

Algorithms for solving some differential equations [v.8]

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/teaching.html>
 15 March, 2023 (at 21:20)

- ✓ Quiz S: Wedn., 03Feb. 2021
- ✓ Quiz T: Wedn., 17Feb.
- ✓ Quiz U: Wedn., 03Mar.
- ✓ Quiz V: Wedn., 17Mar.
- ✓ Quiz W: Wedn., 31Mar.
- Quiz X: Tuesday, 20Apr.

What does this mean?

stand took to world.
 I you throw the

Number Sets. Expression $k \in \mathbb{N}$ [read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”] means that k is a natural number; a **natnum**. Expression $\mathbb{N} \ni k$ [read as “ \mathbb{N} owns k ”] is a synonym for $k \in \mathbb{N}$. \mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the **posints**, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the **negints**.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive rationals and \mathbb{Q}_- for the negative rationals.

\mathbb{R} = reals. The **posreals** \mathbb{R}_+ and the **negreals** \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the **complexes**.

For $\omega \in \mathbb{C}$, let “ $\omega > 5$ ” mean “ ω is real and $\omega > 5$ ”. [Use the same convention for $\geq, <, \leq$, and also if 5 is replaced by any real number.]

Use $\mathbb{R} = [-\infty, +\infty] := \{-\infty\} \cup \mathbb{R} \cup \{+\infty\}$, the **extended reals**.

An “**interval of integers**” $[b..c]$ means the intersection $[b, c] \cap \mathbb{Z}$; ditto for open and closed intervals. So $[e..2\pi] = \{3, 4, 5, 6\} = [3..6] = (2..6]$. We allow b and c to be $\pm\infty$; so $(-\infty..-1]$ is \mathbb{Z}_- . And $[-\infty..-1]$, is $\{-\infty\} \cup \mathbb{Z}_-$.

Floor function: $\lfloor \pi \rfloor = 3$, $\lfloor -\pi \rfloor = -4$. Ceiling fnc: $\lceil \pi \rceil = 4$. Absolute value: $|-6| = 6 = |6|$ and $|-5 + 2i| = \sqrt{29}$.

Mathematical objects. HI Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr: ‘expression’. Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). trnfn: ‘transformation’. cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-Variable’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’. RoC: ‘Radius of Convergence’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand side’ of an eqn or inequality. LhS: ‘lefthand side’. Sqrt or Sqroot: ‘square-root’, e.g., “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’ as in “a fixed-pt of a map”.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’.

The **logarithm** function, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is **exp()**.

For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$.

PolyExp: ‘*Polynomial-times-exponential*’, e.g, $[3 + t^2] \cdot e^{4t}$. **PolyExp-sum:** ‘*Sum of polyexps*’. E.g, $f(t) := 3te^{2t} + [t^2] \cdot e^t$ is a polyexp-sum.

Prefix **nt-** means ‘*non-trivial*’. E.g “a nt-soln to $f' = 5f$ is $f(t) := e^{5t}$; a *trivial* soln is $f \equiv 0$.”

Phrases. WLOG: ‘*Without loss of generality*’. IFF: ‘*if and only if*’. TFAE: ‘*The following are equivalent*’. ITOf: ‘*In Terms Of*’. OTForm: ‘*of the form*’. FTSOC: ‘*For the sake of contradiction*’. And **⌘** = “*Contradiction*”.

IST: ‘*It Suffices To*’, as in ISTShow, ISTExhibit.

Use w.r.t: ‘*with respect to*’ and **st:** ‘*such that*’.

Latin: e.g: *exempli gratia*, ‘*for example*’. i.e: *id est*, ‘*that is*’. N.B: *Nota bene*, ‘*Note well*’. inter alia: ‘*among other things*’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Factorial. Def: $n! := n \cdot [n-1] \cdot [n-2] \cdots 2 \cdot 1$; so $0! = 1$.

Rising Fctrl: $\llbracket x \uparrow K \rrbracket := x \cdot [x+1] \cdot [x+2] \cdots [x+[K-1]]$,

Falling Fctrl: $\llbracket x \downarrow K \rrbracket := x \cdot [x-1] \cdot [x-2] \cdots [x-[K-1]]$, for natnum K and $x \in \mathbb{C}$. E.g, $\llbracket K \downarrow K \rrbracket = K! = \llbracket 1 \uparrow K \rrbracket$.

N.B: For $n \in \mathbb{N}$: If $K > n$ then $\llbracket n \downarrow K \rrbracket = 0$.

Note $\llbracket x \uparrow K \rrbracket = \llbracket x + [K-1] \downarrow K \rrbracket$.

Learn from the mistakes of others. You can't live long enough to make them all yourself.

—Eleanor Roosevelt

Some differentiation formulas. Below, italic boldface parameters **a**, **b**, **c** and **f** represent *numbers*. Here, differentiation is w.r.t variable t .

$$1.1: \quad t \cdot e^{t/c} = \left[e^{t/c} \cdot [ct - c^2] \right]'$$

$$1.2: \quad t^2 \cdot e^{t/c} = \left[e^{t/c} \cdot [ct^2 - 2c^2t + 2c^3] \right]'$$

$$1.3: \quad \frac{c}{a + bt} = \left[\frac{c}{b} \cdot \log(a + bt) \right]'$$

Use expressions $E(t) := e^{at}$, $S(t) := \sin(f \cdot t)$ and $C(t) := \cos(f \cdot t)$, below. The number **f** can be thought of as “frequency” and, in some contexts, the **a** can be thought of as “attenuation”. We have

$$1.4: \quad [a^2 + f^2] \cdot \int E \cdot S = E \cdot [aS - fC].$$

$$1.5: \quad [a^2 + f^2] \cdot \int E \cdot C = E \cdot [fS + aC].$$

§Table of Contents (ToC)

Introduction	2
The Easy Scan	2
Separation of variables [SoV]	6
CoV to SoV	7
Complex numbers	9
SV Buried Treasure Problem [BTP]	9
C-exponential [Chap4-NSS9, P.237]	10
Same-freq Lemma	12
CCLDE Algorithm [Const.-Coef LDE]	13
Polynomial target	14
PolyExp target	15
Linear maps	17
Conjugate-root example	17
Same-span Lemma	17
Mass-spring [NSS in. §4.1, §4.2, §4.9]	19
The FOLDE algorithm [First-Order LDE]	20
log-CoV to FOLDE [Change-of-Variable]	21
Bernoulli eqn using FOLDE	22
The EXACT algorithm	23
EXACT Example of (E1.1)	24
EXACT Example of (E1.2)	25
Exactifying-factor theory	26
Logistic model [§3.2-NSS9, P.98]	27
Hyperbolic trigonometric functions	31
Derivation of hanging cable	33
The Suspension Bridge solution	34
The Hanging Cable (catenary) solution	34
Convolutions [Chap4-NSS9, P.237]	40
Power-of-x Lemma	40
Convolve-Mac Thm	42
Chain-rule Lemma	42
DUI: Differentiation under Integral	42
Leibniz-rule Lemma	43
Leibniz corollary	43
Convol-diff Thm	43
Convol-GenTar Algorithm	44
Variation of Parameters [NSS9: §4.6 & §2.4, ex. #30]	46
Cramer's "Rule" Thm	46
Wronskian L.I. Thm	46
VoP algorithm [Variation of Parameters]	46
Equidimensional operators	49
Roo algorithm [Reduction of order]	49
Operators	52
Op-commutation lemma	52
Matrix exponential	54
MatExp theorem	54
Recoding: Exchanging dimension for DE-order	57
MacFOLDE	58
A Appendix: Misc examples	60
B Binomial coeffs & the Product rule	61
Calculus applications	61
Product Rule	61
Gen. Product Rule	62
C Order-3 VoP	63
D It's about Brine, it's about Space, it's about brine moving place to place...	64
Compartmental analysis [§3.2-NSS9]	65
Cascading tanks	66
E Matrix-exp: A bit further	68
F Intro to Calculus of Variations	68

Index for DiffyQ

69

Introduction

[Use **NSS9** for the 9th edition of the *Nagle,Saff,Snider* textbook. Use, e.g., **#7^P193.NSS9**, to refer to problem #7 on page 193 of **NSS9**.] [Use **ZW8** for 8th edition of *Zill & Wright*, using e.g., **#7^P193.ZW8**, to refer to problems.]

For the following algorithms, the *unknown function* is $y = y(t)$. For a DE of form

$$\text{Fnc}(y, y', y'', \dots) = G(),$$

we will call $G()$ the *tarGet fnc*.

Use **D** for the *differentiation operator*; therefore **I** := **D**⁰ is the *identity operator*. And **D**³(y) means **D**(**D**(**D**(y))), i.e. y''' . So **I**(y) = **D**⁰(y) = y . [See §5.2-NSS9, P.243.]

Use **DE**: ‘*Differential Equation*’, **LDE**: ‘*Linear DE*’, **ODE**: ‘*Ordinary DE*’ and **PDE**: ‘*Partial DE*’. **IVP**: ‘*Initial-Value Problem*’.

Use boldface **1** := [$t \mapsto 1$], for the constant-1 fnc. For the *identity function*, use $Id(t) = t$. Differentiating, $Id' = \mathbf{1}$.

The Easy Scan

Below, $\alpha, \beta, A, B, \mathbf{r}$ range over all numbers; \mathbb{R} or \mathbb{C} , as appropriate.

Before we work on solving a DE with U.F $y(t)$, let’s glean some properties of \mathcal{S} , the soln-set of the DE.

What is the name of: *The indep.var?* *The U.F?* *What are the parameters in the DE?* And: *What is the order of the DE?*

Types of functions.

a1: Is the zero-fnc a soln? Are there constant-solns?

a2: Are there non-constant polynomial solns? [This usually involves examining how the DiffOp affects the degree of a polynomial.]

a3: Could a nt -exponential, $A \cdot e^{Bt}$ with $B \neq 0$ and $A \neq 0$, be a soln to the DE?

Closure properties of \mathcal{S} .

b1: Is \mathcal{S} sealed [closed] under horizontal translation?
I.e, for soln f and number \mathbf{r} , must $\mathbf{T}_{\mathbf{r}}(f)$ also be a soln? I.e, is the DE autonomous?

b2: Is \mathcal{S} sealed [closed] under scaling?, i.e, for $f \in \mathcal{S}$, must each αf also be a soln?

For $f, g \in \mathcal{S}$, must $f+g \in \mathcal{S}$?

[This \mathcal{S} is sealed under scaling and under addition IFF the DE can be written in form $\text{LinearOp}(y) = 0$.]

b3: If not (b2), then is \mathcal{S} at least sealed under **averaging**? I.e, $\forall f, g \in \mathcal{S}$ and all scalars α, β with $\alpha + \beta = 1$, is average $[\alpha f] + \beta g$ a soln?

b4: Special? Is the DOp linear, affine, equidimensional, a CCLDOp? Is the DE autonomous, separable, EXACT(ifiable), FOLDE, Bernoulli-type?

Easy-Scan Example. Consider U.F $y=y(t)$ satisfying

$$* : \frac{dy}{dt} = 6t^2 \cdot [y - 4].$$

Checking types (a1,a2,a3). For analysis, define operators [Left and Right]

$$\begin{aligned} L(y) &:= \frac{dy}{dt}; & [\text{so here, } L = D] \\ R(y) &:= 6t^2 \cdot [y - 4]. \end{aligned}$$

Since $L(y) \equiv 0$ IFF $y \equiv \text{Constant}$, the only constant soln to $(*)$ is $y \equiv 4$. And for a poly y of degree $N \geq 1$, necessarily $\text{Deg}(R(y)) = 2+N$, whereas $\text{Deg}(L(y)) = N-1$. So no non-constant polynomial solns.

Lastly, $L(A \cdot e^{Bt})$ equals [with $A, B \neq 0$] another nt-exponential, $AB \cdot e^{Bt}$. But $R(A \cdot e^{Bt})$ is not a pure exponential, because of the polynomial factor. So $(*)$ has no nt-exponential solns.

Checking closure properties. More to come... \square

Soln to $(*)$. Our DE is separable, so we can get at least an *implicit* $(*)$ -soln. Because we did the Easy-scan *first*, should our computation yield a non-trivial polynomial or exponential answer, then we erred *either* in our SoV computation... or in our Easy-scan... *OR* both!

Separating $(*)$ gives $\frac{1}{y-4} dy = 6t^2 dt$. Let's only consider real solns $y()$ with $y() > 4$. [I'm avoiding discussing what it means to extend $\log()$ to \mathbb{C} .] Using CoI α , antidiffing yields

$$\begin{aligned} \log(y-4) &= \alpha + 2t^3. \quad \text{Exponentiating,} \\ y &= 4 + [e^\alpha \cdot e^{2t^3}]. \end{aligned}$$

Renaming $\beta := e^\alpha$, then, gives

$$**: \quad y_\beta(t) = 4 + \beta e^{2t^3}.$$

Indeed, each $\beta \in \mathbb{C}$ has $(**)$ satisfy $(*)$. Let's *check*...

Does $(**)$ satisfy $(*)$? Abbreviating $E := e^{2t^3}$, note $E' \xrightarrow{\text{Chain rule}} E \cdot 2 \cdot 3t^2$, i.e. $E' = 6t^2 E$. Thus

$$[\text{RhS}(*)]' = y' = \beta \cdot 6t^2 E.$$

Note $y - 4 = \beta E$. So $\text{LhS}(*) \stackrel{\text{def}}{=} 6t^2 \cdot \beta E$. This indeed equals $[\text{RhS}(*)]',$ as desired. \square

I am always ready to learn although I do not always like being taught.
—Winston Churchill

THERE'S A DELTA FOR EVERY EPSILON

*It's a fact that you can always count upon.
There's a delta for every epsilon*

*And now and again,
There's also an N .*

*But one condition I must give:
The epsilon must be positive
A lonely life all the others live,
In no theorem
A delta for them.*

*How sad, how cruel, how tragic,
How pitiful, and other adjec-
Tives that I might mention.
The matter merits our attention.
If an epsilon is a hero,
Just because it is greater than zero,
It must be mighty discouragin'
To lie to the left of the origin.*

*This rank discrimination is not for us,
We must fight for an enlightened calculus,
Where epsilons all, both minus and plus,
Have deltas
To call their own.*

Words and Music by: *–Tom Lehrer*

[Video of Lehrer performing the \$\delta\$ - \$\varepsilon\$ song.](#)

[Lyrics, and audio of Lehrer performing.](#)

Separation of variables [SoV]

Consider UF $f=f(t)$ defined on interval $\mathbb{J} := [-3, 7]$ satisfying IVP

$$2a: \quad f'(t) = \beta(t)/\mu(f(t)), \\ \text{with } f(5) = 9.$$

Let $\mathbb{K} := f(\mathbb{J})$, the interval which is the f -image of \mathbb{J} .

Together with functions β, μ , suppose we have three other fncs B, M, M^{InvF} satisfying:

Fncs β, B are defined on \mathbb{J} , with $B' = \beta$.

$$2b: \quad \begin{aligned} \text{Fncs } \mu, M \text{ are defined on } \mathbb{K}, \\ \text{with } \mu \neq 0 \text{ and } M' = \mu. \end{aligned}$$

Fnc M is invertible with M^{InvF} its inverse-fnc.

Re-write the top-line of (2a) as

$$2c: \quad \mu(f(t)) \cdot f'(t) = \beta(t).$$

For each $t \in \mathbb{J}$, then, we have

$$2d: \quad \int_5^t \mu(f(t)) \cdot f'(t) dt = \int_5^t \beta(t) dt.$$

Substitution $y = f(t)$ says LhS(2d) equals

$$\int_{f(5)}^{f(t)} \mu(y) \cdot dy \stackrel{\text{by FTC}}{=} M(f(t)) - M(f(5)).$$

And RhS(2d) equals $B(t) - B(5)$. Hence

$$M(f(t)) = B(t) + [M(f(5)) - B(5)].$$

Consequently, initial condition (2a) produces

$$2e: \quad f(t) = M^{\text{InvF}}(B(t) + M(9) - B(5)).$$

Example of SoV. Consider U.F. $f=f(t)$ satisfying

$$2a\dagger: \quad f'(t) = e^{-2f(t)} \cdot t \stackrel{\text{note}}{=} 2t/2e^{2f(t)}, \\ \text{with } f(0) = 9.$$

Soln. [Do Easy-Scan first.] Define the following fncs:

$$2b\dagger: \quad \beta(t) := 2t \quad \text{and} \quad B(t) := t^2.$$

$$\text{Hence } M^{\text{InvF}} = \frac{1}{2} \cdot \log.$$

Computing, $B(t) + M(9) - B(0) = t^2 + e^{18} - 0$. Hence

$$2e\dagger: \quad f(t) = \frac{1}{2} \log(t^2 + e^{18}).$$

Check. To verify that (2e \dagger) satisfies (2a \dagger), note

$$*: \quad f'(t) = \frac{2t + 0}{2 \cdot [t^2 + e^{18}]} \stackrel{\text{note}}{=} \frac{t}{t^2 + e^{18}}.$$

And $e^{2f(t)} = e^{\log(t^2 + e^{18})} = t^2 + e^{18}$. Hence $e^{-2f(t)} \cdot t$ equals $t/[t^2 + e^{18}]$, which indeed equals RhS(*)).

Finally, to verify the initial condition, note $f(0)$ equals $\frac{1}{2} \log(e^{18}) = \frac{1}{2} \cdot 18 = 9$.

CoV to SoV

A function $F(x_1, \dots, x_N)$ is **scale-invariant** [or “**homogeneous** of degree-0”] if

$$3.1: \forall s \neq 0 : F(sx_1, \dots, sx_N) = F(x_1, \dots, x_N).$$

[I.e., F is unchanged by scaling.] More generally, for a $\mathbf{d} \in \mathbb{R}$, say that $F()$ is “**homogeneous** of degree \mathbf{d} ” if

$$3.2: \forall s \neq 0 : F(sx_1, \dots, sx_N) = s^{\mathbf{d}} \cdot F(x_1, \dots, x_N).$$

3.3: Scale-invariant to SoV. Consider a scale-invariant $F(x, y)$, U.F $y = y(x)$, and DE

$$3.3a: \frac{dy}{dx} = F(x, y).$$

Define CoV $v := \frac{y}{x}$ and fnc $G(v) := F(1, v)$. Solve

$$3.3b: \frac{1}{G(v) - v} \cdot dv = \frac{1}{x} \cdot dx$$

using SoV. For each number α , then,

$$3.3c: y_\alpha(x) := x \cdot v_\alpha(x)$$

solves (3.3a). [NB: You might only obtain *implicit* solns.] \square

Why does this work? Substitution $v := \frac{y}{x}$ yields that

$$F(x, y) = F(1, \frac{y}{x}) \stackrel{\text{note}}{=} G(v).$$

Rewrite $v := \frac{y}{x}$ as $y = x \cdot v$. The Product Rule gives

$$G(v) = \frac{dy}{dx} \stackrel{\text{P.R.}}{=} 1 \cdot v + x \cdot \frac{dv}{dx}.$$

This separable DE, rewritten, is (3.3b).

