¢>0, then we can allow r to

be complex, recalling that #* L exp(log(t) -r). O

Defn. An “equidimensional operator of order 2”
[EquiDim-Op| has form

E(y) =

where A_(,B,C' € C and y=y(t). [See §4.7 in NSS9,

where such operators are called Cauchy-Euler operators as

At*y" + Bty + Cy

well as equidimensional.]
A Generalized EquiDim-Op [abbrev.
EquiDim-Op| has form

Ely) =

for some A € C.
For a number r € C, observe that

Gen-

At/\+2y// + BtAJrly/ + CtAy

E(t") = AtA2.r[r — 1)t72
27as + Bthtlpr—l 4 o gr
= tA+r . Q(r) )

where q(Z) = Az? + [B —A]Z + C ]

is the “characteristic polynomial of E”.

The quadratic formula gives the roots, r1 and rz, of g. Hence
E sends t"* and ¢*2 to the zero-fnc. If Discr(q) = 0, i.e r1 = 12,
then we can apply the below Reduction-of-order method. This
will give us a fnc s() which is L.I of £ s.t E(s) = 0.

Roo algorithm [Reduction of order]

Consider coefficient-functions C; = C(t), defining
linear Diff-Op
L(p) = ¢" + C1¢' + Cop.

Suppose we have a fnc Y, which is not identically-zero,
satisfying L(Y') = 0.

Given a target fnc G, we seek a fnc s which is
linearly-indep of Y, s.t L(s) =G . This s will have
for Y-f for an f we will compute. We start by com-
puting /= f’ by means of FOLDE.

Roo algorithm
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Step Rool.
then let

= [Ch,

Compute an anti-deriv B

M = Y?. P

Roo2.
h ! note 1 -B1

If G is identically-zero, then set

M- y?©
Otherwise, define

h = ! MG note 1 '/[Y-eBl-G].

vy T ou
Roo3. Compute an anti-derivative

= /h. Finally, define s = Y-f.

Why does the Roo alg. work? ~ We solve for a fnc f
such that s:=Y-f satisfies L(s) = G. Let h := f.
Differentiating

s =Y-f produces
S/ — Y/f + Yf/
2 Y'f+Yh. Thus
S” :Y//f+ylf/+ylh+Yh/
=Y"f + [V +2Y'h].

Thus L(s) I o' + 15’ + Cos equals

L(Y)-f + [YK +2Y'h] + C1V ]

e =0 yi 4 2Y + C1Y .
Consequently, h satisfies Yh' + [2Y' + C1Y]h = G.
Dividing by Y yields FOLDE

FOLDE coeff-fnc
—_—f

27b: W+ 2]+ i)k =

FOLDE target-fnc
=

G

Y

Note Y- = [log(Y)]', s0 2¥" = [2log(Y)]’ = [log(Y?)]"
Thus the FOLDE anti-deriv of the coeff-fnc is

B = /[2Y7’ + 1] = log(Y?) + B, .
Hence the FOLDE multiplier-fnc is
M = Y?. &b,

The last FOLDE-step gives the two formulas
in Roo2. ¢
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EquidierRoo Example 1. For t>07 let’s find Measure tw_ice7 cut once.

—Proverb

the gen.soln p=¢(t) of DE
27c: t2p" — 5ty +9p = 0.

Operator E(y) = t%y” — 5ty + 9y is equidimen-
sional. Its char-poly is, from (27a)),

2Z24[5-1z+9 = 22-62+9 = [z 3%
Hence Y (t) := 3 is sent to 0 by E(). Checking:
E(t3) = t2-[3-2t] — 5t-[3t?] + 9-[t7]

note

= 3t3.2 -5+ 3] == 0.

Rool. We make a monic version of the operator
by defining L = [1/t?]-E, ie

So exp(B(t)) equals t~°. Thus

M(t) = [t]]2-t° = t.

Roo2. Our target fnc is the zero-fnc, so we simply

compute
h(t) = 1/M(t) = 1/t.

Roo3. Antidifferentiating gives [ := [h = log.
Consequently, the theory tells us that

27d:  s(t) = f(t)- [V (£)] 22 log(t) - ¢

is sent to the zero-fnc by L [hence also by E|, and is L.I
of Y (t)=t*. Did you check?
Checking: Let G :=log(t). Then

s = 9t3. Thus
s = %ts + G- 3t = 1+ 39]t2, SO
s’ = % 82+ [1+43G]-2t = [5 + 69]t. Summing
9s = [0 + 99 with
-bts' = [—5 = 159] 3 and with
t2s" = [5 + 69t

is the defn of E(s). The sum is indeed zero.
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Roo Example 2. For ¢ = ¢(z), define operator

Llp) =

Given that L(tan) = 0, we seek the general solution
9= g(z) to

¢" — tan(x)y’ — [1+ tan(z)?]e.

28a: L(g) = 1.
As tan() blows up at &7, we restrict to = € (-5, J).
Note that cos() is is positive on (-3, T).
Sanity check. Define abbreviations
C = cos(z), S = sin(z), T = tan(z) 2= %

Let’s verify that what we were given is true. Note

T = 14+ T?%, hence T = 2T[1+ T?].

Thus L(T) equals

2T[1+T? — T +T% — [1+T?T,

which is indeed zero. U

Gen. ZeroTar soln. To find a fnc s = s(z) st. L(s) =0
and pair {T, s} is L.I (linearly indep), the Roo method
has us compute a fnc f so that s := T-f achieves these
goals. This f:= [h for an h that we now compute.

Computing h. Using Roo notation, C; =-T and
Co=—[1+T?. Note B; := [C; = logoC. Con-
sequently, e®! = expo logoC 2 C. Our FOLDE
multiplier is thus M = T?.ef1 = T2.C = S8?/C.

In the ZeroTar case, Roo says

h = 1/M = C/S2.
F¥ =18,

Thus

Roo says to define s = T-f fote -1/C. But since
the target is zero, and L is linear, we may freely mul-
tiply by a non-zero constant. Hence, we shall define s

as s = 1/C.
CHECK: To verify that s is annihilated by L(), note

s = %T. Thus,
§ — [éT] T + é[1+T2] = é[l—l—QTZ]. So,
ug::é[u+2ﬁ]—TE“—U+T%ﬂ“m0,

Roo algorithm
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as predicted by the theory. ¢

Remark. To solve L(g) = 1 we could start with either
ZeroTar soln; T or é But since we have already
computed the multiplier-fnc for T, we will use T. [J

Solving L(g) = 1. Recall M = T?.C, when using
ZeroTar T. Roo asserts that our h is

1 MG

o= —. |22
M) T’

where, now, G = 1 is our target function. The inte-
grand is T-e#1.G = T-C-1 =S. Hence

1 1 -1
h= 3 [8= me A=

f(a:) d=ef /xh = % + x. Consequently,
g(z) = T-f(z) = 1 + [2T].

It is tedious, but easy, to verify L(1 + 2T) = 1. So

Thus,

28b:  go () =1 + ztan(z)] + atan(z) +
is the gen.soln to L(g, 3) = 1. ¢
Other methods. We solved DE (28a)) via Roo + Roo.

Alternatively, we could have used Roo + VoP or algo-
rithm Roo + Convol-GenTar. O

Tarantulas tarantulas

Everybody loves tarantulas

If there’s just fuzz where your hamster was
It’s probably because of tarantulas

~chorus of |“The Tarantula Song” —Bryant Oden
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Stopped at a traffic light, the car in front has vanity

What color is the car?

Operators

We already know operators D and I=D°. Use 0 for
the zero-operator. 1.e, 0(y) = 0 [the zero-fnc| for every
fnc y.

Translation. Use T for the family of translation
operators. For a number a € C, operator T, acts on
an arbitrary fnc ¢ to produce a new function, which
is  but translated [to the “right’| by a. E.g,
Ts(p) = [t—e(t-5)].
[So Ty = 1.] For instance, we know that cos() and sin()
are translates of each other. Specifically
Trjo(cos) = sin and T_p/9(sin) = cos .
A [complex] number £ is “a period of f” if Tz(f) = f.
E.g, Tor(cos) = cos. And Tori(exp) = exp.

Multiply-operator. Use M for the family of mul-
tiply operators. So My multiplies its argument by
[the constant fnc| 5, e.g M5 (y) = by, i.e M5 = 51. More
generally, for a function f,let My (y) := f-y. That is

abbrev.

My ()] (1) = f(t)y(t) ft)y.
By slight abuse of notation, we can also use an ex-
pression as a subscript, e.g, M2 (y) means t?y; well,

actually, the function [t — t?y(t)].

29.1: Lemma.
Also:

Easily, MO = 0 and M1 =1= To.

it Each T, is invertible, and [Ty]™ = T-,.

itz When f is no-where zero, then My is invertible,
with inverse My ;. O

Operators

i

Prof. JLF King

Commutation relations. Boldface symbols

D, I, 0, T and M-

denote operators with fixed meanings. We’ll use san-
serif letters L,P,Q, U,V for operator-variables; vari-
ables that we can assign operators to. Make the con-
vention that, e.g, VP means V o P, and V3 means
VoVoV. Hence VO =1.

Use “S” to mean ‘commutes with’.

means that UV = VU.

SoU SV

29.2: Op-commutation lemma. Here o, € C, and f,g
are functions.

a: Translation-ops are linear and commute with each
other. Indeed, TgT, = Tgrq = T Tps.

b: Multiply-ops are linear and commute with each
other. Specifically, MMy = My., = M M;.

c: Each translation-op commutes with D.

d: Operator My commutes with D IFF g is constant.
The general commutation relation is

DM, =
D M,

MQ' + [Mg D],
I + [M;D].

E.g,

e: Operator My commutes with Tg IFF (3 is a pe-
riod of f. The commutation relation |written with

composition symbol o, for clarity] is

TBOMf = MTﬁ(f)OT,B <>

Proof of (c). Exercise. Use the Chain rule. ¢

Pf of (). Well, DM,(y) = D(g-y) = ¢’y + gy, which
equals My (y)+[MyD](y), i.e, [Mg/ + M, D]} (y).4

Pf of . Let fg :== Tg(f) and, for y an arbitrary fnc,
let Ys = Tg(y). So MTB(f) = Mf,a' Thus

x: My, Ts(y) = fays = Tp(fy) = TsMy(y),

yielding the stated commutation relation.

NOW, if MgSTf then Mng = TBM}C = MfBTB’
by (*). Evaluating at the constant function 1 shows
that My, (1) = My(1). Consequently fs = f. ¢

Filename: Problems/Analysis/Calculus/diffq-algorithms.latex



Prof. JLF King Operators

Ezample. Numerical expressions can be simplified [e.g
7+ 1 equals 8], as can fnc expresions [e.g cos? +sin? equals
the constant-fnc 12|, and so too can operator expressions.
For example, the above lemma allows this

by (29.2d)

M;DM,;,D 2Z3 o, 4+ M, D]D
by (29.2b
b B N D + Msa,D?.

Another: Note that

b;
Tﬂ'/2 Meos Y_@ MTW/z(COS) T‘rr/2 = Miin T7r/2'

Hence
Tr/a Meos Tarjo = Mgin Tor . O
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Matrix exponential

Fix posint N and let MAT denote the set of NxN ma-
trices. Use 0, € MAT for the zero-matrix and

identity-matrix. For M € MAT, define
o0

eM — Z[%Mk]

k=0

x: exp(M) =

30.1: MiniChallenge: MatrixEzp by hand. Fix an

a € C and set S:= {(g ((ﬂ Compute € and e5. [

Soln. Let’s do this for ¢ := 5; we’ll see the pattern.
Always, S is the identity matrix [1 0}. And for

0 1
k € Z4, easily ok _ 5k gk
0 0

Writing S° in the same pattern, then,

0 l50 50

0 O 0 1

+ C, where C:= [0 11 .
Applying defn (%), our e*> equals
k k
1.0 © 3 g |57 D
m't'c+zkzom't '[O 01

. tkgk ZZOZO
0

|~

- thgk

o

This > 72, %t’%k is just the Taylor series of e, so

etS _ 0 -1 N e5t e5t réte e5t e5t -1 ‘
0 1 0 O 0 1
Nothing was special about the complex number 5,
so for our original S we conclude that

at at
.S | « __|e e™ —1
30.2: e” = exp(t {0 OD = [O 1 ]

Plugging in t=1 gives

. s _ a o]\ _ | e*—1
30.3: e = exp([o 0]) = [0 1 ]

By the way, at t=0, note that (30.2]) is the identity

matrix. Coincidence? Space aliens? I think not! ¢

Matrix exponential

Prof. JLF King

Defn.  An NxN matrix M is nilpotent if 3k € 7,

such that . The smallest such k is the

“nilpotency degree of M” written NilDeg(M). [Thus
“NilDeg(M) = oo” means M is not nilpotent.] Always:

The nilpotency degree of a nilpotent
NxN matrix is <N.