Scale-invariant CoV Example. To compute U.F $y = y(x)$, divide by x in DE

$$x \cdot \frac{dy}{dx} = x + 5y, \quad \text{obtaining}$$

$$3.3a\dagger: \frac{dy}{dx} = 1 + 5 \cdot \frac{y}{x}. \quad [\text{Note RhS is scale-invariant.}]$$

So define $G(v) := 1 + 5v$. Then $G(v) - v = 1 + 4v$. So (3.3b) becomes

$$3.3b\dagger: \frac{1}{1 + 4v} \cdot dv = \frac{1}{x} \cdot dx.$$

Integrating each side, using α as CoI, produces

$$\frac{1}{4} \log(|1 + 4v|) = \alpha + \log(|x|).$$

Letting $\beta := 4\alpha$ gives

$$\log(|1 + 4v|) = \beta + 4 \log(|x|).$$

Exponentiating,

$$|1 + 4v| = e^\beta \cdot |x|^4.$$

With $\gamma := \pm e^\beta$, discard the abs.values, obtaining

$$1 + 4v = \gamma \cdot x^4.$$

Recovering y , we now have that

$$\frac{y}{x} \stackrel{\text{def}}{=} v = \frac{1}{4} \gamma x^4 - \frac{1}{4}.$$

With $\sigma := \frac{1}{4} \gamma$, multiplying both sides by x delivers

$$3.3c\dagger: y_\sigma(x) = \sigma x^5 - \frac{1}{4} x.$$

Checking. Does (3.3c \dagger) satisfy $x \cdot \frac{dy}{dx} = x + 5y$? Computing its LhS,

$$* : x \cdot \frac{dy}{dx} = x \cdot [5\sigma x^4 - \frac{1}{4}] = 5\sigma x^5 - \frac{1}{4} x.$$

Again using (3.3c \dagger),

$$x + 5y = x + [5\sigma x^5 - \frac{5}{4} x] \stackrel{\text{note}}{=} \text{RhS}(*) \quad \square$$

Scale-invar. CoV Ex.2. For $t > 0$, U.F $y = y(t)$ satisfies

*: $y^2 y' t = t^3 + y^3$. Dividing by $y^2 t$ produces

$$3.3a\dagger: \quad y' = \left[\frac{t}{y} \right]^2 + \frac{y}{t}. \quad \text{Note RhS is scale-invariant.}$$

With $v := \frac{y}{t}$, then, this RhS is $G(v) := \frac{1}{v^2} + v$. Then $G(v) - v = \frac{1}{v^2}$. So (3.3b) becomes

$$3.3b\dagger: \quad v^2 \cdot dv = \frac{1}{t} \cdot dt.$$

Integrating each side, using α as CoI, produces

$$\frac{1}{3}v^3 = \alpha + \log(t).$$

Let $\beta := 3\alpha$. Then

$$v = [\beta + 3\log(t)]^{1/3}.$$

Consequently,

$$3.3c\dagger: \quad y_\beta(t) = t \cdot [\beta + 3\log(t)]^{1/3}.$$

Checking. Does (3.3c \dagger) satisfy (*)?

With $S := [\beta + 3\log(t)]$, note

$$\begin{aligned} **: \quad y' &= [t \cdot S^{1/3}]' = 1 \cdot S^{1/3} + t \cdot \frac{1}{3}S^{-2/3} \cdot \frac{3}{t} \\ &= S^{1/3} + S^{-2/3}. \end{aligned}$$

Multiplying (**) by $y^2 t \stackrel{\text{note}}{=} t^3 S^{2/3}$ yields

$$y^2 y' t = [t S^{1/3}]^3 + t^3 \stackrel{\text{note}}{=} y^3 + t^3. \quad \checkmark \quad \square$$

3.4: Linear-CoV to SoV. A function $H()$, and numbers P, Q , define DE

$$3.4a: \frac{dy}{dx} = H(Px + Qy).$$

WLOG, $Q \neq 0$. $\text{CoV } z := Px + Qy$ implies that

$$\frac{dz}{dx} = P \cdot 1 + Q \cdot \frac{dy}{dx} \stackrel{\text{note}}{=} P + Q \cdot H(z).$$

Apply SoV to

$$3.4b: \frac{1}{P + Q \cdot H(z)} \cdot dz = 1 \cdot dx.$$

Each number α , then, gives a soln

$$3.4c: y_\alpha(x) := [z_\alpha(x) - P \cdot x] / Q$$

to (3.4a). [These solns might only be implicit solns.] \square

Linear-CoV to SoV Example. Consider U.F $y = y(t)$ fulfilling

$$3.4a\ddagger: \frac{dy}{dt} = \exp(t + y).$$

Setting $z := t + y$, note $\frac{dz}{dt} = 1 + \frac{dy}{dt} = 1 + e^z$. Hence $\frac{dz}{1+e^z} = 1 \cdot dt$. Anti-differing gives

$$z - \log(1 + e^z) = \alpha + t,$$

for CoI α . While we do not know how to solve this implicit soln *explicitly*, we can rewrite it for y as

$$3.4c\ddagger: y + t - \log(1 + \exp(y + t)) = \alpha + t.$$

By applying $\frac{d}{dt}$, the energetic reader can verify that this is an implicit soln to (3.4a \ddagger).

Complex numbers

[Complex arithmetic done in class.]

The number you have reached is imaginary. Please rotate your phone 90 degrees and dial again.

-David Grabiner

4.1: SV Buried Treasure Problem [BTP]. Floating in the ocean you spy a bottle containing a pirate's map to fabulous treasure. You sell your possessions, purchase a robot-crewed ocean-catamaran, and sail to the island, discovering it is a vast plateau. The map says:

Arrrgh, Matey! Count your paces from the gallows to the a quartz boulder, turn Left 90° and walk the same distance; hammer a gold spike into the ground.

Count your paces from the gallows to the giant oak, turn Right 90° and walk the counted distance; hammer a silver spike into the ground.

Find Ye Buried Treasure midway between the spikes.

With joy, you bound up the plateau [with the treasure you can say *bye bye* to annoying Math classes!] and immediately spot the giant oak, and quartz boulder. But the gallows has rotted away without a trace.

Nonetheless, you find the Treasure. How? \diamond

[Hint: Using B, K, w for the Bolder's, oak's and (unknown) gallows' location, write the treasure's spot as a fnc $\mathbf{t}_{B,K}(w)$ by using \mathbb{C} addition and multiplication.] Alphabetic-order mnemonic:

Boulder	Left	gold
oaK	Right	silver

SOLVED BY: Matthew C, Junhao Z., Hani S., 2020t. Nathan T., 2021t.

(Partial soln) Sreeram V., 2022g. Maxime A., 2023g.

Remark. The *discriminant* of quadratic [i.e., $A \neq 0$] polynomial $q(z) := Az^2 + Bz + C$ is

$$5.1: \text{Discr}(q) := B^2 - 4AC.$$

The zeros [“roots”] of q are

$$5.2: \text{Roots}(q) = \frac{1}{2A} \left[-B \pm \sqrt{\text{Discr}(q)} \right].$$

Hence when A, B, C are *real*, then the zeros of q form a complex-conjugate pair. And q has a *repeated root* IFF $\text{Discr}(q)$ is zero.

A monic \mathbb{R} -irreducible quadratic has form

$$5.3: q(z) = z^2 - Sz + P = [z - \mathbf{r}] \cdot [z - \bar{\mathbf{r}}],$$

where $\mathbf{r} \in \mathbb{C} \setminus \mathbb{R}$. Note $\mathcal{S} = \mathbf{r} + \bar{\mathbf{r}} = 2\operatorname{Re}(\mathbf{r})$ is the *Sum* of the roots. And $\mathcal{P} = \mathbf{r} \cdot \bar{\mathbf{r}} = |\mathbf{r}|^2$ is the *Product* of the roots. The g discriminant, $\operatorname{Discr}(g)$, equals

$$5.4: \quad \mathcal{S}^2 - 4\mathcal{P} \stackrel{\text{note}}{=} [\mathbf{r} - \bar{\mathbf{r}}]^2 = -4 \cdot |\operatorname{Im}(\mathbf{r})|^2.$$

Completing-the-square yields

$$5.5: \quad q(z) = [z - \frac{\mathcal{S}}{2}]^2 + F^2, \text{ where } F := |\operatorname{Im}(\mathbf{r})|,$$

which is easily checked. [Exercise] \square

6: Fundamental Theorem of Algebra (Gauss and friends).
Consider a monic \mathbb{C} -polynomial

$$p(z) := z^N + B_{N-1}z^{N-1} + \dots + B_1z + B_0.$$

Then p factors completely over \mathbb{C} as

$$p(z) = [z - \mathbf{r}_1] \cdot [z - \mathbf{r}_2] \cdot \dots \cdot [z - \mathbf{r}_N],$$

for a list $\mathbf{r}_1, \dots, \mathbf{r}_N \in \mathbb{C}$, possibly with repetitions. This list is unique up to reordering.

If p is a **real** polynomial, i.e. $\bar{p} = p$, then p factors over \mathbb{R} as a product of monic \mathbb{R} -irreducible linear and \mathbb{R} -irred. quadratic polynomials. The product is unique up to reordering.

Also: A proof-sketch is in Primer on Polynomials on my Teaching page. \diamond

C-exponential [Chap4-NSS9, P.237]

The algebraic structure of \mathbb{R} can be consistently extended to a larger field, by adjoining a sqrt of negative 1. This is conventionally \heartsuit^1 called **i**, so $\mathbf{i}^2 = -1 = [-\mathbf{i}]^2$. Extending \mathbb{R} by **i** produces field

$$\mathbb{C} := \{x\mathbf{1} + y\mathbf{i} \mid \text{where } x \text{ and } y \text{ are real}\}.$$

I've written $x\mathbf{1} + y\mathbf{i}$ to emphasize that the additive structure of \mathbb{C} is that of a 2-dimensional \mathbb{R} -vectorspace, with basis vectors **1** and **i**. In practice, we write $2+3\mathbf{i}$, not $2\cdot\mathbf{1}+3\mathbf{i}$.

A geometric picture of \mathbb{C} , with the *real axis* horizontal, and the *imaginary axis* vertical, is called the **Argand plane** or the **complex plane**.

\heartsuit^1 Electrical engineers use **j** rather than **i**, as "**i**" is used to represent current/amperage in EE. Also, while boldface **i** is a sqrt of -1, we still have non-boldface **i** as a variable. E.g., we could [but wouldn't] write $7\mathbf{i} + \sum_{i=3}^4 i^2 \stackrel{\text{note}}{=} 7\mathbf{i} + 3^2 + 4^2$.

Write **real-part** and **imaginary-part** extractors as, e.g, for $z := 2 - 3\mathbf{i}$, give

$$\operatorname{Re}(z) = 2 \quad \text{and} \quad \operatorname{Im}(z) = -3$$

since $z = 2\cdot\mathbf{1} + [-3]\cdot\mathbf{i}$. The **absolute-value** or **modulus** of z is its distance to the origin; so

$$|z| = \sqrt{\operatorname{Re}(z)^2 + \operatorname{Im}(z)^2}.$$

[Here, $|2 - 3\mathbf{i}| = \sqrt{4+9} = \sqrt{13}$.] The **complex conjugate** of this z is $\bar{z} = 2 + 3\mathbf{i}$. For a general $\omega = x + y\mathbf{i}$ with $x, y \in \mathbb{R}$, observe that

$$\operatorname{Re}(\omega) := x = \frac{\omega + \bar{\omega}}{2}, \quad \operatorname{Im}(\omega) := y = \frac{\omega - \bar{\omega}}{2\mathbf{i}};$$

$$\bar{\omega} = \operatorname{Re}(\omega) - \operatorname{Im}(\omega)\mathbf{i};$$

$$|\omega|^2 \stackrel{\text{Pythag. thm}}{=} x^2 + y^2 = \omega\bar{\omega}.$$

(Complex-)conjugation $\omega \mapsto \bar{\omega}$ is an *involution* of \mathbb{C} , since $\bar{\bar{\omega}} = \omega$. For complex polynomial $f(z) = \sum_{j=0}^N \mathbf{c}_j z^j$, define $\bar{f}(z) := \sum_{j=0}^N \bar{\mathbf{c}}_j z^j$, its **conjugate polynomial**. Thus

$$\overline{f(z)} = \bar{f}(\bar{z}),$$

since $\overline{\mu + \nu} = \bar{\mu} + \bar{\nu}$ and $\overline{\mu\nu} = \bar{\mu} \cdot \bar{\nu}$ for $\mu, \nu \in \mathbb{C}$.

Multiplying complex numbers corresponds to multiplying their moduli and adding their angles.

To write a quotient $\frac{\nu}{\alpha}$ in std $x + y\mathbf{i}$ form, note

$$\frac{\nu}{\alpha} = \frac{\nu\bar{\alpha}}{\alpha\bar{\alpha}} = \nu\bar{\alpha}/|\alpha|^2$$

So write $\nu\bar{\alpha}$ in std form, then divide by real $|\alpha|^2$.

See [W: Complex number](#) and [W: Argand plane](#) for arithmetic with complex numbers.

Let's extend the exponential fnc to \mathbb{C} .

7a: Defn. For $z \in \mathbb{C}$, define

$$\exp(z) := e^z := \sum_{n=0}^{\infty} \frac{1}{n!} \cdot z^n = 1 + z + \frac{1}{2}z^2 + \frac{1}{6}z^3 + \dots;$$

$$\cos(z) := \sum_{k=0}^{\infty} \frac{[-1]^k}{[2k]!} \cdot z^{2k} = 1 - \frac{1}{2}z^2 + \frac{1}{24}z^4 - \dots;$$

$$\sin(z) := \sum_{k=0}^{\infty} \frac{[-1]^k}{[2k+1]!} \cdot z^{2k+1} = z - \frac{1}{6}z^3 + \frac{1}{120}z^5 - \dots.$$

Each series has ∞ -RoC. \diamond

Since we have absolute convergence of each series, we can re-order terms without changing convergence.

7b: Lemma. Fix $\alpha, \beta \in \mathbb{C}$. Then

$$e^\alpha \cdot e^\beta = e^{\alpha+\beta}. \quad \diamond$$

Proof. For natnum N , recall the Binomial thm which says that

$$* \colon \sum_{j+k=N} \binom{N}{j,k} \cdot \alpha^j \beta^k = [\alpha + \beta]^N,$$

where the sum is over all ordered-pairs (j, k) of natnums. By its defn [and abs.convergence], $e^\alpha e^\beta$ equals

$$\left[\sum_{j=0}^{\infty} \frac{1}{j!} \alpha^j \right] \cdot \left[\sum_{k=0}^{\infty} \frac{1}{k!} \beta^k \right] = \sum_{N=0}^{\infty} \left[\sum_{j+k=N} \frac{1}{j!} \frac{1}{k!} \cdot \alpha^j \beta^k \right].$$

But $\frac{1}{j!k!}$ equals $\frac{1}{N!} \cdot \frac{N!}{j!k!}$. Hence $e^\alpha e^\beta$ equals

$$\sum_{N=0}^{\infty} \frac{1}{N!} \left[\sum_{j+k=N} \binom{N}{j,k} \cdot \alpha^j \beta^k \right] \stackrel{\text{by } (*)}{=} \sum_{N=0}^{\infty} \frac{1}{N!} [\alpha + \beta]^N,$$

which is the defn of $e^{\alpha+\beta}$. \diamond

7c: Lemma. For θ, x, y, z complex numbers:

7.1: $e^{i\theta} = [\cos(\theta) + i\sin(\theta)] =: \text{cis}(\theta)$. Hence

7.2: $\frac{e^{i\theta} + e^{-i\theta}}{2} = \cos(\theta)$, $\frac{e^{i\theta} - e^{-i\theta}}{2i} = \sin(\theta)$. Also,

7.3: $e^{x \pm iy} = e^x \cdot e^{\pm iy} = e^x \cdot [\cos(y) \pm i\sin(y)]$,

since $\cos(-y) = \cos(y)$ and $\sin(-y) = -\sin(y)$.

When θ is *real*, then,

7.4: $\text{Re}(e^{i\theta}) = \cos(\theta)$ and $\text{Im}(e^{i\theta}) = \sin(\theta)$.

Since the coefficients in their power-series expansions are all real, our $\exp()$, $\cos()$, $\sin()$ fncs each commute with complex-conjugation, i.e

7.5: $\overline{\exp(z)} = \exp(\bar{z})$, $\overline{\cos(z)} = \cos(\bar{z})$, $\overline{\sin(z)} = \sin(\bar{z})$;

Translation-identities & addition-identities

$$\cos(z - \frac{\pi}{2}) = \sin(z), \quad \sin(z + \frac{\pi}{2}) = \cos(z),$$

$$7.6: \quad \begin{aligned} \cos(\alpha \pm \beta) &= \cos(\alpha) \cos(\beta) \mp \sin(\alpha) \sin(\beta), \\ \sin(\alpha \pm \beta) &= \cos(\alpha) \sin(\beta) \pm \sin(\alpha) \cos(\beta). \end{aligned}$$

extend to the complex plane. Finally,

7.7: $\text{Range}(\exp) = \mathbb{C} \setminus \{0\}$ is the punctured \mathbb{C} .

And $\text{Range}(\cos) = \mathbb{C} = \text{Range}(\sin)$.

7.8: All zeros of [complex] $\cos()$ lie in \mathbb{R} . Hence $\cos()$ has only one period, that of 2π . Both statements hold for $\sin()$. \diamond

Pf of (7.7). For $\text{Range}(\cos) = \mathbb{C}$, target $\frac{\tau}{2} \in \mathbb{C}$ requires z with $\cos(z) = \tau/2$. With $R := e^{iz}$, then, we need $R + \frac{1}{R} = \tau$, i.e $R^2 - \tau R + 1 = 0$. This quad.eqn has a solution $R \in \mathbb{C}$. As $R=0$ is not a soln, necessarily $R \in \text{Range}(\exp)$. \diamond

Pf of (7.8). Fix a $z = x + iy$ st. $\cos(z) = 0$. Thus

$$\begin{aligned} 0 = 2\cos(z) &= \exp(i \cdot [x + iy]) + \exp(-i \cdot [x + iy]) \\ &= \exp(-y + ix) + \exp(y - ix) \\ &= e^{-y} \text{cis}(x) + e^y \text{cis}(-x). \end{aligned}$$

Since these summands cancel, they must have equal abs.values. Since x and y are real, then,

$$* \colon e^{-y} = e^{-y} \cdot |\text{cis}(x)| = e^y \cdot |\text{cis}(-x)| = e^y.$$

But $\mathbb{R}\text{-exp}()$ is 1-to-1, so $(*)$ implies that $-y = y$. Hence $y = 0$, i.e z is real. \diamond

7e: Lemma. Familar derivative relations, $\exp' = \exp$ and $\cos' = -\sin$ and $\sin' = \cos$, continue to hold. \diamond

Same-frequency cosines/sines. Consider a sum of same-frequency cosines

$$h(t) := \sum_{j=1}^N A_j \cdot \cos(P_j + F \cdot t),$$

where $A_j \in \mathbb{R}$ is *amplitude*, $P_j \in \mathbb{R}$ is *phase-shift* and $F \in \mathbb{R}$ determines the *frequency*. [Courtesy (7.6), we could include sine fncs in the sum.] We seek a phase-shift θ and amplitude $\mathbf{R} \geq 0$ so that

$$h(t) = \mathbf{R} \cdot \cos(\theta + Ft).$$

From (7.4), we have that $h(t)$ equals

$$\begin{aligned} \sum_{j=1}^N A_j \cdot \text{Re}(e^{i[P_j + Ft]}) &\stackrel{\text{note}}{=} \text{Re} \left(\sum_{j=1}^N A_j \cdot e^{i[P_j + Ft]} \right) \\ &= \text{Re} \left(\left[\sum_{j=1}^N A_j \cdot e^{iP_j} \right] \cdot e^{iFt} \right). \end{aligned}$$

Thus we are led to define $\mathbf{S} \in \mathbb{C}$ and $X, Y \in \mathbb{R}$ by

$$\dagger: \quad \mathbf{S} := \left[\sum_{j=1}^N A_j \cdot e^{iP_j} \right] =: X + iY.$$

Since each A_j and P_j is real,

$$X = \sum_{j=1}^N A_j \cdot \cos(P_j) \quad \text{and} \quad Y = \sum_{j=1}^N A_j \cdot \sin(P_j).$$

7f: **Same-freq Lemma.** [With notation from above.] Set $\mathbf{R} := |\mathbf{S}| \stackrel{\text{note}}{=} \sqrt{X^2 + Y^2}$.