Matrices A,B € MAT are similar@ [to each other]
if there emistan invertible U € MAT such that

ertfa this A~B.
relation as

B = UAU™.

Easily, relation ~ is an equivalence relation.

This A is diagonalizable if A is similar to some
diagonal matrix.

Read A = B as “A commutes with B” i.e, AB = BA.[J

31: MatExp theorem. Series (%) always converges.
Moreover, for scalars .3 and A,B,R,D € MAT:

a
a: Exp() of a diagonal matrix D = [ }
yields diagonal matrix an
qu ea1t
eD:[ ] etD:[ ]
eaN eOéNt
Thus e =1.
b: If matrices A < B, then e B =¢”.eB.
Hence, every eR is invertible, and [eR]f1 =eR,

Also, elothIR — gaR . ofR

c: For R arbitrary and U invertible, let D := U™ RU;
so R:=UDU™. Then [eUDU1 = UeP U’l}. Le,
[Conjugation by U| commutes-with exp().

From above, tR = U-tD-U!, since scalars com-
mute with matrices, and thus

etR — U 'etD . U*l
d: Function [t — e'R| is differentiable, and

delR = RelR = RR. O

“14%We also say “A and B are conjugate to each other”, or
“matrix U conjugates A to B.” In general, U is not unique;

there could be an invertible W #U s.t WAW™ = B = UAU™..
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32.1: MiniChallenge: CEX to eAtB = efeB.
Find 2x2 matrices A and B which form a counterex-

ample (abbrev. CEX) to assertion eATB = efeB. O

Soln.  MatExp (31b]) tells us to search among non-
commuting pairs; that is, AB # BA. About the sim-
plest non-commuting pair there is, is

1 0 0 1
[ s [0

Is tﬁlS pair a CEX ?! (This 18 S0 e:rcitmg!)

Since A is a diagonal matrix, our (31k) says
A el 0 e 0
e = 0 = 0
0 e 01
Our B has nilpotency-degree 2 [i.e B? = 02x2], so
1 1
e - ]
Before even computing eA*B, note that

32.3: B = le € #* [8 ﬂ = eB. et

0 1
Since A+B does equal B+A, this implies that —in one
order or the other— we indeed have a CEX.
To find out which, we compute €%, where the sum

S = A+B 2 |1 ().

32.2:

B = &I—F%B =

0 0

Our previous work, (30.3)), says that exponential

1 1
. S e e —1 note |€ e—1
32.4: e’ = lo 1 ] = [0 1 ] .

So: No two of e”eB, eBel| B are equal. ¢

33: Lemma. Consider a mystery vector-valued function

ml(t)
Z(t) = 96:2(1‘/)
Q;N(t)
Suppose Z satisfies Z/ = R-Z, where R is an NxN
matrix of numbers. Then each column, Y, of e'R sat-
isfies Y/ = R-Y. Hence the soln to 7' = RZ is

33a: Z(t) = €®.Z(0). O

Matrix exponential
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34.1: Diagonalizable Example. Unknown fncs x=x(t)
and y=y(t) satisfy
¥ = -5z + 9y and

34.2: ,
y = —6x+ 10y.

So the coeff-matrix is R := {:2 13}. Magic [or a nice
guy| produces a conjugating matrix U := [g ﬂ s.t

— ! note |1 0
D= U RU—{O 4}

is a diagonal matrix["T7| Hence &R = UeP U™, Le,
t
R = lg 24 Ut

note 3el — 2ett
T 2et — 2e*

34.3:
-3¢l + 3t

-2¢et + 3t

Our general soln, parameterized by numbers o and £,

D maglt) = B —2Ma + [3e'+3¢¥] 8,
Yas(t) = [2¢' —2e"a + [2e" +3e") 3.
As they must, a = z(0) and 8 = y(0). 0

35.1: Nilpotent Ezample. UFs z = z(t) and y = y(¢)
satisfy

o8

/
€T =]

/

2r — y and
= 4z — 2y.

Hence the coeff-matrix is R := [Z :ﬂ Note R? = 0.

[I.e, R has nilpotency-degree 2.] Thus

note

35.3: R = I 4 tR 2

1+ 2¢ -t
a1 — 2t|°

Therefore, the soln to (35.2)) is

14+ 2t -t| |z(0)
41 — 24 ' Lj(())‘| -

“>Note that U™ = [ﬁ; 7;}
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Defn. The characteristic polynomial of an NxN
matrix M is

36.1: pm(2) = Det(M — zI)

And the trace of M is

36.2: Trace(M) :=

{Sum of elements on}
main diagonal of M | *

Consider Q := [2 Then Trace(Q) = [a+ d].

b
o
And Q — oI = t“z

b
d— Z} . Hence

pq(2) = 22 — [a+d]z + [ad — bc]

36.3: Hote
== 22 — Trace(Q)-z + Det(Q).

For a general NxN matrix M: If we write
pm(2) = FIN2Y + Qa2 4+ + Qo

then Q¢ = Det(M) and Qy_; = [-1]¥ "1 Trace(M).
Le,

36.4:

pm(z) = V2N + [V Trace(M)zV

4+ Qn 22V 2 + ...+ Q12 + Det(M).

Over C, our char-poly factors as
pm(z) = [V [z-a1] - [z -] - [2—an].

This list aq, 9, ...,ay of (possibly complex) numbers
is the list of eigenvalues of M. If M is diagonalizable,

then
aq
M ~ .
aN

Moreover, the only diagonal matrices to which M is
similar are those whose main diagonal is some permu-
tation of aq,...,an. [l

36.5: Distinct-roots Thm. Suppose that the char-poly
pr(2) = [z B1] [z~ Be] - [z = Bw] LY

of NxN matrix R has N distinct (possibly complex)
roots. fBi,..., BN Then R is indeed simila to

diagonal matrix {ﬂl gl

“16Recall, these are the eigenvalues of matrix R.
V17 Alas, it may be difficult to compute a conjugating matrix.