If $\mathbf{S} = 0$, then $h()$ is the zero-fnc; so can set $\theta := 0$. Otherwise, if $X = 0$, then set θ to $\frac{\pi}{2}$ or $-\frac{\pi}{2}$ as Y is positive or negative.

Otherwise: If $X > 0$ then set $\theta := \arctan(Y/X)$; and if $X < 0$ then set $\theta := \pi + \arctan(Y/X)$.

With \mathbf{R}, θ defined as above

$$\dagger: \left[\sum_{j=1}^N A_j \cdot \cos(P_j + F \cdot t) \right] = \mathbf{R} \cdot \cos(\theta + Ft). \quad \diamond$$

7g: E.g. Compute reals $\mathbf{R} \geq 0$ and phase-shift θ st.

$$\mathbf{R} \cos(\theta + 8t) = \cos\left(\frac{\pi}{3} + 8t\right) + \cos\left(\frac{5\pi}{3} + 8t\right) - \sqrt{2} \cos\left(\frac{7\pi}{4} + 8t\right).$$

SOLN: Applying (\dagger) , above,

$$\mathbf{S} = e^{i\frac{\pi}{3}} + e^{i\frac{5\pi}{3}} - \sqrt{2} e^{i\frac{7\pi}{4}} \xrightarrow{\text{Geometry}} \mathbf{i}.$$

$$\text{Hence } \mathbf{R} = |\mathbf{i}| = 1 \text{ and } \theta = \text{Arg}(\mathbf{i}) = \frac{\pi}{2}. \quad \square$$

CCLDE Algorithm [Const.-Coeff LDE]

Initially, we only handle the [target = zero-fnc] case.

Step S0. Consider numbers C_0, \dots, C_N and U.F. $y=y(t)$ satisfying

$$*: C_N y^{(N)} + C_{N-1} y^{(N-1)} + \dots + C_1 y' + C_0 y = 0,$$

with $C_N \neq 0$. Define the *auxiliary polynomial*

$$q(z) := C_N z^N + C_{N-1} z^{N-1} + \dots + C_1 z^1 + C_0 z^0.$$

We can now re-write (*) as

$$8a: [q(\mathbf{D})](y) = 0.$$

Step S1. Let \mathcal{R} denote the set of **distinct** roots [i.e. zeros] of $q()$. For each root $\mathbf{r} \in \mathcal{R}$, let $M_r \in \mathbb{Z}_+$ denote the *multiplicity* of \mathbf{r} in $q()$. Thus $\sum_{\mathbf{r} \in \mathcal{R}} M_r$ equals N , i.e. $\text{Deg}(q)$.

The above says that our polynomial factors as

$$8b: q(z) = C_N \cdot \prod_{\mathbf{r} \in \mathcal{R}} [z - \mathbf{r}]^{M_r}.$$

Step S2. The general solution to (8a) is

$$8c: y(t) = \sum_{\mathbf{r} \in \mathcal{R}} \sum_{j \in [0..M_r)} [\lambda_{\mathbf{r},j} \cdot t^j \cdot e^{\mathbf{r} \cdot t}],$$

freely choosing the N many numbers, $\{\lambda_{\mathbf{r},j}\}_{\mathbf{r},j}$.

Step S3. Now suppose we were given initial conditions, e.g. given specified numbers for values $y(0), y'(0), y''(0), \dots, y^{(N-1)}(0)$. Or perhaps we are given the value of y'' at N different points.

Differentiate (8c) appropriately and plug in the given points to obtain N equations [“high school” linear equations] which you solve for the values of the N many unknowns $\{\lambda_{\mathbf{r},j}\}_{\mathbf{r},j}$.

CCLDE Example. U.F. $y = y(t)$ satisfies DE

$$y^{(5)} - 6y^{(4)} + 9y^{(3)} + 10y'' - 36y' + 24y = 0.$$

Define $p(z) := z^5 - 6z^4 + 9z^3 + 10z^2 - 36z^1 + 24z^0$; the aux-poly of the above DE. We can re-write the DE as

$$8a\dagger: [p(\mathbf{D})](y) = 0.$$

Step S1. Factor polynomial p as

$$8b\dagger: \begin{aligned} p(z) &= [z^2 - 3] \cdot [z - 2]^3 \\ &= [z - U] \cdot [z - V] \cdot [z - 2]^3, \end{aligned}$$

where $U := \sqrt{3}$ and $V := -U$. I.e, $\mathcal{R} = \{U, V, 2\}$ and $M_U = 1$, $M_V = 1$ and $M_2 = 3$.

Step S2. For five arbitrary [possibly complex] numbers $\alpha, \beta, \lambda_0, \lambda_1, \lambda_2$, the function

$$8c\dagger: y(t) := \alpha e^{Ut} + \beta e^{-Ut} + \left[\sum_{j=0}^2 \lambda_j \cdot t^j e^{2t} \right]$$

is the general soln to (8a \dagger).

Step S3. Consider IVP (8a \dagger) with

$$\begin{aligned} y(0) &= 2; & y'(0) &= 0; & y''(0) &= 4; \\ y^{(3)}(0) &= -12; & y^{(4)}(0) &= -30. \end{aligned}$$

Solving for the coefficients in (8c \dagger) gives

$$8d: \alpha = \beta = 1; \quad \lambda_0 = \lambda_1 = 0; \quad \lambda_2 = -1.$$

Consequently, the soln to this IVP is

$$8e: y(t) = [e^{\sqrt{3} \cdot t}] + [e^{-\sqrt{3} \cdot t}] - [t^2 e^{2t}].$$

Complex-root Example. Your experiments with fluid-flow² produce U.F. $f = f(t)$ such that

$$8f: f''' - [2 + i]f'' + [1 + 4i]f' + [2 - i]f = 0.$$

Defining the auxiliary polynomial, then factoring, gives

$$\begin{aligned} q(z) &:= z^3 - [2 + i]z^2 + [1 + 4i]z + [2 - i] \\ 8g: \quad &= [z - i]^2 \cdot [z - [2 - i]]. \end{aligned}$$

The solns, $f(t)$, to (8f) are the linear-combinations of

$$e^{it}, te^{it}, e^{[2-i]t}.$$

If desired, write $e^{[2-i]t}$ as $e^{2t} \cdot [\cos(t) - i \sin(t)]$, since $\cos()$ is an even-fnc and $\sin()$ an odd-fnc.

²Wine, with a Milk chaser...

Polynomial target**UNDETERMINED COEFFS**

[In **NSS9** §4.4, “Undetermined coeffs.”.] We study DE

$$9a: \quad \begin{aligned} V(f) &= G, \quad \text{where the target-poly is} \\ &G(t) = \sum_{j=0}^K B_j t^j. \quad \text{Write } V = q(\mathbf{D}) \\ &q(z) = \sum_{n=L}^N C_n z^n, \end{aligned}$$

for natnums $L \leq N$ with $C_L \neq 0$ and $C_N \neq 0$.

Since CCLDOP $V()$ carries polys to polys, we can solve for the coeffs of f . Write a candidate soln as

$$9b: \quad f(t) = \sum_{j=L}^{K+L} u_j \cdot t^j,$$

for undetermined numbers $\vec{u} = (u_0, u_1, \dots, u_K)$. Equating coeffs in $V(f) = G$ gives $K+1$ “high school” [e.g, linear] eqns in the $K+1$ unknowns \vec{u} . This system will have (exercise!) a unique soln.

Polynomial-Target 1. U.Poly $f = f(t)$ satisfies

$$9a\dagger: \quad \begin{aligned} f'' + 5f' + 4f &= 8t + 22. \quad \text{So } V := q(\mathbf{D}), \text{ where} \\ q(z) &:= z^2 + 5z + 4 = [z - 4] \cdot [z - 1]. \end{aligned}$$

Hence $L = 0$ and $N = 2$. Our target $G(t) := 8t + 22$ has degree $K=1$. So poly f has form

$$9b\dagger: \quad f(t) = wt + u$$

for undetermined numbers w, u . Thus

$$V(f) \stackrel{\text{Why?}}{=} [5\mathbf{D} + 4\mathbf{I}](f) = 4wt + [5w + 4u].$$

[Why? Did you detect that $\mathbf{D}^2(f) = 0$?]

Set $4wt + [5w + 4u]$ equal to target, $8t + 22$, giving eqns $4w = 8$ and $5w + 4u = 22$. Reading L-to-R, $w=2$ and $u=3$. I.e., $f := 2t + 3$ is sent by $V()$ to G .

(P-T 1 continued) IVP. Mystery fnc $h=h(t)$ satisfies

$$\begin{aligned} *1: \quad h'' + 5h' + 4h &= 8t + 22, \quad \text{together with} \\ *2: \quad h(0) = 0 \quad \text{and} \quad h'(0) = -1. \end{aligned}$$

From (9a†), we know that e^{-4t} and e^{-t} are each mapped to 0 by $V()$. Consequently, the general soln, h , to (*1) has form

$$h(t) = \alpha e^{-4t} + \beta e^{-t} + [2t + 3],$$

for constants α, β . Eqns (*2) yield $\alpha = 2$ and $\beta = -5$.

Thus fnc

$$h(t) = 2e^{-4t} - 5e^{-t} + [2t + 3]$$

is the unique soln to Mystery-IVP (*1, *2).

Polynomial-Target 2. U.Poly $f = f(t)$ satisfies

$$9a\dagger: \quad \begin{aligned} f'' + 3f' &= 9t^2 + 6t - 3. \quad \text{So } V := 3q(\mathbf{D}), \text{ where} \\ q(z) &:= z^2 + 3z = [z - 0] \cdot [z - -3]. \end{aligned}$$

Hence $L = 1$ and $N = 2$. Target $G(t) := 9t^2 + 6t - 3$ has degree $K=2$. Thus polynomial f has form

$$9b\dagger: \quad f(t) = wt^3 + vt^2 + ut$$

for not-yet-determined numbers w, v, u . Computing,

$$V(f) = f'' + 3f' = 9wt^2 + [6w+6v]t + [2v+3u].$$

Equating coeffs with $G := 9t^2 + 6t - 3$ produces

$$9w = 9 \quad \text{and} \quad 6w + 6v = 6 \quad \text{and} \quad 2v + 3u = -3.$$

Hence $w = 1$, so $v = 0$, thus $u = -1$.

THE UPSHOT: Function $f := t^3 - t$ is sent by $V()$ to G . Consequently, the general (9a†)-solution is $f_{\alpha, \beta}(t) = \alpha + \beta e^{-3t} + [t^3 - t]$.

P-T 2, alternative. Fnc $h := f'$ satisfies $h' + 3h = G$. Since $\text{Deg}(h) = \text{Deg}(G) = 2$; our $h = Pt^2 + Qt + R$, for some numbers P, Q, R . Consequently,

$$9t^2 + 6t - 3 \stackrel{\text{by DE}}{=} [\mathbf{D} + 3\mathbf{I}](h) = 3Pt^2 + [2P + 3Q]t + 3R.$$

Hence $9 = 3P$; so $P = 3$. And $6 = 2P + 3Q = 6 + 3Q$; thus $Q = 0$. Lastly, $-3 = 3R$, whence $R = -1$. THE UPSHOT IS...

$$f \stackrel{\text{def}}{=} \int h = \int [3t^2 - 1] dt = t^3 - t,$$

as before.

PolyExp target

A **PolyExp** is a poly×exponential; e.g $F(t) := [3+t^2] \cdot e^{4t}$.

Step P0. Consider a CCLDOp $L()$ and DE

$$10a: \quad L(y) = G_1(t) e^{M_1 t} + G_2(t) e^{M_2 t} + \dots,$$

where each G_j is a polynomial and each *exponent-Multiplier* M_j is a number. For each polyExp, we will compute a fnc y_j s.t. $L(y_j) = G_j \cdot e^{M_j t}$. Then $y_1 + y_2 + \dots$ is a particular soln to (10a). Adding the gen.soln z to $L(z) = 0$ gives the gen.soln to (10a), since L is linear.

We've reduced the problem to solving DEs OTForm $L(y) = G \cdot e^{Mt}$, where G is a poly. We'll compute a soln OTForm $y := f \cdot e^{Mt}$, where f is a poly.

Step P1. For an arb.fnc f and arb.number μ , let $E := e^{\mu t}$ and note that $E' = \mu E$. Compute $L(fE)$ to produce a CCLDOp V_μ , that depends on the number μ , such that

$$L(f \cdot E) = V_\mu(f) \cdot E.$$

So $L()$ sends $f \cdot e^{Mt}$ to $G \cdot e^{Mt}$ IFF f satisfies

$$V_M(f) = G.$$

Use (9a), UNDETERMINED COEFFS, to solve for f .

Defn. Call $V_\mu = V_{L,\mu}$ the operator “*associated to* operator L and number μ ”. \square

Preliminary computation. To speed up our numerical example, let's pre-compute the L -to- V_μ transition for a general quadratic CCLDOp $L()$.

Numbers $\mathbf{r}_1, \mathbf{r}_2$ yield a quadratic poly

$$q(z) := [z - \mathbf{r}_1][z - \mathbf{r}_2] = z^2 - \mathcal{S}z + \mathcal{P},$$

using the sum $\mathcal{S} := \mathbf{r}_1 + \mathbf{r}_2$, and product $\mathcal{P} := \mathbf{r}_1 \mathbf{r}_2$, of the roots. The corresponding operator is

$$L(y) := y'' - \mathcal{S}y' + \mathcal{P}y.$$

For arb. number μ and fnc f , letting $E := e^{\mu t}$, note

$$[f \cdot E]^{(0)} = f \cdot E;$$

$$[f \cdot E]^{(1)} = f'E + fE' \stackrel{\text{note}}{=} [f' + \mu f] \cdot E;$$

$$[f \cdot E]^{(2)} = [f'' + \mu f']E + [f' + \mu f] \cdot \mu E = [f'' + 2\mu f' + \mu^2 f] \cdot E.$$

Consequently, $L(f \cdot E) = V_\mu(f) \cdot E$ where

$$10b: \quad \begin{aligned} V_\mu(f) &= f'' + [2\mu - \mathcal{S}]f' + [\mu^2 - \mathcal{S}\mu + \mathcal{P}]f \\ &\stackrel{\text{note}}{=} f'' + [2\mu - \mathcal{S}]f' + [q(\mu)]f. \end{aligned}$$

[The coeff of f will always be $q(\mu)$.]

PolyExp-target Example 1. Consider DE

$$10a\dagger: \quad y'' - y' - 2y = \underbrace{[8t + 22]e^{3t}}_{\mathcal{A}} + \underbrace{[9t^2 + 6t - 3]e^{2t}}_{\mathcal{B}}.$$

Hence $\mathcal{S} = 1$ and $\mathcal{P} = -2$, and

$$q(z) = z^2 - z - 2 = [z + 1] \cdot [z - 2].$$

Thus $\mathbf{r}_1 = -1$ and $\mathbf{r}_2 = 2$. Courtesy (10b),

$$V_\mu(f) = f'' + [2\mu - 1]f' + [\mu^2 - \mu - 2]f.$$

Let's compute fncs y_a and y_b so that $L(y_a) = \mathcal{A}$ and $L(y_b) = \mathcal{B}$, recalling that (10a \dagger) defined \mathcal{A} and \mathcal{B} .

PolyExp A. Note $V_3(f) = f'' + 5f' + 4f$. With $G := 8t + 22$, then, we seek f such that $V_3(f) = G$. Happily, (9a \dagger) solved this; set $y_a := [2t + 3] \cdot e^{3t}$.

PolyExp B. Observe $V_2(f) = f'' + 3f'$. Setting $G := 9t^2 + 6t - 3$, we seek f for which $V_2(f) = G$. A *Stroke of Good Fortune!* –example (9a \dagger) to the rescue. We can let $y_b := [t^3 - t] \cdot e^{2t}$.

Assembling the pieces. Our hard work has paid off. Recalling roots \mathbf{r}_1 and \mathbf{r}_2 , the (10a \dagger) gen.soln is

$$\begin{aligned} y_{\alpha, \beta}(t) &= \alpha e^{-t} + \beta e^{2t} + [2t + 3] \cdot e^{3t} + [t^3 - t] \cdot e^{2t} \\ &= \alpha e^{-t} + [2t + 3] \cdot e^{3t} + [t^3 - t + \beta] \cdot e^{2t}. \end{aligned}$$

Nifty! Worth the price of admission...

PolyExp-tar Ex. 2. For poly $q(z) := z^2 - 7z + 12$ and operator $R := q(\mathbf{D})$, consider DE

$$10a\ddagger: R(y) = \underbrace{6e^{2t}}_{\mathcal{A}} + \underbrace{[2t-2]e^{3t}}_{\mathcal{B}} + \underbrace{60}_{\mathcal{C}}$$

Aux-poly $q()$ has root-sum $\mathcal{S} := 7$ and root-product $\mathcal{P} := 12$. So (10b) tells us, for each number μ , that the associated operator $V_\mu = V_{R,\mu}$ is

$$*: V_\mu(f) = f'' + [2\mu - 7]f' + [q(\mu)]f.$$

Let's compute fncs y_a , y_b and y_c so that $R(y_a) = \mathcal{A}$, $R(y_b) = \mathcal{B}$, and $R(y_c) = \mathcal{C}$, from (10a \ddagger).

For future reference, note $q()$ factors as

$$\mathbb{Y}: q(z) = [z-3] \cdot [z-4].$$

So e^{3t} and e^{4t} are annihilated by $R()$.

PExp A. From (*, \mathbb{Y}), our $V_2(f) = f'' - 3f' + 2f$. We seek f s.t $V_2(f) = 6$; so f must have degree zero. Writing $f() := w$, we see that $6 = V_2(f) = 2w$; thus $w = 3$. I.e., $y_a := 3e^{2t}$ is sent by $R()$ to \mathcal{A} .

PExp B. Courtesy (*, \mathbb{Y}), our $V_3(f) = f'' - f'$. A polynomial f s.t $V_3(f) = 2t - 2$ has form

$$f(t) = wt^2 + vt.$$

Computing, $V_3(f) = -2wt + [2w - v]$. Setting this equal to $2t - 2$ gives $w = -1$ and $v = 0$. Consequently, $y_b := -t^2 e^{3t}$ is sent by $R()$ to \mathcal{B} .

PExp C. Note that $\mathcal{C} = 60e^{0t}$. Our (*, \mathbb{Y}) says $V_0(f) = f'' - 7f' + 12f$; i.e, $V_0 = R$, as it must. [Why?]

What polynomial f has $V_0(f) = 60$? Why $f() = \frac{60}{12} = 5$, of course! Unsurprisingly, $y_c := 5$ is sent by $R()$ to \mathcal{C} .

Assembly. Recalling roots 3 and 4 of our aux-poly (\mathbb{Y}), the general-soln to (10a \ddagger) is

$$10b: y_{\alpha,\beta}(t) = \alpha e^{3t} + \beta e^{4t} + 3 \cdot e^{2t} - t^2 \cdot e^{3t} + 5.$$

Terms can be combined, if desired. *Copasetic!*

PolyExp-tar Ex. 3. For poly $q(z) := z^3 - 3z^2 + 5$ and operator $P := q(\mathbf{D})$, consider DE

$$10a\mathbb{Y}: P(y) = t^2 e^{2t}.$$

For arb. fnc f , letting $E := e^{2t}$, note

$$[f \cdot E]^{(0)} = f \cdot E;$$

$$[f \cdot E]^{(1)} = f' E + f E' \stackrel{\text{note}}{=} [f' + 2f] \cdot E;$$

$$[f \cdot E]^{(2)} = [f'' + 2f'] E + [f' + 2f] \cdot 2E = [f'' + 4f' + 4f] \cdot E;$$

$$\begin{aligned} [f \cdot E]^{(3)} &= [f''' + 4f'' + 4f'] E \\ &\quad + [2f'' + 8f' + 8f] E = [f''' + 6f'' + 12f' + 8f] \cdot E. \end{aligned}$$

Recall that the associated operator $V = V_{P,2}$ is defined by $\boxed{P(f \cdot E) = V(f) \cdot E}$. So

$$10c: \begin{aligned} V(f) &= f''' + [6-3]f'' + [12-12]f' + [8-12+5]f \\ &\stackrel{\text{note}}{=} f''' + 3f'' + f. \end{aligned}$$

[As it must, the coeff of f is $q(2)$.]

We seek a poly f solving $V(f) = t^2$, so write

$$f = wt^2 + vt + u. \quad \text{Note } f''' = 0. \quad \text{Hence}$$

$$V(f) = wt^2 + vt + [6w + u] \stackrel{\text{Goal}}{=} t^2.$$

Solving, $w = 1$ and $v = 0$ and $u = -6$.

So $y(t) := [t^2 - 6]e^{2t}$ is a soln to (10a \mathbb{Y}). However, the gen.soln is harder to obtain, as computing the roots of the above $q()$ is not so easy. [Cardano's formula can be used.]

Linear maps

A vector space is like $\mathbb{R} \times \mathbb{R}$ [or $\mathbb{C} \times \mathbb{C}$] with component-wise addition: For vectors $\mathbf{v}_j := (x_j, y_j)$, their *sum* $\mathbf{v}_1 + \mathbf{v}_2$ is $(x_1 + x_2, y_1 + y_2)$. More generally, a **vector space**³ is a set \mathbf{V} (or it might be called \mathbf{W} or \mathbf{E} or \mathbf{H} or...) together with an addition which is *commutative* and *associative*. Also, we can multiply a vector by a **scalar** which is either a real number or, more generally, a complex number.

So a VS is a tuple $(\mathbf{V}, +, \mathbf{0}, \cdot, \mathbb{R})$ when the scalars are reals, or $(\mathbf{V}, +, \mathbf{0}, \cdot, \mathbb{C})$ when we allow complex scalars.

11a: *Defn.* Now consider a map $\mathbf{L}: \mathbf{V} \rightarrow \mathbf{W}$ between vector spaces $(\mathbf{V}, +, \mathbf{0}, \cdot, \mathbb{C})$ and $(\mathbf{W}, +, \mathbf{0}, \cdot, \mathbb{C})$. This map \mathbf{L} is *linear* IFF:

$\forall \mathbf{v}_1, \mathbf{v}_2, \mathbf{v} \in \mathbf{V}$ and for all scalars α ,
our \mathbf{L} satisfies

$$\begin{aligned} \text{f1: } \mathbf{L}(\mathbf{v}_1 + \mathbf{v}_2) &= \mathbf{L}(\mathbf{v}_1) + \mathbf{L}(\mathbf{v}_2) \quad \text{and} \\ \text{f2: } \mathbf{L}(\alpha \cdot \mathbf{v}) &= \alpha \cdot \mathbf{L}(\mathbf{v}). \end{aligned}$$

Equivalently: For all vectors $\mathbf{v}_1, \dots, \mathbf{v}_N$ and for all scalars $\alpha_1, \dots, \alpha_N$:

$$\mathbf{L}\left(\sum_{j=1}^N \alpha_j \mathbf{v}_j\right) = \sum_{j=1}^N \alpha_j \mathbf{L}(\mathbf{v}_j). \quad \square$$

11b: *Span Defn.* The set of all linear-combinations [*lin-combs*] of a collection $\mathcal{S} := \{\mathbf{v}_1, \dots, \mathbf{v}_N\}$ of vectors is called “the **span** of \mathcal{S} ”. I.e, $\text{Span}(\mathcal{S})$ equals

$$\text{Span}(\mathbf{v}_1, \dots, \mathbf{v}_N) := \left\{ \sum_{j=1}^N \alpha_j \mathbf{v}_j \mid \begin{array}{l} \text{Where } \alpha_1, \dots, \alpha_N \\ \text{are scalars.} \end{array} \right\}.$$

Our \mathcal{S} is a **linearly-independent set** [an *L.I-set*] if the only list β_1, \dots, β_N of scalars satisfying

$$\left[\sum_{j=1}^N \beta_j \mathbf{v}_j \right] = \mathbf{0} \quad [\text{the zero vector}] \quad \square$$

is $\beta_1=0, \beta_2=0, \dots, \beta_N=0$. [See §6.1-**NSS9** P.323, & §4.2]

VS examples. For N a natnum or ∞ , let Diff^N be the VS of N -times differentiable fncs, with $\mathbf{C}^N \subset \text{Diff}^N$ the sub-VS of fncs whose N^{th} -derivative is cts. So

$$\text{Diff}^0 \supsetneq \mathbf{C}^0 \supsetneq \text{Diff}^1 \supsetneq \mathbf{C}^1 \supsetneq \text{Diff}^2 \supsetneq \dots \supsetneq \text{Diff}^\infty \stackrel{\text{note}}{=} \mathbf{C}^\infty.$$

E.g, fnc $|x|$ is in \mathbf{C}^0 , the space of cts fncs, but is not in Diff^1 , since abs.value is not differentiable at the origin. N.B: Often \mathbf{C} is written for \mathbf{C}^0 , the cts fncs. \square

Conjugate-root example

A polynomial with all real coeffs [a “real-poly” or “ \mathbb{R} -poly”] factors into a product of \mathbb{R} -irreducible linear and quadratic real-polys.

The **discriminant** of quadratic [i.e, $A \neq 0$] polynomial $q(z) := Az^2 + Bz + C$ is

$$12.1: \quad \text{Discr}(q) := B^2 - 4AC,$$

and its zeros [“roots”] are

$$12.2: \quad \frac{1}{2A} \left[-B \pm \sqrt{\text{Discr}(q)} \right].$$

When A, B, C are real, then, the non-real zeros of q come in complex-conjugates pairs.

13: **Same-span Lemma.** *Here, Span means \mathbb{C} -Span. Fix J, K complex numbers [usually real, in practice]. Then*

$$\begin{aligned} \text{Span}(\mathbf{e}^{[J+iK]t}, \mathbf{e}^{[J-iK]t}) \\ = \text{Span}(\mathbf{e}^{Jt} \cdot \cos(Kt), \mathbf{e}^{Jt} \cdot \sin(Kt)) \\ \stackrel{\text{note}}{=} \mathbf{e}^{Jt} \cdot \text{Span}(\cos(Kt), \sin(Kt)). \end{aligned}$$

Indeed, for numbers α, β, μ, ν , we have

$$13a: \quad \begin{aligned} \alpha \cdot \mathbf{e}^{[J+iK]t} + \beta \cdot \mathbf{e}^{[J-iK]t} &\text{ equals} \\ \mathbf{e}^{Jt} \cdot [\mu \cdot \cos(Kt) + \nu \cdot \sin(Kt)], \end{aligned}$$

where the scalars are related by

$$13b: \quad \mu = \alpha + \beta \quad \text{and} \quad \nu = i[\alpha - \beta];$$

$$13c: \quad \alpha = \frac{\mu - i\nu}{2} \quad \text{and} \quad \beta = \frac{\mu + i\nu}{2}. \quad \diamond$$

Proof. Lemma (7c) and routine algebra. \diamond

³Abbreviate ‘vector space’ as VS, and ‘vector spaces’ as VSes.

Eric's requested IVP (Reverse engineering).

Let's create a CCLDE whose diff-operator polynomial $q()$ has a specified complex-conjugate roots; say $U := 3 + 2i$ and $\bar{U} = 3 - 2i$. Define

$$*: \quad q(z) := [z - U] \cdot [z - \bar{U}] \stackrel{\text{note}}{=} z^2 - 6z + 13.$$

Let's go through the steps to solve DE

$$**: \quad f'' - 6f' + 13f = 0$$

with initial conditions $f(0) = 1$ and $f'(0) = 13$.

By CCLDE, the soln-set to $(**)$ is $\mathbb{C}\text{-Spn}(e^{Ut}, e^{\bar{U}t})$. To re-write using $\cos()$ and $\sin()$, define expressions

$$E := e^{3t}, \quad C := \cos(2t), \quad S := \sin(2t).$$

Courtesy (13a), there are numbers μ, ν so that

$$f(t) := E \cdot [\mu C + \nu S]$$

satisfies the initial conditions. This gives

$$1 = f(0) = 1 \cdot [\mu \cdot 1 + \nu \cdot 0] \stackrel{\text{note}}{=} \mu.$$

Diff'ing gives $f'(t) = 3E \cdot [\mu C + \nu S] + E \cdot [-2\mu S + 2\nu C]$. So $13 = f'(0)$, which equals

$$\begin{aligned} 3 \cdot [\mu + 0] + 1 \cdot [-2\mu \cdot 0 + 2\nu \cdot 1] &= 3\mu + 2\nu \\ &= 3 + 2\nu. \end{aligned}$$

Hence $\nu = 5$. Thus the soln to the IVP is

$$\begin{aligned} *1: \quad f(t) &= e^{3t} \cdot [\cos(2t) + 5 \sin(2t)] \\ *2: \quad &\stackrel{\text{by (13c)}}{=} \frac{1-5i}{2} \cdot e^{[3+2i]t} + \frac{1+5i}{2} \cdot e^{[3-2i]t}. \end{aligned}$$

Prefer a single trig-fnc with phase shift? Easily,

$$\begin{aligned} \cos(2t) + 5 \sin(2t) &= \cos(2t) + 5 \cos(2t - \frac{\pi}{2}) \\ &\stackrel{\text{by Same-freq (7f)}}{=} \mathbf{R} \cdot \cos(\theta + 2t), \end{aligned}$$

where $\mathbf{R} := \sqrt{1^2 + 5^2} = \sqrt{26} \approx 5.099$,

and $\theta := \arctan(\frac{-5}{1}) = -\arctan(5) \approx -1.373$. \square

Mass-spring [NSS in §4.1, §4.2, §4.9]

Abstract/concrete units. Symbol \therefore means “has abstract units of”. E.g, [Height of Little Hall] \therefore ft .

in	inches	ft, mi	feet, miles	cm, m	(centi)meters
sec	seconds	min	minutes	hr	hours
gal^3	gallons	lit	liters = 1000 cm ³		[volume]
kg	kilograms				[mass]
lb	pounds	oz	ounces	$\frac{\text{kg}\cdot\text{m}}{\text{sec}^2}$	[weight, force]
$^{\circ}\text{F}$	Fahrenheit	$^{\circ}\text{C}$	Celsius		
D	Dimensionless	U	Units depend on application		

CONVENTION: These notes will typically write zero without units, i.e, 0 rather than 0 min or $0 \frac{\text{kg}\cdot\text{m}}{\text{sec}^2}$.

Harmonic motion. Our parameters are

$M \therefore \text{m}$	Mass of object. [>0]
$B \therefore \text{m}/\text{t}$	Damping coefficient. [≥ 0]
$K \therefore \text{m}/\text{t}^2$	Hooke's constant of the spring. [>0]
$y=y(t) \therefore \text{t}$	Position of the mass at time t .
$\omega \therefore 1/\text{t}$	(Angular) frequency, $\frac{\text{radians}}{\text{time}}$.

An unforced spring has DE

$$14: \quad My'' + By' + Ky = 0. \quad \text{Here, let 0 implicitly take on units of force.}$$

The corresponding aux-poly is

$$\begin{aligned} q(z) &:= Mz^2 + Bz + K, \quad \text{with} \\ \Delta &:= \text{Discr}(q) = B^2 - 4MK \therefore \left[\frac{\text{m}}{\text{t}}\right]^2 \quad \text{and} \\ \text{Roots}(q) &= \frac{-B}{2M} \pm \frac{\sqrt{\Delta}}{2M} = \frac{-B}{2M} \pm \sqrt{\left[\frac{B}{2M}\right]^2 - \frac{K}{M}} \therefore \frac{1}{\text{t}}. \end{aligned}$$

CASE: $\Delta < 0$, underdamped Set

$$\omega := \frac{\sqrt{-\Delta}}{2M} \quad \text{and} \quad R := \frac{B}{2M}. \quad \text{So}$$

$$\text{Roots}(q) = -R \pm i\omega.$$

Thus the soln-set to (14) is

$$\begin{aligned} &e^{-Rt} \cdot \text{Span}(\cos(\omega t), \sin(\omega t)) \\ &= e^{-Rt} \cdot \text{Span}(e^{i\omega t}, e^{-i\omega t}) \\ &= \text{Span}(e^{[-R+i\omega]t}, e^{[-R-i\omega]t}). \end{aligned}$$

CASE: $\Delta = 0$, critically damped Aux-poly has one real root, negative, of multiplicity 2. Etc.

CASE: $\Delta > 0$, overdamped Aux-poly has two (distinct) negative real roots. Etc.

Viewing M and K as fixed. The *natural* undamped, $B = 0$, frequency is $\omega_{\text{Nat}} = \sqrt{\frac{K}{M}}$. The *critical-damping coeff* is $B := 2\sqrt{MK}$.

Pendulum. Consider a length $L \therefore \text{t}$ pendulum, under a uniform acceleration [gravitational] field $A \therefore \frac{\text{t}}{\text{t}^2}$. Let $\theta = \theta(t)$ denote its angle w.r.t vertical. At time t , the observed acceleration of the bob is $L \cdot \theta''(t)$, whereas the acceleration from A is $-A \cdot \sin(\theta(t))$, giving DE

$$15: \quad \theta'' = -\frac{A}{L} \cdot \sin(\theta).$$

If the max-value of $\theta()$ is small, then we can use approximation $\frac{\sin(\theta)}{\theta} \approx 1$ to get approximating DE

$$16a: \quad \theta'' = -\frac{A}{L} \cdot \theta.$$

This Harmonic.DE has $\omega := \sqrt{\frac{A}{L}} \therefore \frac{1}{\text{t}}$.

Adjoined paragraph: With θ_0 the time-zero displacement (initial angle), our (16a) has soln

$$\begin{aligned} 16b: \quad \theta(t) &= \alpha \sin(\omega \cdot t) + \theta_0 \cos(\omega \cdot t), \quad \text{with angular speed} \\ \theta'(t) &= [\alpha \cos(\omega \cdot t) - \theta_0 \sin(\omega \cdot t)] \cdot \omega. \end{aligned}$$

The FOLDE algorithm [First-Order LDE]

[§2.3-NSS9.]

Step F0. Write the DE in the form

17a:
$$\frac{dy}{dx} + [C(x) \cdot y] = G(x).$$

Pick [i.e, compute] an antiderivative $B()$ of $C()$, i.e

17b:
$$B(x) := \int^x C().$$

For later use, store this *multiplier function*⁹⁴ M :

17c:
$$M(x) := e^{B(x)} = [\text{simplified}].$$

Observe that $M' = M \cdot C$. Hence

$$\begin{aligned} [M \cdot y]' &= [M \cdot C \cdot y] + [M \cdot y'] \\ &= M \cdot [C \cdot y] + y' \\ &\stackrel{\text{by (17a)}}{=} M \cdot G. \end{aligned}$$

Step F1. Define product $P(x) := M(x) \cdot G(x)$. Compute an antiderivative,

17d:
$$Q(x) := \int^x P().$$

Step F2. Now, for $\alpha :=$ [an arbitrary constant], the following definition of y will satisfy equation (17a):

17e:
$$y(x) = y_\alpha(x) := \frac{\alpha}{M(x)} + \frac{Q(x)}{M(x)}.$$

Step F3. Use (17e) to compute y' . Plug in to (17a) to see if your formula for y satisfies it. [It is at this point that I sometimes find that I have made a computational error.]**Step F4.** If the problem asks that y satisfy –in addition to (17a)– an initial condition of the form $y(x_0) = y_0$, then substitute $x = x_0$ and $y = y_0$ into (17e) and solve for α . You will get that

17f:
$$\alpha = [y_0 \cdot M(x_0)] - Q(x_0).$$

*That's all there is to it! It's all copasetic.*⁹⁴Using functional notation, we could write $M := \exp \circ B$.**FOLDE Example.** Given DE

17a†:
$$\begin{aligned} x^3 y' + x^2 y &= 7x^8 - x^5, & \text{re-write it as} \\ y' + \frac{1}{x} \cdot y &= 7x^5 - x^2, \end{aligned}$$

to fit form (17a). So $G(x) = [7x^5 - x^2]$.Applying step (F0), we have $C(x) = 1/x$, and can define $B := \log$. Hence

17c†:
$$M(x) \stackrel{\text{def}}{=} e^{\log(x)} \stackrel{\text{note}}{=} x.$$

Step F1. Define $P(x) := x \cdot [7x^5 - x^2] = 7x^6 - x^3$. Antidifferentiate to get

17d†:
$$Q(x) := x^7 - \frac{1}{4}x^4.$$

Step F2. For each constant, α , the function

17e†:
$$y_\alpha(x) := \frac{\alpha}{x} + [x^6 - \frac{1}{4}x^3]$$

is supposed to satisfy (17a†). **Check that it does!****Step F4.** Imagine we are given initial condition

17g:
$$y(2) = 66.5.$$

For the corresponding α , compute

$$y_\alpha(2) = \frac{\alpha}{2} + 64 - 2 = \frac{\alpha}{2} + 62.$$

Hence $\alpha/2 = 66.5 - 62 = 4.5$, so $\alpha = 9$. Alternatively, formula (17f) gives

$$\begin{aligned} \alpha &= [66.5 \cdot M(2)] - Q(2) \\ &= [66.5 \cdot 2] - [128 - 4] \\ &= 133 - 124 \stackrel{\text{note}}{=} 9. \end{aligned}$$

THE UPSHOT: The unique soln to IVP (17a†, 17g) is

$$y(x) = [9/x] + x^6 - \frac{1}{4}x^3.$$

FOLDE Trig-Example. U.F. $y=y(t)$ satisfies

$$17a\dagger: \quad y' + \cos(2t) \cdot y = \cos(2t).$$

Applying (F0) conveniently hands us

$$17b\dagger: \quad B(t) := \int^t \cos(2\tau) d\tau \stackrel{\text{note}}{=} \frac{1}{2}\sin(2t).$$

To lessen writing, define *expressions*

$$\mathbf{c} := \cos(2t) \quad \text{and} \quad \mathbf{s} := \sin(2t).$$

Thus our multiplier is

$$17c\dagger: \quad M(t) := e^{\frac{1}{2}\mathbf{s}},$$

and the corresponding product is $P(t) := \mathbf{c} \cdot e^{\frac{1}{2}\mathbf{s}}$. An antiderivative is

$$17d\dagger: \quad Q(t) := e^{\frac{1}{2}\mathbf{s}} \stackrel{\text{note}}{=} M(t),$$

$$\text{so } \frac{Q}{M} = 1.$$

THE UPSHOT: For each constant α , function

$$17e\dagger: \quad y(t) = y_\alpha(t) := \alpha \cdot e^{-\frac{1}{2}\sin(2t)} + 1$$

will satisfy (17a \ddagger).