Matrix exponential
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zN(t)
satisfying DE 7' = RZ, each x;(t) is simply a linear-
combination of exponentials et ... efnt.
Letting m denote the maximum of the real-parts
of the eigenvalues, it follows that no x;(t) can grow
faster than [constant times e™!|, as t ~oo. O

Il(t)
In particular, for column-vector Z(t):= [: ]

36.6: Example. Consider X'(t) = B-X(t), where,

115 207 -4
B = =72 -130 34
24 45 13

The char-poly of B is
pp(z) = —[z+5]-[22-32+8].

The discriminant of quadratic ¢(z) := 22 — 3z + 8 is
Discr(g) = [-3]? — 4-1-8 = -23. The roots of q are thus

S = [3+V23i]/2 and S 22 [3—/23i]/2.

So pg(z) = —[z —-5][z — S][z — 5] in std form.
Since the three pg-roots are distinct, the Distinct-
roots thm tell us that B is similar to diagonal matrix

{_5 ’ s}

So each entry in X(t) is a lin-comb of e 5% 5. The
max of the real-parts of -5, 5,5 is % As t oo, then,
no soln grows faster than Const - exp(3t). O
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Recoding: Exchanging dimension for DE-order
For numbers €, € C and U.F z=x(t),

V) — Zk . [Qk x(k)]

is an N*-order DE in 1-dim’al space. Define col-vec

37az:

x(t)
' (t)

Z(t) = : )
N2
QJ(N_l) (t)

which is Nx1. We can restate (37a) as

37b: Z' = R-Z, where R is NxN matrix" =

0 1 T
0 1
0 1
37¢c: R =
0 1
Q0 21 Qo Qn_2 Oy 1]

[The unshown entries are zero. The cyan entries form the main

diagonal.|] The solution to (37ali37h)) is

Z(t) = e"R.Z(0) = exp(t-R) - Z(0).

But of course, we can solve (37a)) with CCLDE, and
do not need the matrix-exp. Here is a more interesting
example:

1 . . . . .
V18Gee “Companion matrix” in Wikipedia.

Recoding: Exchanging dimension for DE-order
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37d: Recoding Example.
y=y(t) related by DEs

Imagine U.Fs z=xz(t) and

—3x+4y = 0,
y +52" +62'+7x -8y = 0.

" — 22" and

:

We can cheerfully recode this system as a 15%-order
DE in 3+1 = 4 dim’al space, with U.F Z=Z(t), as
follows.

Y
[B70f: Note Z' = R-Z, where Z := i, and
8§ -7 6 -5 T
0 0 1 0
37cff R = 00 0 1
-4 3 -0 2
Hence the soln to ( ,-f is Z(t) = e'R.Z(0).

In this instance, "R is not so easy to compute, but
it can be polynomially approximated by, say,

ZZO:O [thk/k!] ’

with easily computable error-bounds. O

exp(t-R) =~

Aside. Into WolframAlpha, typing

{{s,-7,-6,-5},{0,0,1,0},{0,0,0,1},{-4,3,-0,2}}

i.e {{s8, -7, -6, -5},
{0, 0, 1, 0},
{0, 0, 0, 1},
{-4, 3, -0, 2}}
indicates that pr() has two real eigenvalues and a complex-

conjugate pair of eigenvalues. As t oo, the growth rate of
every soln is absolute-bnded by Const—l—Consb@Xp(lO.? . t) .0
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MacFOLDE

Let’s generalize.

38: Product-rule Lemma. Suppose A(t) is a JxK ma-
trix, and B(t) is a KxN matrix, each differentiable
fnes. Then JxN matrix P(t) := A(t) - B(t) is differen-
tiable, and

P(t) = [N(O)B(O)] + [ABB(®]. 0

N.B. le, P = [A'B] + [AB’]. Matrix-mult is not
commutative, so it is likely that P fails to equal, e.g,
[BA'] + [AB']. O

39.1: Warning! Consider the matrix-valued fnc,

B(t) = B 2011, so B'(t) = [8 (2]]
Observe that
B(1)-B'(t) = [g g} vet B/(t)-B(t) = [g 8}

Consequently, B/(t) does not commute with B(¢). In
symbols, B’ £ B. O

39.2: Lemma.  Consider a differentiable matrix-val-
ued function B(t) where, for each t, our B(t) is an
NxN matrix. At each time t, suppose B'(t) = B(t).
Then

4Bl — (1) B —

Ge = BO . B/(1). O

With C a matrix of numbers, and B(t) := C - ¢, note
that B/(t) = C. Hence B/(t) does commute with B(t).

This “constant coefficient” case is the case that in-
terests us, so I call the following the Matriz-CC-
FOLDE algorithm, abbreviated MacFOLDE, even
though the algorithm does apply whenever, for each t,
matrix B/(¢) commutes with B(t).

MacFOLDE

Prof. JLF King

Step MFOLO. We have UF Z=Z(t) which is a
time-varying Nx1 matrix. Write the DE in the form
dz

40a: — + [C-Z] =

where C is an NxN matrix of numbers, and G(¢) is
an Nx1 time-varying fnc. An antiderivative of C is

B(t) :=t-C.
Define multiplier function
40b: M(t) = eB(H) Zote otC

Observe that M'(t) = M(t) - C. By (38)), then,

M(t)-2]" = [M(t)-C-Z] + [M(t) - Z']
ok = M(?) - {[C-Z] == Z/}
= M(t)-G(¢).
Step MFOL 1. Define the column-vector function
P(t) := M(t)-G(t), then compute
t
Q) = / P().
(631

For an arbitrary column-vec o = . | of numbers,
[where M=M(t), Z=Z(t), Q=Q(t)] ay

M-Z = & +Q.

-1 note —

Multiplying by M e*C, and putting the ¢ back

in the notation, we have that

A0c: Zg(t) = €'C. @ + Q)
—— ~—
Nx1 NxN Nx1 Nx1

And if we arrange that Q(0) = ﬁ, by defining

Qt) = /OtP()7 then
40d:  Z(t) = e .[Z(0) + Q(t)
—~— ~—~
Nx1 NxN Nx1 Nx1

-tC

Aside: Since C is constant, our e™* is simply M(-t).
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MacFOLDE

41.1: Rewisiting (35.1)), from P. Imagine unknown
fncs x = x(t) and y = y(t) satisfying system

/

41.2:

r = 2z -y and

y = dz —2y + 2.