CHECKING: Note $[\frac{1}{2}\mathbf{s}]' = \mathbf{c}$. Hence differentiating (17e \ddagger) gives

$$\begin{aligned} y' &= \alpha e^{-\frac{1}{2}\mathbf{s}} \cdot [-\mathbf{c}] . \quad \text{And} \\ \mathbf{c} \cdot y &= \alpha e^{-\frac{1}{2}\mathbf{s}} \cdot \mathbf{c} + \mathbf{c} . \end{aligned}$$

Their sum is $y' + \mathbf{c} \cdot y = \mathbf{c}$, which indeed is (17a \ddagger).

log-CoV to FOLDE [Change-of-Variable]

Consider a *positive-valued* fnc $y=y(t)$ satisfying DE

$$18a: \quad y' - [G(t) \cdot y] = -C(t) \cdot y \cdot \log(y).$$

Happily, we can convert this to a FOLDE, by setting $z := \log(y)$. Divide by y and re-order as

$$[y'/y] + C(t)\log(y) = G(t).$$

Our substitution allows us to re-write this as

$$18b: \quad z' + C(t) \cdot z = G(t),$$

which has form (17a). Its general soln $z_\alpha()$ hands us

$$18c: \quad y_\alpha(t) = e^{z_\alpha(t)} = \exp(z_\alpha(t)).$$

Example of CoV-to-FOLDE. For $t > 0$, we seek a *positive-valued* fnc $y=y(t)$ satisfying

$$18a\dagger: \quad ty' = 2t^2y + [y \cdot \log(y)].$$

Dividing by $t \cdot y$ and re-ordering gives

$$\frac{y'}{y} - \left[\frac{1}{t} \cdot \log(y) \right] = 2t.$$

Substitution $z := \log(y)$ gives

$$18b\dagger: \quad z' - \left[\frac{1}{t} \cdot z \right] = 2t.$$

Matching to (17a), we define

$$\begin{aligned} G(t) &:= 2t, \quad C(t) := \frac{-1}{t}, \quad B := -\log, \\ \text{and } M(t) &:= e^{B(t)} = \frac{1}{t}. \end{aligned}$$

Step (F1) gives $P(t) := \frac{1}{t} \cdot 2t = 2$, hence $Q(t) := 2t$. For an arbitrary constant α , then,

$$17e\dagger: \quad z_\alpha(t) := \alpha \cdot t + 2t \cdot t.$$

“Un-substituting” [returning to y], then, yields

$$18c\dagger: \quad y_\alpha(t) = e^{\alpha t + 2t^2}.$$

Have you checked that this really satisfies (18a \dagger)?

Bernoulli eqn using FOLDE

Given fncs \tilde{C} and \tilde{G} , we seek solutions $y() > 0$ to

$$19a: \quad y' + \tilde{C} \cdot y = \tilde{G} / y^{[N-1]},$$

where $N \in \mathbb{R}$ with $N \neq 0$. [When N is zero, the DE is $y' + \tilde{C} \cdot y = \tilde{G} \cdot y$. This rewrites as $y' + [\tilde{C} - \tilde{G}] \cdot y = 0$, the easy ZeroTar case of FOLDE.]

To convert (19a) to a LDE, multiply both sides by $N \cdot y^{[N-1]}$ to get

$$Ny^{[N-1]} \cdot y' + N\tilde{C} \cdot y^N = N \cdot \tilde{G}.$$

With CoV $z = y^N$, this becomes

$$19b: \quad z' + \underbrace{N \cdot \tilde{C}(t) \cdot z}_{C(t)} = \underbrace{N \cdot \tilde{G}(t)}_{G(t)}.$$

Apply the FOLDE algorithm to obtain a general soln z_α . Finally, take the (positive) N^{th} -root to get

$$19c: \quad y_\alpha := [z_\alpha]^{1/N}.$$

Bernoulli eqn Example. U.F. $y=y(t)$ has

$$19a\ddagger: \quad y' + 2y = t \cdot y^{-2} \stackrel{\text{note}}{=} t / y^{[3-1]}.$$

So $N = 3$ and $\tilde{C}(t) = 2$ and $\tilde{G}(t) = t$. Change-of-variable $z := y^3$ gives [via DE $3y^2 y' + 6y^3 = 3t$]

$$19b\ddagger: \quad z' + 6z = 3t.$$

So $B(t) := 6t$ and $M(t) = e^{6t}$. Thus product

$$P(t) := M(t) \cdot 3t \stackrel{\text{note}}{=} 3t \cdot e^{6t}.$$

Courtesy (1.1), one antiderivative of P is

$$Q(t) := e^{6t} \cdot \left[\frac{t}{2} - \frac{1}{2 \cdot 6} \right].$$

For α an arbitrary number, then,

$$17e\ddagger: \quad z_\alpha(t) = \alpha e^{-6t} + \left[\frac{t}{2} - \frac{1}{12} \right]. \quad \text{Hence}$$

$$19c\ddagger: \quad y_\alpha(t) = \left[\alpha e^{-6t} + \frac{t}{2} - \frac{1}{12} \right]^{1/3}.$$

ZeroTar FOLDE. [This uses notation from the (17a) paragraph.] Because a “W” looks a bit like an upside-down “M”, when FOLDE-ing I’ll sometimes define

$$W(x) := \frac{1}{M(x)} \stackrel{\text{recall}}{=} e^{-B(x)}.$$

In this notation, soln (17e) is

$$y_\alpha(x) = \alpha \cdot W(x) + Q(x) \cdot W(x).$$

In particular, when target fnc G from (17a) is zero, our general soln reduces to $y_\alpha(x) = \alpha \cdot W(x)$. So if we just need *one* non-trivial soln, we can let $\alpha=1$, giving

$$y(x) = W(x) = 1/e^{B(x)}.$$

The EXACT algorithm

[§2.4–NSS9. §2.4–ZW8.] Write your DE in form

$$20a: \quad [\mathcal{N}(x, y) \cdot \frac{dy}{dx}] + \mathcal{M}(x, y) = 0.$$

Our goal is to describe y as an *implicit solution*: We seek a non-trivial function $\mathbf{F}(\cdot, \cdot)$ so that each solution y to (20a) satisfies

$$20b: \quad \mathbf{F}(x, y(x)) = \alpha,$$

for some constant α . [If we are interested in complex-valued solutions, then we will allow α to be a complex number.]

Step E1. Does

$$20c: \quad \frac{\partial \mathcal{N}}{\partial x} = \frac{\partial \mathcal{M}}{\partial y} ?$$

If yes, then (20a) is “an *exact DE*”; this means [courtesy of our theorem] that there exists a differentiable fnc $\mathbf{F}(x, y)$ such that

$$20c': \quad \frac{\partial \mathbf{F}}{\partial y} = \mathcal{N} \quad \text{and} \quad \frac{\partial \mathbf{F}}{\partial x} = \mathcal{M}.$$

In this case, proceed to step (E2). Conversely, if (20a) is not exact, go to (E1.1) and (E1.2).

Step E2. Compute $\mathbf{F}()$ as follows. Compute two antiderivatives, and their difference:

$$\begin{aligned} \mathcal{B}(x, y) &:= \int^y \mathcal{N}(x, \tilde{y}) d\tilde{y} ; \\ \mathcal{A}(x, y) &:= \int^x \mathcal{M}(\tilde{x}, y) d\tilde{x} ; \\ \text{Diff}(x, y) &:= \mathcal{B}(x, y) - \mathcal{A}(x, y). \end{aligned}$$

Since (20c') holds, this difference $\text{Diff}(x, y)$ can be written as the difference between a pure function of y and a pure function of x . We do that next.

Step E3. Find functions $g(y)$ and $h(x)$ so that [this can usually be done by inspection]

$$20d: \quad \text{Diff}(x, y) = g(y) - h(x).$$

[The pair of functions g, h is *almost* unique —adding a constant to g and the same constant to h , gives another a soln-pair.] One can compute a function $\mathbf{F}()$ which satisfies (20c'), by either

$$20e: \quad \begin{aligned} \mathbf{F}(x, y) &:= \mathcal{A}(x, y) + g(y) \quad \text{or} \\ \mathbf{F}(x, y) &:= \mathcal{B}(x, y) + h(x). \end{aligned}$$

Step E4. Now use (20b) to discern what you need to know about $y(x)$, such as asymptotic behavior as $x \rightarrow \pm\infty$. You might do this by solving (20b) explicitly for $y(x)$, or you might use qualitative methods.

EXACT Example. U.F $y=y(x)$ is a soln to

$$20a*: \quad [8y + \sin(x)]y' + y\cos(x) - 3x^2 = 0.$$

With $\mathcal{N} := 8y + \sin(x)$ and $\mathcal{M} := y\cos(x) - 3x^2$, note

$$\mathcal{N}_x = 0 + \cos(x) = \cos(x) + 0 = \mathcal{M}_y;$$

happily (20a*) is exact.

Anti-differentiating w.r.t y , then x , gives

$$\mathcal{B}(x, y) := \int^y \mathcal{N} \stackrel{\text{note}}{=} 4y^2 + y\sin(x);$$

$$\mathcal{A}(x, y) := \int^x \mathcal{M} \stackrel{\text{note}}{=} y\sin(x) - x^3. \quad \text{Thus}$$

$$\mathcal{B} - \mathcal{A} = 4y^2 + x^3 = g(y) - h(x), \quad \text{where}$$

we can define $g(y) := 4y^2$ and $h(x) := -x^3$. Hence

$$\mathbf{F}(x, y) := \mathcal{B}(x, y) + h(x)$$

$$= 4y^2 + y\sin(x) - x^3 \stackrel{\text{note}}{=} \mathcal{A}(x, y) + g(y).$$

Consequently, each soln $y()$ to (20a*), satisfies

$$4[y(x)]^2 + [y(x) \cdot \sin(x)] - x^3 = \alpha$$

for some number α .

Step E1.1. [§2.5–NSS9. §2.4–ZW8.] When (20a) is *not* exact, check to see if we can create an exact-ifying fnc $W(x)$, as follows. Compute

$$20f: \quad C(x, y) := \frac{\mathcal{N}_x(x, y) - \mathcal{M}_y(x, y)}{\mathcal{N}(x, y)}.$$

Simplify $C(x, y)$ to see if it is a fnc of x only. If “no”, then (20a) cannot be made exact by multiplying by a pure fnc of x . Try (E1.2), later in these notes.

If “yes”, then write $C(x) := C(x, y)$. An exact-ifying factor $W(x)$ is a soln to DE

$$*: \quad W'(x) + C(x)W(x) = 0.$$

Applying FOLDE, define $B() := \int C()$. Then

$$20g: \quad W(x) := 1/e^{B(x)}$$

satisfies (*).

Finally, define two new functions

$$20h: \quad \begin{aligned} \widehat{\mathcal{N}}(x, y) &:= \mathcal{N}(x, y) \cdot W(x) \quad \text{and} \\ \widehat{\mathcal{M}}(x, y) &:= \mathcal{M}(x, y) \cdot W(x). \end{aligned}$$

Automatically, differential eqn

$$20a.1: \quad [\widehat{\mathcal{N}}(x, y) \cdot \frac{dy}{dx}] + \widehat{\mathcal{M}}(x, y) = 0.$$

is exact. Apply steps (E2,E3,E4) to (20a.1).

EXACT Example of (E1.1)

Consider DE

$$20a\ddagger: \quad \underbrace{[x+1] \cdot 2y \cdot y'}_{\mathcal{N}(x,y)} + \underbrace{3 \cdot [5+y^2]}_{\mathcal{M}(x,y)} = 0.$$

Is this Exact? Applying (E1), note

$$20c\ddagger: \quad \mathcal{N}_x - \mathcal{M}_y = 2y - 6y \stackrel{\text{note}}{=} -4y$$

is *not* the zero-fnc, so (20a \ddagger) is not an exact DE. To attempt an exact-ifying factor, (E1.5), we compute

$$20f\ddagger: \quad C(x, y) := \frac{-4y}{[x+1] \cdot 2y} = -2/[x+1].$$

This is a pure fnc of x , so we anti-diff w.r.t x and get $B(x) := -2 \cdot \log(x+1)$. Our exact-ifying factor is thus

$$W(x) := e^{-B(x)} \stackrel{\text{note}}{=} [x+1]^2.$$

Good! We now have Exact DE (20a.1), where

$$20h\ddagger: \quad \begin{aligned} \widehat{\mathcal{N}}(x, y) &= [x+1]^3 \cdot 2y \quad \text{and} \\ \widehat{\mathcal{M}}(x, y) &= 3 \cdot [x+1]^2 \cdot [5+y^2]. \end{aligned}$$

Applying (E2), then (E3). Anti-differentiating w.r.t y , respectively, x gives

$$\mathcal{B}(x, y) := \int^y \widehat{\mathcal{N}} \stackrel{\text{note}}{=} [x+1]^3 \cdot y^2;$$

$$\mathcal{A}(x, y) := \int^x \widehat{\mathcal{M}} \stackrel{\text{note}}{=} [x+1]^3 \cdot [5+y^2]. \text{ Thus}$$

$$\mathcal{B} - \mathcal{A} \stackrel{\text{note}}{=} -5 \cdot [x+1]^3 = g(y) - h(x), \text{ where}$$

we can define $g(y) := 0$ and $h(x) := 5 \cdot [x+1]^3$. Finally, (20e) tells us that $\mathbf{F} = \mathcal{A} + g \stackrel{\text{note}}{=} \mathcal{A}$.

Checking. Consider a fnc $y = y(x)$ satisfying

$$**: \quad \text{Const} = [x+1]^3 \cdot [5+y(x)^2].$$

Applying $\frac{d}{dx}$ hands us

$$0 = 3[x+1]^2 \cdot [5+y(x)^2] + [x+1]^3 \cdot 2y(x) \cdot y'(x).$$

Dividing by $[x+1]^2$ yields (20a \ddagger).

Nice. . .

Step E1.2. When step (E1.1) fails, check for an exact-ifying fnc $W(y)$, as follows. Compute

$$20i: \quad C(x, y) := \frac{\mathcal{M}_y(x, y) - \mathcal{N}_x(x, y)}{\mathcal{M}(x, y)}.$$

Simplify $C(x, y)$ to see if it is a fnc of y alone. If “yes”, write $C(y) := C(x, y)$. This time, exact-ifying factor $W(y)$ satisfies DE

$$*: \quad W'(y) + C(y)W(y) = 0.$$

Applying FOLDE, define $B() := \int C()$. Then

$$W(y) := 1/e^{B(y)}$$

fulfills (*). Define two new functions

$$20j: \quad \begin{aligned} \widehat{\mathcal{N}}(x, y) &:= \mathcal{N}(x, y) \cdot W(y) \quad \text{and} \\ \widehat{\mathcal{M}}(x, y) &:= \mathcal{M}(x, y) \cdot W(y). \end{aligned}$$

Apply steps (E2,E3,E4) to DE

$$20a.2: \quad [\widehat{\mathcal{N}}(x, y) \cdot \frac{dy}{dx}] + \widehat{\mathcal{M}}(x, y) = 0,$$

which is exact.

EXACT Example of (E1.2)

Consider $y=y(x)$ in

$$20a\ddagger: \quad \underbrace{x^2 \cdot y'}_{\mathcal{N}(x,y)} - \underbrace{[y^2 + 2xy]}_{\mathcal{M}(x,y)} = 0.$$

Firstly,

$$\mathcal{N}_x - \mathcal{M}_y = 2x - [-2y + 2x] \stackrel{\text{note}}{=} 2[y + 2x]$$

is not the zero-fnc, so (20a \ddagger) is not exact. Secondly, ratio

$$\frac{\mathcal{N}_x - \mathcal{M}_y}{\mathcal{N}} = \frac{2 \cdot [y + 2x]}{x^2}$$

is not a pure fnc of x , so (E1.1) is inapplicable.

Applying (E1.2), we compute $C(x, y)$ as

$$20i\ddagger: \quad \frac{\mathcal{M}_y - \mathcal{N}_x}{\mathcal{M}} \stackrel{\text{note}}{=} \frac{-[2 \cdot [y + 2x]]}{-[y^2 + 2xy]} \stackrel{\text{note}}{=} \frac{2}{y}.$$

Yes! –this is a pure fnc of y . Applying FOLDE, we anti-diff w.r.t y , obtaining $B(y) := 2 \cdot \log(y)$. Our exact-ifying factor is thus

$$W(y) \stackrel{\text{def}}{=} e^{-B(y)} \stackrel{\text{note}}{=} 1/y^2.$$

Multiplying (20a \ddagger) by $\frac{1}{y^2}$ gives exact $\widehat{\mathcal{N}} \cdot y' + \widehat{\mathcal{M}} = 0$, where

$$20j\ddagger: \quad \begin{aligned} \widehat{\mathcal{N}}(x, y) &:= \frac{x^2}{y^2} \quad \text{and} \\ \widehat{\mathcal{M}}(x, y) &:= -\left[1 + \frac{2x}{y}\right]. \end{aligned}$$

Applying (E2,E3). Anti-differentiating w.r.t y and x , yields

$$\mathcal{B}(x, y) := \int^y \widehat{\mathcal{N}} \stackrel{\text{note}}{=} -\frac{x^2}{y};$$

$$\mathcal{A}(x, y) := \int^x \widehat{\mathcal{M}} \stackrel{\text{note}}{=} -\left[x + \frac{x^2}{y}\right]. \text{ Thus}$$

$$\mathcal{B} - \mathcal{A} = x = g(y) - h(x), \text{ where}$$

we define $g(y) := 0$ and $h(x) := -x$. Finally, (20e) tells us that $\mathbf{F} = \mathcal{A} + g \stackrel{\text{note}}{=} \mathcal{A}$.

Checking. Consider a fnc $y=y(x)$ satisfying

$$**: \quad \alpha = -\left[x + \frac{x^2}{y(x)}\right],$$

for some number α . Applying $\frac{dy}{dx}$ produces that

$$0 = -\left[1 + \frac{2xy - x^2y'}{y^2}\right] \stackrel{\text{note}}{=} \frac{x^2y' - 2xy - y^2}{y^2}.$$

Multiplying by y^2 yields (20a \ddagger), as desired.

In this instance, we can actually solve (**) for $y()$ as

$$y_\alpha(x) = \frac{-x^2}{\alpha + x}.$$

Nifty...

Exactifying-factor theory

For fncs $\mathcal{N}=\mathcal{N}(x, y)$ and $\mathcal{M}=\mathcal{M}(x, y)$, suppose DE $\boxed{\mathcal{N}y' + \mathcal{M} = 0}$ is *not* exact. What property would a fnc $W=W(x, y)$ have to possess in order that DE

$$\dagger: \quad [\mathcal{N}W]y' + [\mathcal{M}W] = 0$$

be exact? Exactness requires equality of

$$\begin{aligned} *: \quad [\mathcal{N}\cdot W]_x &\stackrel{\text{note}}{=} \mathcal{N}W_x + \mathcal{N}_x W \quad \text{with} \\ &[\mathcal{M}\cdot W]_y \stackrel{\text{note}}{=} \mathcal{M}W_y + \mathcal{M}_y W. \end{aligned}$$

That is, (\dagger) is exact IFF

$$\ddagger: \quad 0 = \mathcal{N}W_x - \mathcal{M}W_y + [\mathcal{N}_x - \mathcal{M}_y]W.$$

Alas, PDE (\ddagger) is likely as difficult as the original DE.

IDEA: Could a pure fnc of x be an exactifying-factor? If $W=W(x)$, then W_y is zero, so (\ddagger) becomes

$$\ddagger_x: \quad 0 = W_x + \frac{\mathcal{N}_x - \mathcal{M}_y}{\mathcal{N}}W.$$

This effectively ^{♡5} forces ratio $\frac{\mathcal{N}_x - \mathcal{M}_y}{\mathcal{N}}$ to be x -pure. Hence (\ddagger_x) is a FOLDE [the easy $=0$ case]. This explains where coeff-fnc (20f) came from. Similarly, were W a pure fnc of y , then (\ddagger) reduces to

$$\ddagger_y: \quad 0 = W_y + \frac{\mathcal{M}_y - \mathcal{N}_x}{\mathcal{M}}W,$$

explaining coeff-fnc (20i).

2-variable exactifying-factor. Verify that pair

$$20k.1: \quad \begin{aligned} \mathcal{N} &= \mathcal{N}(x, y) := 5xy^2 + 3x^2 \quad \text{and} \\ \mathcal{M} &= \mathcal{M}(x, y) := 2y^3 + 3xy \end{aligned}$$

is *not* an exact-pair. Show that $\boxed{H = H(x, y) := xy^2}$ is an exactifying-factor for the $(\mathcal{N}, \mathcal{M})$ pair.

Soln to 2-V E-F. Firstly, derivatives

$$\begin{aligned} \mathcal{N}_x &\stackrel{\text{note}}{=} 5y^2 + 3 \cdot 2x \quad \text{and} \\ \mathcal{M}_y &\stackrel{\text{note}}{=} 2 \cdot 3y^2 + 3x \end{aligned}$$

are *not* equal, showing pair $(\mathcal{N}, \mathcal{M})$ not exact.

Define products

$$\begin{aligned} \widehat{\mathcal{N}} &:= \mathcal{N}H \stackrel{\text{note}}{=} 5x^2y^4 + 3x^3y^2 \quad \text{and} \\ \widehat{\mathcal{M}} &:= \mathcal{M}H \stackrel{\text{note}}{=} 2xy^5 + 3x^2y^3. \end{aligned}$$

Observe that *these* derivatives,

$$\begin{aligned} [\widehat{\mathcal{N}}]_x &\stackrel{\text{note}}{=} 5 \cdot 2xy^4 + 3 \cdot 3x^2y^2 \quad \text{and} \\ [\widehat{\mathcal{M}}]_y &\stackrel{\text{note}}{=} 2 \cdot 5xy^4 + 3 \cdot 3x^2y^2, \end{aligned}$$

are indeed equal.

In the spirit of IAATYD **M** TWIAYTD, applying the EXACT algorithm produces fnc

$$\mathbf{F}(x, y) := x^2y^5 + x^3y^3$$

s.t. $\mathbf{F}_y = \widehat{\mathcal{N}}$ and $\mathbf{F}_x = \widehat{\mathcal{M}}$. In consequence, each [complex] number α gives implicit soln

$$\mathbf{F}(x, y(x)) = \alpha$$

to DE

$$\mathcal{N}(x, y(x)) \cdot y'(x) + \mathcal{M}(x, y(x)) = 0,$$

for the \mathcal{N} and \mathcal{M} defined in (20k.1). ◆

^{♡5} Weasel word alert! I'll explain in class.

Logistic model [§3.2–NSS9, P.98]

Suppose $p = p(t)$ measures the size of a population at time t . Let \circled{p} be a placeholder for the units of p . [If $p(t)$ measures the weight of bacteria in a petri dish at time t , then \circled{p} might mean ounces. If $p(t)$ is a count of individuals then \circled{p} indicates no units.] Suppose the population has **natural birth-multiplier** $\mathbf{B} > 0$, in units $1/\circled{t}$. [Agree that $\mathbf{B} :: \frac{1}{\circled{t}}$ means that \mathbf{B} is in abstract units $1/\circled{t}$.] Were there no constraints, the DE⁶ would be

$$p' = \mathbf{B} \cdot p, \quad \text{with soln } p(t) = \mathbf{p}_0 \cdot e^{\mathbf{B} \cdot t}.$$

A more realistic model has a **carrying capacity** $\mathbf{C} > 0$ [with $\mathbf{C} :: \circled{p}$], which is the maximum population that the environment can sustain. As long as $0 < p() < \mathbf{C}$, the population continues to grow, albeit more and more slowly. When $p > \mathbf{C}$, then the population declines [deaths exceed births], asymptotically approaching \mathbf{C} . The form of the DE might be

$$12a: \quad \frac{dp}{dt}(t) = [\mathbf{B} \cdot F(p(t))] \cdot p(t),$$

where $\mathbf{B} \cdot F(p(t))$ is the birth-mult @ t . This $F()$ has $\lim_{p \rightarrow \mathbf{C}} F(p) = 0$, $\lim_{p \searrow 0} F(p) = 1$, and likely should be continuous, and strictly decreasing, for $0 < p < \mathbf{C}$.

The simplest such F is $F(p) := 1 - \frac{p}{\mathbf{C}}$. This engenders the *Logistic model* DE⁷

$$12b: \quad \frac{dp}{dt} = \mathbf{B} \cdot [1 - \frac{p}{\mathbf{C}}] \cdot p.$$

Solving (12b). Define $q(t) := \frac{p(t)}{\mathbf{C}}$. Thus

$$q' = \frac{1}{\mathbf{C}} p' = \mathbf{B} \cdot [1 - q] \cdot \frac{1}{\mathbf{C}} \cdot p = \mathbf{B} \cdot [1 - q] \cdot q. \quad \text{I.e.}$$

$$12c: \quad \frac{dq}{dt} = \mathbf{B} \cdot [1 - q] \cdot q.$$

This DE separates⁸ as $\frac{1}{q[1-q]} dq = \mathbf{B} dt$. Antidiffing RhS gives $\mathbf{B}t$. [Exer: DE (12c) is autonomous and 1st-order, so we don't need a CoI. Why?] Partial-fractioning gives

$$*: \quad \frac{1}{q \cdot [1 - q]} = \frac{1}{q} + \frac{1}{1 - q}.$$

⁶Sometimes called the *Malthusian model* because of ideas in [An Essay on the Principle of Population](#), 1798, by [Thomas Robert Malthus](#). However, I am unaware of evidence that Malthus wrote down a differential-eqn.

⁷Usually attributed to [Pierre-François Verhulst](#) in 1838.

⁸Dividing by $q \cdot [1 - q]$ loses solns $q \equiv 0$ and $q \equiv 1$; i.e. loses $p \equiv 0 \circled{p}$ and $p \equiv \mathbf{C}$. We'll regain these two equilibrium solns later.

When $0 < q < 1$. Expression (*) antidifferentiates to $[\log(q) - \log(1 - q)]$. Exponentiating gives

$$\dagger: \quad e^{\mathbf{B}t} = \frac{q}{1 - q} \stackrel{\text{note}}{=} \frac{1}{1 - q} - 1.$$

A soupçon of algebra yields

$$q = \frac{e^{\mathbf{B}t}}{e^{\mathbf{B}t} + 1} = \frac{1}{1 + e^{-\mathbf{B}t}}.$$

Un-substituting, and using autonomy, hands us

$$12d: \quad p(t) = \frac{\mathbf{C}}{1 + e^{-\mathbf{B} \cdot [t - \tau_{\text{Half}}]}},$$

where $p(\tau_{\text{Half}})$ is half of \mathbf{C} .

Otherwise. If $q > 1$ then (*) antidifferentiates to $[\log(q) - \log(q - 1)]$. Exponentiating produces $\frac{q}{q-1}$.

OTOHand, if $q < 0$ then (*) antidifferentiates to $[\log(-q) - \log(1 - q)]$. Exponentiating results in $\frac{-q}{1-q} \stackrel{\text{note}}{=} \frac{q}{q-1}$. Hence both $q > 1$ and $q < 0$ produce

$$\ddagger: \quad e^{\mathbf{B}t} = \frac{q}{q-1}.$$

Routine algebra cheerfully delivers

$$12e: \quad p(t) = \frac{\mathbf{C}}{1 - e^{-\mathbf{B} \cdot [t - \tau_{\text{Asymp}}]}},$$

where this $p()$ has a vertical-asymptote at $t = \tau_{\text{Asymp}}$.

Algebra. Both (12d,12e) rewrite as $p(t) = \frac{\mathbf{C}}{1 + M \cdot e^{-\mathbf{B} \cdot t}}$, where M

$$\stackrel{\text{by (12d)}}{=} \mathbf{e}^{\mathbf{B} \cdot \tau_{\text{Half}}}, \quad \stackrel{\text{by (12e)}}{=} -e^{\mathbf{B} \cdot \tau_{\text{Asymp}}},$$

respectively. Plugging $t = 0 \text{ min}$ into (12d,12e) says \mathbf{p}_0

$$\stackrel{\text{by (12d)}}{=} \frac{\mathbf{C}}{1 + e^{\mathbf{B} \cdot \tau_{\text{Half}}}}, \quad \stackrel{\text{by (12e)}}{=} \frac{\mathbf{C}}{1 - e^{-\mathbf{B} \cdot \tau_{\text{Asymp}}}}$$

respectively. In both cases, then, $M = \frac{\mathbf{C}}{\mathbf{p}_0} - 1$. \square

Unifying. The above algebra yielded a uniform description of (12d), (12e) and the $p() \equiv \mathbf{C}$ forward-stable equilibrium soln, as

$$12f: \quad p(t) = \frac{C}{1 + [\frac{C}{p_0} - 1] \cdot e^{-B \cdot t}},$$

where p_0 denotes the population at time 0.

Multiplying top&bottom by p_0 unifies with the forward-unstable $p() \equiv 0$ equilibrium soln, giving

$$12g: \quad \begin{aligned} p(t) &= \frac{C \cdot p_0}{p_0 + [C - p_0] \cdot e^{-Bt}} \\ &= \frac{C \cdot p_0 \cdot e^{Bt}}{C + p_0 \cdot [e^{Bt} - 1]}. \end{aligned}$$

Although derived in \mathbb{R} , please check, for all complex numbers p_0, B, C with $C \neq 0$, that (12f,12g) satisfy DE (12b) for all⁹ complex times t .

Cool stuff....

Exer: Doubling-time. *Haffoweria* bacteria have an unconstrained (Malthusian model) **doubling time**¹⁰ of 30min. Compute the birth-multiplier, B , for *Haffoweria*.

Soln. Define $\tau_{\text{Dbl}} := 30\text{min}$. [It is often, but not always, good to give conceptual names to values]

The Malthusian model gives $p(t) = p_0 \cdot e^{Bt}$. So

$$2 = \frac{p(\tau_{\text{Dbl}})}{p(0 \text{ min})} = \frac{\exp(B \cdot \tau_{\text{Dbl}})}{1}.$$

Logarithmizing gives

$$B = \frac{\log(2)}{\tau_{\text{Dbl}}} = \frac{\log(2)}{30 \text{ min}} \approx 0.023 \frac{1}{\text{min}}. \quad \blacklozenge$$

⁹Well –... essentially. If $B = \frac{0}{\text{min}}$ or $C = p_0$, then the soln is constant. When $B \neq \frac{0}{\text{min}}$ and $C \neq p_0$, then the soln has a single (complex) time, τ_{Asymp} , when the (12f)-denominator is zero.

¹⁰Apparently, *doubling time* is also called *generation time*.

Exer: Population-sampling. Reproduction of the fascinating *DiffTheory* a bacteria closely follows the logistic model (12b). Sharon Scientist designs a protocol to estimate \mathbf{B} and \mathbf{C} for *DiffTheory* a:

She put initial population $\mathbf{p}_0 = p(0\text{min})$, into a petri dish, then measured the pop. at two later times $\mathbf{t}_1 < \mathbf{t}_2$. Prior to this, she used DiffyQ to derive the simplest time-ratio $\rho := \frac{\mathbf{t}_2}{\mathbf{t}_1}$ for her protocol. *What time-ratio $\rho = \frac{\mathbf{t}_2}{\mathbf{t}_1}$ [not nec. an integer] did Dr. Scientist use?*

Pop-samp, Theory. Formula (12f),

$$* \quad p(t) = \frac{\mathbf{C}}{1 + [\frac{\mathbf{C}}{\mathbf{p}_0} - 1] \cdot e^{-\mathbf{B} \cdot t}},$$

suggests studying ratio

$$\frac{p(0\text{min})}{p(t)} \stackrel{\text{note}}{=} \frac{1 + M e^{-\mathbf{B} \cdot t}}{1 + M}, \quad \text{where } M := \frac{\mathbf{C}}{\mathbf{p}_0} - 1.$$

Can we isolate \mathbf{B} ? Observe that

$$H(t) := \frac{p(0\text{min})}{p(t)} - 1 \stackrel{\text{note}}{=} [e^{-\mathbf{B} \cdot t} - 1] \cdot \frac{M}{1 + M}.$$

Define [we are not dividing by zero, as $\mathbf{t}_1 \neq 0\text{min}$] ratio

$$\mathbf{R} := \frac{H(\mathbf{t}_2)}{H(\mathbf{t}_1)} = \frac{e^{-\mathbf{B} \cdot \mathbf{t}_2} - 1}{e^{-\mathbf{B} \cdot \mathbf{t}_1} - 1}.$$

With $\mathbf{N} := e^{-\mathbf{B} \cdot \mathbf{t}_1}$ [for Negative-expon], note $\mathbf{N}^\rho = e^{-\mathbf{B} \cdot \mathbf{t}_2}$.

Thus

$$\mathbf{R} = \frac{\mathbf{N}^\rho - 1}{\mathbf{N} - 1}. \quad \text{When } \rho \text{ is a posint, then,}$$

$$\mathbf{R} = \mathbf{N}^{\rho-1} + \mathbf{N}^{\rho-2} + \cdots + \mathbf{N} + 1.$$

So the simplest useful ratio is $\rho := \frac{\mathbf{t}_2}{\mathbf{t}_1} = 2$, whence

$\mathbf{R} = \mathbf{N} + 1$. [Exer: What is wrong with using $\rho=1$?

BirthMult. Recall $\mathbf{R} \stackrel{\text{def}}{=} \frac{[\mathbf{p}_0/\mathbf{p}_2] - 1}{[\mathbf{p}_0/\mathbf{p}_1] - 1}$. Hence

$$\mathbf{N} = \mathbf{R} - 1 = \frac{\frac{\mathbf{p}_0}{\mathbf{p}_2} - \frac{\mathbf{p}_0}{\mathbf{p}_1}}{\frac{\mathbf{p}_0}{\mathbf{p}_1} - 1} \stackrel{\times \frac{\mathbf{p}_1 \mathbf{p}_2}{\mathbf{p}_1 \mathbf{p}_2}}{=} \frac{\mathbf{p}_1 \mathbf{p}_0 - \mathbf{p}_2 \mathbf{p}_0}{\mathbf{p}_0 \mathbf{p}_2 - \mathbf{p}_1 \mathbf{p}_2}.$$

It's more convenient to work with $\mathbf{E} := \frac{1}{\mathbf{N}} \stackrel{\text{note}}{=} e^{\mathbf{B} \cdot \mathbf{t}_1}$, the reciprocal, whence

$$12h: \quad \mathbf{E} = \frac{1}{\mathbf{R} - 1} = \left[\frac{\mathbf{p}_1 - \mathbf{p}_0}{\mathbf{p}_2 - \mathbf{p}_1} \right] \cdot \frac{\mathbf{p}_2}{\mathbf{p}_0} \stackrel{\text{note}}{\geq} 0. \quad \text{Thus,}$$

$$\mathbf{B} = \frac{\log(\mathbf{E})}{\mathbf{t}_1} = \frac{1}{\mathbf{t}_1} \cdot \log \left(\left[\frac{\mathbf{p}_1 - \mathbf{p}_0}{\mathbf{p}_2 - \mathbf{p}_1} \right] \cdot \frac{\mathbf{p}_2}{\mathbf{p}_0} \right).$$

CarryingCapacity. Recall that $\mathbf{E} = e^{\mathbf{B} \cdot \mathbf{t}_1}$. Plugging \mathbf{t}_1 in formula (12f) gives $\mathbf{p}_1 = \frac{\mathbf{C}}{1 + [\frac{\mathbf{C}}{\mathbf{p}_0} - 1]/\mathbf{E}}$. Solving for \mathbf{C} delivers

$$12i: \quad \mathbf{C} = \mathbf{p}_1 \cdot \frac{\mathbf{E} - 1}{\mathbf{E} - \frac{\mathbf{p}_1}{\mathbf{p}_0}}. \quad \text{Algebra gives}$$

$$S = \frac{\mathbf{p}_0 \mathbf{p}_1 + \mathbf{p}_1 \mathbf{p}_2 - 2\mathbf{p}_0 \mathbf{p}_2}{\mathbf{p}_1 \mathbf{p}_1 - \mathbf{p}_0 \mathbf{p}_2}. \quad \text{Our } \mathbf{E} \text{ and } S \text{ are scale-inv fncs of } \mathbf{p}_0, \mathbf{p}_1, \mathbf{p}_2. \quad \diamond$$

Pop-samp computation. Dr. Sharon used $\mathbf{t}_1 = 13\text{min}$ and $\mathbf{p}_0 := 2\text{oz}$, measuring $\mathbf{p}_1 := p(13\text{min}) = 5.792\text{oz}$, and $\mathbf{p}_2 := p(26\text{min}) = 11.987\text{oz}$. Formulas (12h,12i) and floating-point arithmetic gave her

$$\dagger: \quad \mathbf{B} \approx 0.099999994 \frac{1}{\text{min}} \quad \text{and} \quad \mathbf{C} \approx 20.0000008\text{oz}.$$

Not bad, as I had employed formula-(*) with

$$\mathbf{B} := \frac{1}{10\text{ min}} \quad \text{and} \quad \mathbf{C} := 20\text{ oz}.$$

As a responsible researcher, Dr. S. repeats her experiment, this time exceeding the estimated Carrying-Cap, initializing $\mathbf{p}_0 := 50\text{oz}$.

She measures $\mathbf{p}_1 := p(8\text{ min}) = 27.382\text{oz}$, then later $\mathbf{p}_2 := p(16\text{ min}) = 22.756\text{oz}$. [The pop. is dying off.]

Trusty dusty floating-point produces

$$\ddagger: \quad \mathbf{B} \approx 0.09999992 \frac{1}{\text{min}} \quad \text{and} \quad \mathbf{C} \approx 19.999996\text{oz},$$

which is consistent with (\dagger) . ◆

12j: *Questions.* For *DiffTheorya* with $p_0 := 50 \text{ oz}$:

LQ1: When (in past time) is the vertical asymptote?