.  [x(t
Setting Z(t) := L,(t)
we can rewrite (41.2)) as

| and C:= [ ] and G(1) = [3],

2

2 Z +CZ = G.

With this Z and C, our (35.2)) example from page

was Z' + CZ = [g}
Thus

As before, NilDeg(C) = 2.

1 — 2t t
e = —4t1+2t]’

since C is negative the R from (35.1). Computing,

. -2t
P = MG = |

Integrating

t] [0] _ 2t
1+ 2t 2]  |2+4t]°

t 2
_ _ t*] mote ¢
Q= /OP N [2t+2t2} T t[2+2t}'

In preparation for (40d)),

etC = M(-t)
—_——~

product e?¢-1Q equals

1+ 2t -t. t note -t
4t | 1 — 2t 24 2¢ T 2—2t| "

Thus

With initial condition x(0) = 0 = y(0), then,
z(t) = 12, and
y(t) = 2t —2t%.

So the gen.soln to (@1.2) is e ¢ Bgm +e7Q, ie

z(t) = [1+2t]-2(0) — t-y(0) —t*, and

s y(t) = 4t-2(0) + [1 —2t]-y(0) + [2t — 2t7].
Compare this with [B5.1t), on P53| O
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§A  Appendix: Misc examples

These may be cited from anywhere.

42: Poly-coeffs yet Jsoln not C?. Find a non-C?2 func-
tion y = y(¢) that, for t € R, satisfies

where

vy +y° = G,

42a: A .
Gt) =t =2t +2t—1.

AsIDE: This DE has form P-y'y + Q-y> = G. The coeff-fncs
P.,Q and target-fnc G are C°°; indeed, polynomials; and P,Q
are constant. Nonetheless, this DE admits a soln that is not

even twice-differentiable. O

Soln. Easy Scan: The DiffOp is invariant under
negation; if f is a soln, then so is -f.

Could a degree-IN poly satisfy ? Well, the 32
term forces N > 2. Thus Deg(y’-y) = 2N — 1 and
Deg(y?) = 2N, so N must be 2. The method of UN-
DETERMINED COEFFS applies and we find that

42b: ft) = [t—1J?

satisfies (12a]). Thus -[t — 1]? is also a soln.

IDEA: The 0™ and 1% derivatives of these solns
agree at t=1, which are the only derivatives used by
the DiffOp. So: At t=1, we can stitch these solns
together. This gives this new soln:

. =12 it > 1 note
fi wlt) = {[t —1? ift< 1} -

Its derivative,

y@)=2-h—1

t—1) -1,

)

fails to be differentiable at t=1. So (}) is not twice-
differentiable, hence not C2.
Let’s check that (1) satisfies (42a). Computing,

vy = 2t—173 = 283 —6t2+6t—2,

v = [t—1* = tt—ad 62 —4at+1.
Adding these together produces (42a)). ¢

42c: N.B:. Our three fncs, (1) and £[t—1]?, each solve
first-order DE ({2a]), and: Their 0 and 1% deriva-
tives agree at t=1. So even possession of two initial

A APPENDIX: MISC EXAMPLES

Prof. JLF King

conditions to a first-order DE, need not be sufficient
to uniquely specify a soln.
ASIDE: Our G(t) factors as [t — 1] - [t + 1]. O

A FLEA AND A FLY IN A FLUE

Were imprisoned, so what could they do?
Said the fly, “let us flee!”

Said the flea, “let us fly!”

So they flew through a flaw in the flue.

—Ogden Nash
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§B  Binomial coeffs & the Product rule

For a natnum n, use “n!” to mean “n factorial; the
product of all posints <n. So 3!=3-2-1=06 and
5I'=120. Also 0! =1 =10

For natnum B and arb. complex number «, define

Rising Fetrl: [o1B] =a[a+1]-[a+2] - [a+[B-1],

Falling Fetrl: [o|B] =a[a—1]-[a—2]- - [a—[B-1]].

E.g, [BIB] = B! = [11B]. Two further examples,

[2]4] :;é.g.’? and[113]=1-0--1=0.

In particular, for n € N: If B > n then [n | B = 0.

We pronouce [5 | B as “5 falling-factorial B”.

The binomial coefficient (5), read
“7 choose 3", means the number of ways of choosing
3 objects from T distinguishable objects. Fmphasising
putting 3 objects in our left pocket and the remaining
4 in our right, we may write the coeff as (3?4). [Read
as “7 choose 3—(7011111121—4.”] Evidently

N N\ withk:=N—; ( N\ N [N]j]
o\ g k) gtk gt

Note ((7)> = <o,77) =1

says

Binomial.

Finally, the Binomial theorem

£: [z—i—y]N =

Z (]Nk) -yt

j+k=N

where (j, k) ranges over all ordered pairs of natural
numbers with sum N.

For natnum N, binomials satisfy this addition law:

Pick last object.

ISR EN

Extending this to all BEZ forces:

NY 0
B - )
Ny [NJB]

Case B>N is automatic in formula (g

Avoid last object.

when B > N
or B negative.

Calculus applications
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Multinomial. In general, for natural numbers
N==Fk +...+kp, the multinomial coefficient
(A:|.A'2'.\I.H.A-p) is the number of ways of partitioning
N objects, by putting ki objects in pocket-one, ko
objects in pocket-two, ...putting kp objects in the
P pocket. Easily

N
B (kl,kQ,...

Unsurprisingly, [z1+. . .4+xp

N!
kp) kil kol e Ekp!
|N equals the sum of terms

) N ko k k
££: (kl,...,kp) sz pP

taken over all natnum-tuples k=(ky, . . ., kp) that sum
to N. [That is multinomial analog of the Binomial Thm.]

Define the sum Sy := k1 +ko+...+ky. Then
multinomial LhS(}) equals this product of binomials:

(2)(“ ;251)('\' ;352> L ('\' —ka—1>.

[The last term is (if) note 1]

Calculus applications

Bi/Multi-nomials appear in differentiation formulas.