How could we verify it experimentally?

In the petri dish, Sharon observes that *Mysteria* bacteria stabilizes at 30 oz. Seeded with $p_0 := 2 \text{ oz}$, she records $p_1 = 7.274 \text{ oz}$ just 10 min later.

LQ2: What is the birth-mult for *Mysteria*? Started from 2 oz, how many minutes later is the dish at half *CarryCap* for *Mysteria*? \square

Hyperbolic trigonometric functions

The **hyperbolic** versions of **cos** and **sin** are written **cosh** [rhyming with “josh”] and **sinh** [pronounced “cinch”]. For z, α, β complex,

$$\cosh(z) := \frac{e^z + e^{-z}}{2} \stackrel{\text{note}}{=} \cos(iz),$$

$$13a: \quad \sinh(z) := \frac{e^z - e^{-z}}{2} \stackrel{\text{note}}{=} -i\sin(iz),$$

$$\exp(\pm z) = \cosh(z) \pm i\sinh(z).$$

The corresponding facts about **cos()**, **sin()** give

$$13b: \quad \cosh(z + 2\pi i) = \cosh(z), \quad [\text{period } 2\pi i]$$

$$\sinh(z + 2\pi i) = \sinh(z);$$

$$13c: \quad \cosh(z + \pi i) = -\cosh(z), \quad [\text{anti-period } \pi i]$$

$$\sinh(z + \pi i) = -\sinh(z);$$

$$13d: \quad \cosh(z + i\frac{\pi}{2}) = i\sinh(z); \quad [\text{translation-scale}]$$

$$13e: \quad \cosh^2 - \sinh^2 = 1^2. \quad [\text{PYTHAGORAS}]$$

$$13f: \quad \cosh(\alpha \pm \beta) = \cosh(\alpha)\cosh(\beta) \pm \sinh(\alpha)\sinh(\beta),$$

$$\sinh(\alpha \pm \beta) = \cosh(\alpha)\sinh(\beta) \pm \sinh(\alpha)\cosh(\beta).$$

All zeros of **cosh** & **sinh** are pure imaginary. Further,

$$13g: \quad \text{Range}(\cosh) = \mathbb{C} = \text{Range}(\sinh).$$

Easily,

$$13h: \quad \cosh' = \sinh, \quad \sinh' = \cosh,$$

$$\cosh'' = \cosh, \quad \sinh'' = \sinh.$$

Routinely, the Maclaurin series are

$$13i: \quad \cosh(z) = 1 + \frac{z^2}{2!} + \frac{z^4}{4!} + \dots = \sum_{n=0}^{\infty} \frac{z^{2n}}{[2n]!}.$$

$$\sinh(z) = z + \frac{z^3}{3!} + \frac{z^5}{5!} + \dots = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{[2n+1]!}.$$

Posting race: Translation? We know that **sin()** is a translate of **cos()**; i.e. $\sin(z) = \cos(z - \frac{\pi}{2})$.
Dis(Prove): Function sinh() is a translate of cosh().
I.e., $\exists \mathbf{T} \in \mathbb{C}$ so that $\sinh(z) = \cosh(z - \mathbf{T})$.

Inverse hyperbolic functions on \mathbb{R} . To build invertible fncs, we restrict domains so that the restrictions are 1-to-1. Define **restricted cosh**, **ResCosh**, to be cosh restricted to the non-negative reals, and define **ResSinh**, **restricted sinh, cosh**, to be sinh but only on the reals. I.e.

$$\text{ResCosh} := \cosh \downarrow_{[0, \infty)} \quad \text{and} \quad \text{ResSinh} := \sinh \downarrow_{\mathbb{R}}.$$

Easily, **ResCosh** and **ResSinh** are strictly increasing on their domains, indeed, are bijections

$$\text{ResCosh} : [0, \infty) \leftrightarrow [1, \infty) \quad \text{and} \quad \text{ResSinh} : \mathbb{R} \leftrightarrow \mathbb{R},$$

hence have inverse fncs

$$\text{acosh} := \text{ResCosh}^{-1} \quad \text{and} \quad \text{asinh} := \text{ResSinh}^{-1}.$$

13j: Hyperbolic inverses. Function **acosh()** bijects $[1, \infty)$ onto $[0, \infty)$, and **asinh** : $\mathbb{R} \leftrightarrow \mathbb{R}$, by

$$\dagger: \quad \text{acosh}(t) = \log\left(t + \sqrt{t^2 - 1}\right), \quad \text{acosh}'(t) = \frac{1}{\sqrt{t^2 - 1}},$$

$$\ddagger: \quad \text{asinh}(t) = \log\left(t + \sqrt{t^2 + 1}\right), \quad \text{asinh}'(t) = \frac{1}{\sqrt{t^2 + 1}}. \diamond$$

Pf for acosh. Target $\mathbf{t} \in [1, \infty)$ asks for *the* $z \in [0, \infty)$ with $\cosh(z) = \mathbf{t}$. Set $E := e^z \stackrel{\text{note}}{\geq} e^0 = 1$. Expanding, $E + \frac{1}{E} = 2t$. Thus $E^2 - 2tE + 1 = 0$. Hence E is one of $[t \pm \sqrt{t^2 - 1}]$.

Were $E = [t - \sqrt{t^2 - 1}]$, then $t - \sqrt{t^2 - 1} \geq 1$, i.e., $t - 1 \geq \sqrt{t^2 - 1}$. Both sides are non-neg., so squaring preserves order, giving $t^2 + 1 - 2t \geq t^2 - 1$. Thus $1 \geq t$; but that branch of square-root does not extend to $[1, \infty)$. So $E = t + \sqrt{t^2 - 1}$, whence LhS(\dagger). \spadesuit

Proof for asinh. For target $\mathbf{t} \in \mathbb{R}$ we seek *the* $z \in \mathbb{R}$ with $\sinh(z) = \mathbf{t}$. With $E := e^z$, then, $E - \frac{1}{E} = 2t$, so $E^2 - 2tE - 1 = 0$. Thus $E \in [t \pm \sqrt{t^2 + 1}]$. But $[t - \sqrt{t^2 + 1}]$ is not > 0 . Hence $E = t + \sqrt{t^2 + 1}$, whence LhS(\ddagger). \spadesuit

Pf for asinh'. The Chain rule says $[f \circ g]' = [f' \circ g] \cdot g'$. With $f := \sinh$ and $g := \text{asinh}$, for $t \in \mathbb{R}$ note

$$\begin{aligned} \sinh'(\text{asinh}(t)) &= \cosh(\text{asinh}(t)) \\ &\stackrel{**}{=} \sqrt{\cosh^2(\text{asinh}(t))} \\ &= \sqrt{\sinh^2(\text{asinh}(t)) + 1} = \sqrt{t^2 + 1}. \end{aligned}$$

[Eqn $(**)$ holds, since $\sinh(t)$ is real, and $\cosh()$ is non-negative on \mathbb{R} .] Multiplying both sides by $\text{asinh}'(t)$ produces

$$1 \stackrel{\text{note}}{=} [\sinh \circ \text{asinh}]'(t) = \sqrt{t^2 + 1} \cdot \text{asinh}'(t).$$

The proof for **acosh'** is similar. \spadesuit

Hyperbolic \cosh , \sinh solve certain classic DfyQs.

13k: **Lemma.** For α complex, fnc $f(z) := \sinh(z - \alpha)$ is a soln to

$$[f']^2 = 1^2 + f^2.$$

The only other analytic solutions [courtesy FTODE] are constant functions $f() \equiv \pm i$.

Integrating f shows that the non-constant analytic solns to

$$\ddot{f}: [g'']^2 = 1^2 + [g']^2.$$

are $g(z) := \beta + \cosh(z - \alpha)$, for $\beta, \alpha \in \mathbb{C}$. \diamond

Proof. As $\sinh(z)^2 = \frac{1}{2^2} [e^{2z} + e^{-2z} - 2]$, so

$$\begin{aligned} 1^2 + [\sinh(z)]^2 &= \frac{1}{2^2} [e^{2z} + e^{-2z} + 2] \\ &= [\cosh(z)]^2 \stackrel{\text{note}}{=} [\sinh'(z)]^2. \quad \blacklozenge \end{aligned}$$

Derivation of hanging cable

Consider a hanging cable whose position is the graph of height fnc $y=h(x)$. As usual, use y' for $h'(x)$.

SETTINGS: A **hanging cable** (HC) only supports its own weight; the curve is called a **catenary**. In the **suspension bridge cable** (SBC) setting, the cable supports the (horizontal) suspension-bridge **deck**; we assume a massive deck compared to the cable-weight.

To normalize the notation, arrange the coordinate system so that *the lowest point of the cable is above $x=0$* and hence y' is zero. Call this lowest point $(0, h(0))$ the **vertex** of the cable. We define three physical constants:

T is the *tension* in the cable at its vertex. (The cable is horizontal here, so this is also its *horizontal component of Tension*.) This T has units lb .

S is the *weight-per-distance* (ie, density) of the load at the cable's vertex. (So S is the limit as $x \searrow 0$ of $\frac{1}{x}$ times the weight on the cable-system above interval $[0, x]$.) This S has units lb/ft .

R is the *ratio* $S/T :: \frac{1}{\text{lb}}$. Use $Q := \frac{1}{R} = T/S :: \text{lb}$.

Cable tension. Let $\tau = \tau(x)$ denote the tension in the cable above x . Let τ_{Ver} and τ_{Hor} denote the vertical and horizontal components of tension; so $\tau, \tau_{\text{Ver}}, \tau_{\text{Hor}}$ all have units lb .

Gravity acts only vertically. Were there points $x_0 < x_1$ with $\tau_{\text{Hor}}(x_0) \neq \tau_{\text{Hor}}(x_1)$, then the cable above interval $[x_0, x_1]$ would move horizontally. Since it does not, the fnc $\tau_{\text{Hor}}()$ is a constant. So $\boxed{\tau_{\text{Hor}} \equiv T}$. Since ratio $\frac{\tau_{\text{Ver}}}{\tau_{\text{Hor}}}$ equals the cable slope y' , necessarily

$$\dagger: \quad y'() = \frac{1}{T} \cdot \tau_{\text{Ver}}().$$

Different values of T engender different cable shapes. [We'll discover that the suspension bridge cable is a parabola; different T -values produce different parabolae.]

Cable loading. Let $W(x)$ denote the *weight* of the cable above interval $[0, x]$. We will describe $W()$ as a product

$$W(x) = S \cdot \Lambda(x)$$

so $\Lambda(x)$ has units ft . The meaning of $\Lambda(5\text{ft})$ is the length which, were the cable-loading to have constant density S , would weigh the same as the cable-system above the interval $[0\text{ft}, 5\text{ft}]$.

Weight and tension. For $0 \leq x_0 \leq x_1$, the loading on the cable above an interval $[x_0, x_1]$ must equal the difference $\tau_{\text{Ver}}(x_1) - \tau_{\text{Ver}}(x_0)$ of the vertical components of tension. As $x=0$ is the lowest pt of the cable, necessarily $\tau_{\text{Ver}}(0)$ is zero. For all $x \in \mathbb{R}$, then, $\tau_{\text{Ver}}(x)$ equals $W(x)$. Hence

$$y'(x) \xrightarrow{\text{by } \dagger} \frac{1}{T} \cdot W(x) = \frac{1}{T} \cdot S \cdot \Lambda(x),$$

We rewrite this as

$$14: \quad \begin{aligned} y'() &= R \cdot \Lambda(), \quad \text{with} \\ y'(0) &= 0, \quad \text{and} \quad y(0) = 0, \end{aligned}$$

where we tacked on initial conditions that the cable-vertex has horizontal tangent, and height zero.

This (14) is our IVP for cable problems with arbitrary loading. We now solve it for two $\Lambda()$ load functions.

The Suspension Bridge solution

For the suspension bridge, $W(x) = S \cdot x$. So $\Lambda(x) = x$. Integrating (14) thus produces height

$$15: \quad h(x) = \frac{1}{2}R \cdot x^2 = \frac{1}{2} \frac{S}{T} x^2.$$

Note that the RhS has units $\frac{1}{2} \cdot \frac{S}{T} \cdot x^2$. This equals Q , which indeed is the abstract unit for height.

The Hanging Cable (catenary) solution

For the hanging cable, whose only load is itself,

$$W(x) := S \cdot [\text{Cable arclength above } [0, x]].$$

Consequently,

$$\text{HC: } \Lambda(x) = \int_0^x \sqrt{1^2 + h'(\tilde{x})^2} \, d\tilde{x}. \quad \text{By FTC, then,}$$

$$\Lambda' = \sqrt{1 + [h']^2}.$$

Rather than compute the integral, we instead differentiate DE (14) to produce

$$h'' = R \cdot \sqrt{1 + [h']^2}.$$

Squaring this gives

$$* : \quad [h'']^2 = R^2 \cdot [1 + [h']^2] \stackrel{\text{same}}{=} [1 + [h']^2]/Q^2.$$

CLAIM: $\boxed{h(x) := \frac{1}{R} \cosh(Rx)}$ satisfies (*).

Note $h'(x) = \cosh'(Rx)$. And $h''(x) = R \cosh''(Rx)$.

So

$$\begin{aligned} [h''(x)]^2 &= R^2 [\cosh''(Rx)]^2 \\ &\stackrel{\text{by (13k)}}{=} R^2 [1 + [\cosh'(Rx)]^2] \\ &= R^2 [1 + [h'(x)]^2], \end{aligned}$$

as desired. Further, $h'(0) = \sinh(0) = 0$. Thus: *In the HC case, the soln to (14) is catenary [recall $Q = \frac{1}{R}$]*

$$16a: \quad \begin{aligned} h(x) &= Q \cdot [\cosh\left(\frac{x}{Q}\right) - 1]. \quad \text{Or, letting vertex-} \\ &\quad \text{height be non-zero,} \\ h(x) &= Q \cdot \cosh\left(\frac{x}{Q}\right) = \frac{T}{S} \cdot \cosh\left(\frac{S}{T} x\right). \end{aligned}$$

16b: **Lemma.** *The length of cable above interval $[x_0, x_1]$ is*

$$\text{Len(cable)} = Q \cdot \left[\sinh\left(\frac{x_1}{Q}\right) - \sinh\left(\frac{x_0}{Q}\right) \right]. \quad \diamond$$

Proof. Eqn (14) says our $\Lambda(x)$ equals

$$Q \cdot h'(x) \stackrel{\text{by (16a)}}{=} Q \cdot \sinh\left(\frac{x}{Q}\right).$$

16c: Distance between poles? An 80ft cable hangs between two 50ft poles, with lowest point 20ft above the ground. How far apart are the poles? \diamond

Prelim to (16c). We give symbolic names to the quantities. Let

$$\begin{aligned} L &:= [\text{ArcLength from vertex to a pole}] = \frac{1}{2} \cdot 80\text{ft} = 40\text{ft}; \\ V &:= [\text{Vertical dist. from vertex to pole top}] = [50 - 20]\text{ft} = 30\text{ft}; \\ z &:= [\text{Horizontal distance from vertex to pole}] = [\text{Not yet known}]. \end{aligned}$$

Good eng. practice; LOWER/UPPER BNDS ON z :

$$\text{f: } L - V < z < \sqrt{L^2 - V^2}.$$

LOWER BND: The poles would be closer if the cable ran down the pole, then horizontally out to the vertex.

UPPER BND: The poles would be further apart if the cable ran straight from the pole-top to the vertex. This distance, says Pythagoras, $\sqrt{L^2 - V^2} = \sqrt{4^2 - 3^2} \cdot 10\text{ft} = \sqrt{7} \cdot 10\text{ft} \approx 26.457\text{ft}$.

We expect pole-separation, $2z$, to satisfy

$$\text{ff: } 20\text{ft} < 2z < 53\text{ft}.$$

If our computation yields a value *not* in this range, we temporarily halt pole construction, and figure out WHAT WENT WRONG? WHERE?: The Four W's. \square

Soln to (16c). We'll prove that the corresponding Q is

$$16c.1: \quad Q \stackrel{?}{=} \frac{L^2 - V^2}{2V} = \frac{35}{3}\text{ft}.$$

Lemma 16b applied with $x_1 := z$ and $x_0 := 0\text{ ft}$, gives

$$\begin{aligned} 16c.2: \quad L/Q &= \sinh(z/Q). \text{ Hence} \\ &\text{asinh}(L/Q) = z/Q. \text{ So,} \\ &z = Q \cdot \text{asinh}(L/Q). \end{aligned}$$

As the question asks for $2z$, our (16c.1) would give

$$\begin{aligned} \text{f: } 2z &= \frac{L^2 - V^2}{V} \cdot \text{asinh}\left(\frac{L \cdot 2V}{L^2 - V^2}\right) \\ &\stackrel{\text{by (13j)}}{=} \frac{L^2 - V^2}{V} \cdot \log\left(\frac{L \cdot 2V}{L^2 - V^2} + \sqrt{\left[\frac{L \cdot 2V}{L^2 - V^2}\right]^2 + 1}\right) \\ &= \frac{70}{3}\text{ft} \cdot \log\left(\frac{24}{7} + \sqrt{\left[\frac{24}{7}\right]^2 + 1}\right) \quad \left[\text{NB: Pythag triple } 7^2 + 24^2 = 25^2. \right] \\ &= \frac{70}{3} \cdot \log(7) \text{ft} \approx 45.4046 \text{ft}. \end{aligned}$$

Proving (16c.1). Our (16a) and (16b) give, respectively,

$$\begin{aligned} RV &= \cosh(Rz) - \cosh(R \cdot 0\text{ft}) = \cosh(Rz) - 1, \\ RL &= \sinh(Rz) - \sinh(R \cdot 0\text{ft}) = \sinh(Rz). \end{aligned}$$

Thus $1 = [\cosh^2 - \sinh^2]$ equals

$$[RV + 1]^2 - [RL]^2 = [R^2V^2 + 2RV + 1] - R^2L^2.$$

Subtracting 1 from both sides, then dividing by R, yields

$$2V = R[L^2 - V^2].$$

Multiplying by $\frac{Q}{2V}$ delivers (16c.1), as desired. \diamond

16d: Same poles: Tension. The previous cable has density $S := \frac{1}{5} \frac{\text{lb}}{\text{ft}}$. What is the cable-tension at the vertex? What is the highest tension in the cable; where? ◇

Soln to (16d). From our defn of Q , the vertex-tension is $T \stackrel{\text{def}}{=} \tau_{\text{Hor}}(0) \stackrel{\text{def}}{=} S \cdot Q \stackrel{\text{by (16c.1)}}{=} \frac{1}{5} \frac{\text{lb}}{\text{ft}} \cdot \frac{35}{3} \text{ft} = \frac{7}{3} \text{lb}$.