43a: Product Rule. For natnum N, and N-times
differentiable functions f and g:

%t [Foa®™ = 3 (M)W,

j+k=N

where (j, k) ranges over all ordered pairs of natural
numbers with sum N. O

Eg [fg] @ = £g® 145D gB3) L 6@ @ 4 4B g1 4 @ g
43b: Lemma. For posints N, J, K with J+K = N+1,

¥: (J—Jl\{ x) + (J, %71) = (J}JFI;) O

Proof. The LhS(¥) equals

J . N! + N! K _ [J+K]-N!
J T-1rK! JIK—1]T " K JTKT >
which equals RhS(¥). ¢
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Pf of (43a)). At N=0, our (x) says fg = fg; a tautol-
ogy. Fixing N for which () holds, note [f - g] (N+1)
equals >y (ﬁ) (1) g™ which equals

A B

> QIS+ 3T () fOgY,

j+k=N j+k=N

Letting J := j+1 and K =k, rewrite A as

e A = Z

J+K = N+1,
J>1

( N

SN ) FgE,

Similarly, with K := k41 and J := j, rewrite B as

e B= >

J+K =N+1,
K>1

( N

R A.COPC)

Separating out the K'=0 term from () and the J=0
term from (I), says that A+ B equals

(W) FNHDGO (N fO N+

+ > |G+ R P00

J+K =N+1,
JK>1

Use the lemma, (¥), to rewrite the summand. Thus
A+ B equals

FNHD GO) 4 £0)g(N+1) 4 Z (JJ\E;) - D gE)

J+K = N+1,
JK>1

And this equals (]\.H;}) - @ gk as desired. ¢
jik=N+1 P

Larger product. Given a tuple J = (ji,...,jp) of
natnums, let 1] = j1+---+jp. With N = '|',]7

let (]} ) mean multinomial coeff (jl,jzj,Y --,jp)' Finally,

given a tuple f == (fi1,..., fp) of differentiable fncs,
let £ abbreviate this product of derivatives:

FO) — fl(jl) -f2(j2) o fl(ajp) )

[When tuple J is used this way, it is called a multi—indew.]
43c: Gen. Product Rule. Fix natnum N, posint P, and

N-times differentiable functions, f:=(f1,...,fp).
Then

Calculus applications

Prof. JLF King

Vp: [fl

Proof. Eqn (V}) asserts tautology fl(N) = fl(N), We

proceed by induction on P. Fixing P such that (Vp),
we now establish (Vp4q).

Fix P41 fncs fi,..., fp,g,andlet & := f1 - ... fp.
Then [f1-...-fp-g]" ' is [®-g]""’. By (%), it equals

1 Z (st) ). glk)
s+k=N

where (s, k) ranges over all natnum-pairs with sum N.
Courtesy (Vp), our ®() equals

Z G) : F(J) )

J:+H=s

where J = (j1,...,jp)-

Plugging this in to (x1) gives

2 ¥ | T e 0.

s+k=N"-J:4J =5

But product (st) (3) equals multinomial (].1 ”{\;P -

Renaming k to jpy1, and g to fpyi, writes (x2) as

Z N . f(jl). L pUP) ¢UP41)
i dpe) booab

J1+..+ip+ips1
=N
which indeed is RhS of (Vp41). ¢

Deriv(product). Consider f(t):=3!, g(t):=sin(5t)
and h(t) = e™. The 6*-derivative, [f-g-h](®), is a sum
of terms. What is the coeff of the f”-¢ -h"" term?

Soln. By the generalized product rule, , the
coefficient of f2)¢Mp) ig

6 note 6 4 ) - 6-5 %
2,1,3)  \2/\1/\3) 21 1

Continuing, note:

= [og(3)*-f; g(t) = 5cos(51);

So one summand in the sum forming [f-g-h]®), is

60 -log(3)*-5- 7% - [3" - cos(5t) - e™]. ¢
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§C  Order-3 VoP

CC-VoP Example 2.

44a; s"—s" = tel.

U.F s = s(t) satisfies

A good approach is to define ¢ := s”, solve DE
¥: d—q=0G

where G(t) := te!, then anti-diff twice. First-order
DE (¥) can be solved via FOLDE (17a)), or Poly-
Exp (10al), or Convol-GenTar (25a) P[44} or VoP (26.4).

But for illustration, I'm going to solve the origi-
nal (44a)) by VoP. Set E = e’ and L := D% — D2,

VoP1. The aux.poly of L is [z —0]*[z — 1]. So

{Yo:=1, Yy :=t, Yy:=¢€'} is an L.L triple of fncs
annihilated by L.

VoP2. The Wronskian-matrix of (1,¢,e') is

1 ¢
x M= |0 1 So D = Det(M)=FE.
0 0

o &

We compute fncs hg,h1,he satisfying matrix-eqn
M-H = T, where

ho 0
H:= [h| and T := |0
ha G

Cramer's thm has us examine matrices

0 t FE 1 0 FE 1 ¢ 0
0 1 E|, 0 0 Ef, 0 1 Of.
G 0 FE 0 G E 0 0 &

Their determinants are, respectively,
GE[t — 1], -GFE, G.

Dividing each by the (x)-Wronskian, F, gives

ho = G[t — 1],

h =-G, hy = G/E.

VoP3. Computing anti-derivatives,
¢
fo :/ho :/xew-[x—u dz = e'[t? — 3t + 3], and

t
f1 Z/hl :/—xexdm = et[l—t], and

tmez t2
fo= [ = [ Fa=3.

ORDER-3 VOP
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So a soln to is
s = foYo + fiY1 + foYo
= e'[t? —3t+3]1 + [l — ]t + Loe
= [% -2t + 3] -€.
Recall L(e!) = 0, so L(3e') = 0, and we may thus use

the simpler soln /2
s = ['— — Zt} e
2

to (d4al).

You have to do your own growing no matter how
tall your grandfather was.
—Abraham Lincoln
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§D It’s about Brine, it’s about Space,
it’s about brine moving place to
place...

The |rather cute theme song.

Remark. Brine is saline-water, NaCl in H-0.

The Cascading tanks on the next page is an in-
stance of Compartmental analysis. O
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Compartmental analysis [§3.2-Nss9]

Brine with 1.3% salt flows at rate 4% into a tank

that initially holds 12gal of 2%—8&1'6 brine. The tank

is well-mixed, and brine is flowing out at rate 4%.

We seek a formula for y(¢), the number of lbs of salt
in the tank at time ¢.
Henceforth, use italic boldface 0 to mean Omin.

Compartmental analysis [§3.2-Nss9]

Units:  Symbol: Description:
Ib y(t) Salt in tank @Q¢.
gal  W(t) Water in tank @¢.
U = W(0) Initial amount of water.
Ib/gal S Input salinity.
o(t) Salinity in tank @¢.
D :=0(0) — S Initial Difference in salinities.
gal/min R Input flow-rate of water.
p Output flow-rate of water.
A=R-p Accumulation flow-rate.
L := p—R = -A Loss flow-rate.
min E := U/L Time-to-Empty, when L>O%.
1/min T = % A useful constant.

By definition of the quantities involved

t
45a: W) = U+ At and oft) = y((t))
Our salt-fnc y satisfies DE
Input Output
. () = RS — po(t) SR — £ .
45b:  y'(t) R-S — p-o(t) SR — 7@ y(t).
To match our FOLDE notation, let
G = SR and C(t) = L.
W (t)
So we can re-write (45b) as
y'(t) + Cltyt) = G.

Case: R=p, not zero. Hence C() is the con-
stant T' := % # 0. Step (FO) of FOLDE has us anti-

diff, then exponentiate, to get
45¢: M(t) = e't.

Page 65 of

Step (F1): Anti-diff’ing product G-e'* gives
G note
Qt) = f-ert ot gu - et

For an arb.constant «, then, step (F2) gives

«

45d: efrt 0 [a -+ SU‘ert] = ﬁ + SU.

y(t) =

Divide through by U, and rename § to o [which s, after
all, arbitrary| to get

J(t) = ﬁ—i-S

Solve for «, and re-order, to obtain that

D

S+

45e: O'(t) =

Or use SoV. Alternatively, write ([@5b) as

d
di;‘:(;_py

and separate variables to get

1 —
Only considering when G — I'y > 0, we anti’diff to get

1
— - log(G - T = t+ «,
T - log( v) +

using arb.constant «. Cross-mult then exponentiate to get
G — Ty = 1/e"" T Replace e T by -a [skipping some de-

tails| to get

e
Solve for y=y(t), giving
o G note &
vit) = et = e T80

And this is RhS(45d).

Case: R#p. 1., A #0,s0 W() is not constant.

In this section, we only consider values of t
where W(t) 222U + At is positive.

Step (FO0): Anti-diff C(t) = 53 to get

B(t) = log(U + At),

L
A
using (). Setting 6 := £, then, exponentiating gives

M) = [U + At
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Step (F1): Anti-diff’ing product G-M (¢) hands us

G

APl [U 4+ A%+,

Q) =

Note [Af] + A =R and % = S. Step (F2) has us add
an arb.constant «, then divide by M (t), giving

y) = g [SIU+ AP+ o

Dividing by W (t) 22 [U + At] yields

(07

a(t)zS—Fm»

since § + 1 = &. Dividing top and bottom by [U]R/A,
and solve for a to arrive at this:

D
1+ St]RA”

The A rate is positive:negative as the tank is fill-
ing:draining. When draining, it is convenient to ex-
press this formula in terms of the Loss flow-rate, L,
and time-to-Empty, E. Since % = _TL = %1, our
becomes

45g: O'(t) = S + D-[l

45f: U(t) =

— 14

R/L
5 t]

)

Plausibility. Soln (45f) handles when A # 0. Do
we get our A=0 soln, (45¢€), as a limit when we send A
to zero? Let’s check, by applying L'Hépital’s rule to
the denominator of (45f]). Let

= lim |1 A g R/A .
7 lim 1+ 5t
Since log is continuous, log(.Z) = &, where

o~

13 A
L = [llg})%-log(l + §t)-

Applying L'Hépital's, L'Hépital’s rule

log(l + %A) {1+1%_A} %

lim LHop lim
A0 A A=0 1
t
= 1 JE—
A0 {U i t-A}
t t

U~+[t-0] U

Cascading tanks

Prof. JLF King

Hence Z =R - % Consequently
R,
L = ev't

which indeed equals the denominator of (45€)).

Cascading tanks

Calling the above tank “tank-1", we generalize to have
tank-1 feed into tank-2, which feeds into tank-3 etc.
Each tank has constant input and output flow-rate R.
The amount of water in each tank is U.

Use on(t) for the salt-concentration in tank-N at
time ¢, and use [recall that italic boldface 0 means Omin.]

Dy = on(0) — S. Asa convenience,
D = S-S note 0% and
¥ oo(-) = S,

by imagining that the source is an oco-volume tank-0.

We will show, for N =0,1,2, ..., tha" ]

t
on(t) 2 S + f]:Igt), where
45h: : N
fn(t) = Zk:O%-DN_k-[Ft]’“
N-1
note Zk:O % W - [Ft]k,
since Dy is zero. To illustrate this defn:
oo(t) = S;
D
o1(t) = S + e—rlt;
D't + D
oa(t) = S + %;

3D1[T#]? + DoTt + D3

Gg(t) =S +

oIt ’

1 3 4 1 2

=Dq|I't 5Do|T't D3It D
os(t) =S + & e + 5 Q[Ft] Rt LA L

e
N.B: The numerator in o4(t) is
D[t = Do[lt)* = D3[Tt]! D,4[T't]"
T T T 0l

“1“Note that Deg(fn) < N—1, since Dy is zero.
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For future use, verify this recurrence relation:

/
*%3 [fN—i—l] = F'fN-
Specifically,
¢
kokok fny1(t) = Dnp + F'/szv-

For convenience, we we restate. . .

on(t) = S f]eVI‘(f)7 where
2 N ORI DA 5 s vl
1

Cascading tanks Page 67 Of

Proving (45h)). Product I't is unitless, so fn(t) is
in Ib/gal; hence so is S + [fn(t)/el], as it should be.

Secondly fn(0) = & - Dy_g-1 % Dy. Thus
S+ ﬁ\T()o) equals S+ Dy, which indeed equals on(0),
as it should. What remains, is for us to verify
that satisfies the appropriate DE.

Base case. Note fy(-) = g; - Do 29% 9b . Hence

gal*
oo(+) is the constant-fnc S, as (*) indeed says.

Induction. Fix a natnum N for which (45h
holds. [Here, let y and o denote yy41 and JNH.}
Our (45b)) DE becomes

Input Output
p —— —
y(t) = R-on(t) — R-o(t).

Divide by U, the [constant] amount of water in each
tank, to get FOLDE

45i: () + T:o(t) = Ton(t).

As in ({#5d), FOLDE gives multiplier-fnc M (t) := e''t.
We wish to anti-diff product
Pt) = e'".T.opn(t)
by {5 ST-ef* + T-fn(2).

Courtesy (*x*), we can choose anti-deriv

Qv = [P = st v,

Adding the appropriate salinity constant «, then di-
viding by M (t)=e'*, produces

+ t
ons1(t) = S + QT TNt (;fl{\iﬂ() )

We've already checked that (45h|) gives the correct
value at ¢ = 0, hence o must be Ol—gl. The conclusion

is that formula (45h)) is correct at stage N+1. QED
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§E  Matrix-exp: A bit further §F Intro to Calculus of Variations

I .
46.1: If eheB = eBe” | must A = B? No. The following (In progress.)

example is from Prof. Howard Haber’s [UC Santa Cruz| notes.

T 1

o ol For

CEX.  With 7 € C non-zero, let T::{

k k
_ E_ | T%/T
k=1,2,..., note 1 —{0 0

} . Furthermore,

1 0 _ o __ 70 TO/T __Jo -1/7
{0 J—T —[0 0}+C, WhereC.f{(,) 1}.

Our defn e & S T results in
&e k k
T 1 1 |7 /T
e =qgC+ Zk'[
=0 0 0

- C 4+ {eT eT/T] _ [ET [87—]}/T‘|‘

0 0 0 1

Let T,, be this matrix T when 7 := n-27i and n € 7Z;
since e” = 1, each exp(T,) = I, the identity matrix.

2wi 0

Last step. Matrix A::{ o

}, is diagonal, hence
27i
t
eA — |:e e0:| n——o c I.

With B :=T;, observe A+ B = T,. From above,
then, e® =1 =45, Consequently,

Each of e”eB, AtB and eBe?, equals 1.

Yet A and B do not commute. For with 7 := 271,

AB — [702 g} ” [75 8} — BA. ¢
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Stated theorems are in the TOC.
Applications of theorems may
appear in this index.

®, see convolution

=, approximately equal,

=, identically equal,

[b..c), see interval of integers

[x 1 K], see rising factorial

[z | K], see falling factorial

{Object | Property}, set-builder,

~, i.e: asymptotic to

~, seesimilar matricedhq]

:, has units of. .., e.g Height:: (d),

@, (D, ), w, (p), abstract unit of
distance=length, time, mass,
weight=force, temperature,

(/), no units, dimensionless,

(9), units depend on application,

amplitude, [TT]

Argand plane,
asinh,acosh,
auxiliary polynomial,

binomial coefficient,
birth multiplier

natural, [27]

carrying capacity, [27]

catenary, [33

Cauchy-Euler, see
sional operator

Cesaro equation, [39

CEX, see counterexample

char-poly, seecharacteristic poly-
nomialll

characteristic polynomial, [{9,

circular reasoning, see tautology

cis(), cosine + i-sine,

Completing-the-square, [10]

complex conjugate,

complex plane,

Convol-diff thm,

convolution,

equidimen-

INDEX FOR DIFFYQ

§Index for Diffy(Q

cosh,
counterexample,
CV, fncs with N™-deriv cts,

Det(), determinant of a matrix,
DiffN, N-times diff’able fncs,
D, differentiation operator, [2]
discriminant, [9,

Discr(), see discriminant

Dixon Lanier Merritt, [4§]
Dominated Convergence thm,
doubling time, [2§

DUI thm,

Eggs, 1} 4} [5} 9} 39 [0} [45] 48} BO-
(2 [60} 63} [67]

eigenvalue,
EquiDim-Op, [£9
equidimensional operator, [{9]
exact DE,
exact-ifying fnc, 24]
exp(z)=e*, exponential fnc,
exponential

complex,

matrix,

falling factorial,
frequency,

FTC = Fund. Thm of Calculus,
Fund. thm of Algebra , [10]

Gen-EquiDim-Op, [£9
Generalized EquiDim-Op, [{9
generation time, see doubling time

homogeneous function, [7
hyperbolic sinh,cosh,

I, identity operator,

identity function,

Im(w), imaginary part of weC,
implicit solution, [2

interval of integers,

IVP, i.e: Initial-Value Problem

Page 69 of

IVT = Intermediate-Value Thm,

L'Hépital’s rule , [66]

L.I, see linearly-independent

LhS(), lefthand side of. ..,

Leibniz corollary,

Lewis Carroll, see Volkswagen

lim(eriCk),

linear mapping,

linear-comb, lin-comb, i.e: linear-
combination

linearly-independent set,

logarithm,

Logistic model,

Maclaurin polynomial,
Malthusian model, [27
Matrices
diagonalizable,
nilpotent,
similar,
trace, [56]
Wronskian, [£6]
MLS, see Lewis Carroll
multi-index,
multinomial coefficient,

multiply operators,

nilpotency degree,
nilpotent, see Matrices

NilDeg(M),

phase-shift,
poly, i.e: polynomial
PolyExp, [1} [15]
PolyExp-sum,
polynomial
auxiliary, [13]
discriminant, [J]
Maclaurin, [42]
Power-of-x Lemma,
Product Rule thm,
Proof
circular, see circular reasoning
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Re(w), real part of weC,
recoding a system of DEs, [57]
restricted sinh,cosh,
RhS(), righthand side of.. .,

rising factorial, [1}

Same-freq Lemma,
Same-span Lemma,
scalar,

scale-invariant function, [7
similar matrices,

sinh,

span of a set of vectors,
suspension bridge, [34]

tarGet fnc,
tautology, see Proof, circular
Theorems
Convol-diff,
Dominated Convergence,
DUI,
Fund. thm of Algebra,
L'Hépital’s rule,
Leibniz,
Power-of-z,
Product Rule, [61]
Same-freq,
Same-span,
trace of a matrix,
translation operators,

vector space, [17]
Volkswagen, [52]

VS, see vector space

Whewell equation,
Wronskian, see Matrices

zero-operator,
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