Since $\tau_{\text{Hor}}()$ is constant, the highest (in both senses!) tension is where the cable joins the pole; where $\tau_{\text{Ver}}()$ is highest. That value is

$$16d.1: \quad \tau_{\text{Ver}}(z) = \left[\begin{smallmatrix} \text{Cable weight from} \\ \text{vertex to pole} \end{smallmatrix} \right] = S \cdot L = 8 \text{lb}.$$

Pythagoras tells us

$$*: \quad \tau(x)^2 = T^2 + [\tau_{\text{Ver}}(x)]^2.$$

In particular, $\tau(z)^2 = [SQ]^2 + [SL]^2$. Thus, max tension is

$$16d.2: \quad \tau(z) = S \cdot \sqrt{Q^2 + L^2} = S \cdot \frac{125}{3} \text{ft} = \frac{25}{3} \text{lb}.$$

Alt (16d). Note $\tau_{\text{Ver}}(x) = T \cdot h'(x) = T \cdot \sinh(\frac{x}{Q})$. So $(*)$ and identity $T^2 \cdot [1^2 + \sinh^2] = T^2 \cdot \cosh^2$ give

$$16d.3: \quad \tau(x) = T \cdot \cosh(x/Q).$$

Maximum tension is thus

$$16d.4: \quad \tau(z) = T \cdot \cosh(z/Q).$$

[EXER: % The righthand sides of (16d.2) and (16d.4) are equal.] ◇

16e: Breaking point. On a planet with surface acceleration $A := 10 \frac{\text{m}}{\text{sec}^2}$, an 80m long cable has mass 16kg. Its breaking tension is 100 N. [A Newton is $\text{N} = [\text{kg} \cdot \text{m}] / [\text{sec}^2]$.] What is the maximum span before this cable breaks? ◇

Prelim to (16e). Looking at half the cable, from vertex to one pole:

$$L := \frac{1}{2} \cdot 80 \text{m} = 40 \text{m}, \text{ is the arcLength;}$$

$$z := \left[\begin{smallmatrix} \text{Horizontal distance} \\ \text{from vertex to pole} \end{smallmatrix} \right] = [\text{Not yet known}];$$

$$W := [\text{Weight of half the cable}] = 8 \text{kg} \cdot A = 80 \text{N};$$

$$X := [\text{MaxXimum tension}] = 100 \text{N}.$$

The cable weight-density is $S = W/L = 2 \frac{\text{N}}{\text{m}}$.

LOWER/UPPER BNDS are: $0 \text{m} < z < L = 40 \text{m}$. The 1st inequality is *strict*, since the length of cable hanging straight down needed to break the cable is $\frac{X}{S} = \frac{100}{2} \text{m} = 50 \text{m} \stackrel{\text{strict}}{>} L$. The 2nd inequality is also *strict*, since the breaking tension is *strictly* less than ∞ . ◻

Soln (16e). We need z to satisfy $\tau(z) = X$. From (16d.2), then, $X^2 = S^2 Q^2 + [SL]^2$. And (16d.1) says $SL = W$. Hence

$$Q = \frac{1}{S} \cdot \sqrt{X^2 - W^2} = \frac{60 \text{N}}{2 \text{N/m}} = 30 \text{m}.$$

Thus (16c.2) assures

$$z = Q \cdot \text{asinh}\left(\frac{L}{Q}\right) = 30 \text{m} \cdot \text{asinh}\left(\frac{40}{30}\right) \approx 33 \text{m}.$$

So the span is $2z \approx 66 \text{m}$. ◆

17.1: Unequal poles. We have pole-0 and pole-1 of heights $0 \leq V_0, V_1$, not both zero. Running between is a length- Λ cable, long enough that the vertex lies between the poles; just touching the ground. For $k=0,1$, use ℓ_k for the arclength from pole- k to vertex, and \mathbf{z}_k for the horizontal distance. Compute ℓ_0 . \diamond

Prelim. Define height difference $D := V_1 - V_0$. \square

17.2: Theorem. When $V_1 \neq V_0$, the ℓ_0 arclength is

$$\dagger: \quad \ell_0 = \frac{1}{D} \left[\sqrt{V_1 V_0 \cdot [\Lambda^2 - D^2]} - V_0 \Lambda \right]. \quad \diamond$$

Plausibility. Exchanging subscripts gives

$$\ddagger: \quad \ell_1 = \frac{1}{-D} \left[\sqrt{V_0 V_1 \cdot [\Lambda^2 - (-D)^2]} - V_1 \Lambda \right].$$

Adding (\ddagger) to (\dagger) shows that

$$\ell: \quad \ell_1 + \ell_0 \stackrel{\text{note}}{=} \frac{1}{D} [V_1 \Lambda - V_0 \Lambda] \stackrel{\checkmark}{=} \Lambda.$$

We now vary a V_k , which will vary D . Must it also vary Λ [making derivatives harder to calculate]? *No!* As (\dagger) does *not* directly mention either \mathbf{z}_k , we can vary pole-separation to keep Λ constant [with vertex touching the ground].

Setting $V_0 = 0$ [i.e, the vertex is at pole-0] gives

$$\ell_0|_{V_0=0} = \frac{1}{V_1} \left[\underbrace{\sqrt{0} - 0}_{\text{units of } \Lambda^2} \right] \stackrel{\checkmark}{=} 0.$$

[No gain to setting $V_1=0$ in (\dagger) , as (ℓ) shows we will get Λ .] \square

Sending $V_1 \rightarrow V_0$. [Our derivation of (\dagger) uses $V_1 \neq V_0$, so we need to take a limit.] The limit has the poles of equal height, so we *expect* that the *limit-value of ℓ_0* is $\Lambda/2$.

Since $D = V_1 - V_0$, derivative $\frac{dD}{dV_1} = 1 = \frac{dV_1}{dV_1}$. Let P denote $V_1 V_0 \cdot [\Lambda^2 - D^2]$. Then l'Hôpital's tells us that $\lim_{V_1 \rightarrow V_0} \ell_0$ equals the limit of ratio

$$*: \quad \frac{\frac{d}{dV_1} [\sqrt{P} - \Lambda V_0]}{\frac{d}{dV_1} D} \stackrel{\text{note}}{=} \frac{\frac{d}{dV_1} [\sqrt{P}]}{1} \stackrel{\text{Chain rule}}{=} \frac{1}{2\sqrt{P}} \cdot \frac{dP}{dV_1}.$$

Note $\frac{dP}{dV_1} = V_0 [\Lambda^2 - D^2] + V_1 V_0 \cdot [0 - 2D]$. Thus

$$\lim_{V_1 \rightarrow V_0} \frac{dP}{dV_1} = V_0 [\Lambda^2 - 0^2] - 0 = V_0 \cdot \Lambda^2.$$

Also, $\lim_{V_1 \rightarrow V_0} P = V_0 V_0 \cdot \Lambda^2$, so $\lim_{V_1 \rightarrow V_0} \sqrt{P} = V_0 \Lambda$. Thus the limit of RhS(*) equals

$$\frac{1}{2 \cdot V_0 \Lambda} \cdot V_0 \cdot \Lambda^2 \stackrel{\checkmark}{=} \frac{\Lambda}{2},$$

as predicted. \square

Unequal soln. From (16a), the cable's shape¹¹ is

$$h(x) = \frac{1}{r} \cdot [\cosh(rx) - 1].$$

This, and (16b), yield

$$\begin{aligned} rV_k + 1 &= \cosh(r \cdot z_k) \quad \text{and} \\ r\ell_k &= \sinh(r \cdot z_k). \end{aligned}$$

Courtesy Pythagorus

$$1^2 = [rV_k + 1]^2 - [r\ell_k]^2.$$

Subtracting 1 from both sides, then dividing by r , yields $0 = rV_k^2 + 2V_k - r\ell_k^2$. Solving for r ,

$$\frac{1}{r} = \frac{\ell_k^2 - V_k^2}{2V_k}.$$

Thus $\frac{\ell_0^2 - V_0^2}{V_0} = \frac{\ell_1^2 - V_1^2}{V_1}$. Cross-multiplying, then subtracting,

$$V_1\ell_0^2 - V_0\ell_1^2 + \underbrace{V_0V_1^2 - V_1V_0^2}_{= V_0V_1D} = 0.$$

Since $\ell_1 = \Lambda - \ell_0$, our ℓ_0 is a root of polynomial

$$\begin{aligned} f(t) &:= V_1t^2 - V_0[\Lambda - t]^2 + V_0V_1D \\ &= Dt^2 + 2V_0\Lambda \cdot t + V_0[V_1D - \Lambda^2]. \end{aligned}$$

Computing the polynomial's discriminant,

$$\begin{aligned} \frac{1}{4}\text{Discr}(f) &= \frac{1}{4} \cdot \left[[2V_0\Lambda]^2 - 4 \cdot D \cdot V_0[V_1D - \Lambda^2] \right] \\ &= V_0 \left[V_0\Lambda^2 - D[V_1D - \Lambda^2] \right] \\ &= V_0 \left[[V_0 + D]\Lambda^2 - V_1D^2 \right] \\ &= V_0[V_1\Lambda^2 - V_1D^2] \\ &= V_1V_0[\Lambda^2 - D^2]. \end{aligned}$$

The roots of f are

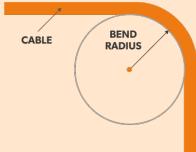
$$\begin{aligned} &\frac{1}{2D} \cdot \left[-2V_0\Lambda \pm 2\sqrt{V_1V_0[\Lambda^2 - D^2]} \right] \\ &= \frac{1}{D} \cdot \left[\pm \sqrt{V_1V_0[\Lambda^2 - D^2]} - V_0\Lambda \right]. \end{aligned}$$

Our ℓ_0 is non-negative, hence (†).

¹¹I've made $r \stackrel{\text{def}}{=} \frac{\text{vertex-density}}{\text{vertex-tension}}$ lower-case, as it is currently unknown.

Difficulties mastered are opportunities won.
—Winston Churchill

18.1: Bent outta shape? A 22m cable, whose **minimum bending radius** (see W: Bending radius), is 3m



has its two ends attached to a track in the ceiling of a workshop. Bringing the ends together lowers the cable-vertex. How low can the vertex be before transgressing min-Bend-radius somewhere along the cable? ◇

Curvature. Consider an oriented-curve \mathcal{C} , point \mathbf{P}_0 on \mathcal{C} , and have $P(s)$ be the point along \mathcal{C} at arclength distance s from \mathbf{P}_0 . [So $s::\textcircled{a}$.] Relative to horizontal, let $\theta(s)=\theta_{\mathcal{C}}(s)$ be the angle of the tangent-line at $P(s)$. Writing

$$\dagger: \quad \theta(s) = \text{Some-Precise-Formula}(s)$$

is sometimes called a **Whewell equation** for the curve (William Whewell, pron. “Hu-well”). Its derivative w.r.t arclength,

$$\ddagger: \quad \kappa(s) = \kappa_{\mathcal{C}}(s) := \theta'(s),$$

gives the **curvature** at $P(s)$. This (\ddagger) is called a **Cesàro equation** (Ernesto Cesàro) for \mathcal{C} . As we expect, $\kappa(s)::\frac{1}{\textcircled{a}}$, since curvature is the reciprocal of radius-of-curvature. □

Prelim. [This “Bent” problem is kinda hokey, as our derivation of a hanging-cable assumed ∞ flexibility, whence min-Bend-radius should be zero. But we proceed anyway...]

We seek the curvature of cable $h(x) = \mathbf{Q} \cosh(\frac{x}{\mathbf{Q}})$. We *could* use the annoying CALC-I formula

$$\kappa = \frac{h''}{[1 + h'^2]^{3/2}}.$$

More natural and elegant is derive a Cesàro formula for our beloved catenary. □

18.2: Catenary curvature lemma. Consider catenary

$$h(x) = \mathbf{Q} \cosh\left(\frac{x}{\mathbf{Q}}\right),$$

where $x, \mathbf{Q} :: \textcircled{a}$. Measuring from the vertex by arclength s ,

$$18.3: \quad \theta_{\text{cat}}(s) = \arctan(s/\mathbf{Q}) \quad \text{and}$$

$$18.4: \quad \kappa_{\text{cat}}(s) = \frac{\mathbf{Q}}{s^2 + \mathbf{Q}^2}$$

are the Whewell and Cesàro formulae, respectively. ◇

Proof. Previous work shows that

$$\text{Slope} = h'(x) = \sinh\left(\frac{x}{\mathbf{Q}}\right) \quad \text{and}$$

$$\text{Arclength} = s(x) = \mathbf{Q} \sinh\left(\frac{x}{\mathbf{Q}}\right).$$

Thus s/\mathbf{Q} gives slope ITOf arclength. Hence (18.3) is the *angle* at arclength s . Differentiation and algebra produces (18.4). ♦

Bent soln. With $L := \frac{22}{2}$ half the cable-len, and min Bend-radius $B := 3$ m, I claim max-vertical-drop is

$$18.5: \quad V_{\text{Max}} = \sqrt{L^2 + B^2} - B = [\sqrt{11^2 + 3^2} - 3] \text{m} \approx 8.4 \text{m}.$$

[Were min-Bend-radius zero, we’d expect the max drop to be the cable going straight down, then straight back up again. And indeed, $V_{\text{Max}}(0\text{m}) = L$.] Here’s the argument for (18.5):

Formula (18.4) says max-curvature occurs at the vertex (unsurprisingly), so the min radius-of-curve is \mathbf{Q} .

[The next time I teach this course, I will exchange names **R** and **Q**, making **R** min-radius-of-curve.]

We seek to maximize ceiling-to-vertex vertical drop, v , without violating min-Bend-radius. As formula (16c.1) gives

$$\mathbf{Q}(v) = \frac{L^2 - v^2}{2v},$$

we maximize v such that $\mathbf{Q}(v) \geq B$. [The graph of $\mathbf{Q}(v) = \frac{L^2/2}{v} - \frac{1}{2}v$ is a hyperbola with one asymptote **vertical** [send $v \rightarrow 0$] and the other with **slope** $\frac{-1}{2}$ [send $v \rightarrow \infty$]. This hyperbola twice intersects the horiz-line at height-**Q**: At a negative value less than $-L$, and (the value we seek) at a positive value less than L .] Rewrite inequality $B \leq \mathbf{Q}(v)$ as

$$v^2 + 2Bv - L^2 \leq 0.$$

As a fnc-of- v the poly’s discriminant is $2^2[B^2 + L^2]$, whence its roots $\pm\sqrt{L^2 + B^2} - B$. Thus (18.5). ♦

To a man who has only a hammer, every problem looks like a nail.
—Mark Twain (paraphrased)

Convolutions [Chap4–NSS9, P.237.]

Recall the **identity fnc** $\text{Id} := [t \mapsto t]$. So $\text{Id}^3(x) = x^3$, and Id^0 is the constant-fnc $\mathbf{1}$. Below, let $\mathbb{J} := [0, \infty)$.

Convolution defn. Given (locally-integrable) fncs $\mathbf{f}, \mathbf{g}: \mathbb{J} \rightarrow \mathbb{C}$, their one-sided convolution is the fnc mapping $\mathbb{J} \rightarrow \mathbb{C}$ by

$$19.1: \quad [\mathbf{f} \circledast \mathbf{g}](t) := \int_0^t \mathbf{f}(t-v) \cdot \mathbf{g}(v) \, dv.$$

Easily, we get these algebraic properties:

Convolution is commutative and associative. Convolution is bilinear^{♡1}, in that

$$19.2: \quad \begin{aligned} [\mathbf{f}_1 + \mathbf{f}_2] \circledast \mathbf{g} &= [\mathbf{f}_1 \circledast \mathbf{g}] + [\mathbf{f}_2 \circledast \mathbf{g}], \\ [5\mathbf{f}] \circledast \mathbf{g} &= 5 \cdot [\mathbf{f} \circledast \mathbf{g}], \end{aligned}$$

for arb. fncs $\mathbf{f}, \mathbf{f}_1, \mathbf{f}_2$ and arbitrary scalar, 5.

Convolution commutes with complex-conjugation: $\overline{\mathbf{f} \circledast \mathbf{g}} = \overline{\mathbf{f}} \circledast \overline{\mathbf{g}}$.

We also have this cty property [more is true]:

$$19.3: \quad \text{If } \mathbf{f}, \mathbf{g} \text{ continuous, then } [\mathbf{f} \circledast \mathbf{g}] \text{ is cts.}$$

CAVEAT: We do *not* have a formula for how convolution interacts with multiplication; we have no nice formula for $\mathbf{F} \circledast [\mathbf{g} \cdot \mathbf{h}]$.

Powers. As a shorthand, the “ n^{th} convolution power of \mathbf{f} ”,

$$\mathbf{f}^{\circledast n} := \mathbf{f} \circledast \mathbf{f} \circledast \dots \circledast \mathbf{f},$$

is the result of convolving together n copies of \mathbf{f} . In particular, $\mathbf{1}^{\circledast [n+1]}$ is the n^{th} -antideriv of $\mathbf{1}$ (i.e., \mathbf{x}^0) whose derivatives are zero at the origin. So

$$20a: \quad \mathbf{1}^{\circledast [n+1]} = \frac{1}{n!} \cdot \text{Id}^n \stackrel{\text{i.e.}}{=} \left[x \mapsto \frac{x^n}{n!} \right].$$

We get this nice corollary.

^{♡1}In the other order, $\mathbf{f} \circledast [\mathbf{g}_1 + \mathbf{g}_2] = [\mathbf{f} \circledast \mathbf{g}_1] + [\mathbf{f} \circledast \mathbf{g}_2]$; in other words: “Convolution distributes over addition”. Also, $\mathbf{f} \circledast [7\mathbf{g}] = 7[\mathbf{f} \circledast \mathbf{g}]$; i.e: “Scalars factor-out”.

20b: Power-of- x Lemma. Consider a continuous function $\beta: \mathbb{J} \rightarrow \mathbb{C}$, and a natnum N . Then

$$\dagger_N: \quad \left[\frac{1}{N!} \cdot \text{Id}^N \right] \circledast \beta = B_N,$$

where B_N is the unique function such that

$$\ddagger: \quad 0 = B_N(0) = B'_N(0) = B''_N(0) = \dots = B_N^{(N)}(0).$$

and $B_N^{(N+1)} = \beta$. ◊

Proof. For an arbitrary fnc \mathbf{g} , the FTC says that $[\mathbf{1} \circledast \mathbf{g}](t) \stackrel{\text{def}}{=} \int_0^t \mathbf{g}$ is the antideriv \mathbf{G} of \mathbf{g} such that $\mathbf{G}(0) = \mathbf{0}$. Courtesy (20a), our $\left[\frac{1}{N!} \cdot \text{Id}^N \right] \circledast \beta$ is

$$\mathbf{1} \circledast [\mathbf{1} \circledast \dots \circledast \mathbf{1} \circledast \beta],$$

using the associativity of convolution. Hence $\left[\frac{1}{N!} \cdot \text{Id}^N \right] \circledast \beta$ is indeed the B_N defined by (‡). ♦

Alt Pf. Just for fun, here is an alternate proof using a derivative-of-convolution formula, (24e), that we’ll shortly deduce.

Defining $\alpha_k(t) = t^k/k!$, note $[\alpha_{k+1}]' = \alpha_k$. Fix a natnum K satisfying (\dagger_K) . Differentiating,

$$\begin{aligned} [\alpha_{K+1} \circledast \beta]' &\stackrel{\text{by (24e)}}{=} [[\alpha_{K+1}]' \circledast \beta] + [\alpha_{K+1}(0) \cdot \beta] \\ &= [\alpha_K \circledast \beta], \end{aligned}$$

since $\alpha_{K+1}(0)$ is 0, as $K+1$ is positive. So $[\alpha_{K+1} \circledast \beta]'$ is B_K . Thus

$$[\alpha_{K+1} \circledast \beta](t) = \int_0^t B_K \stackrel{\text{by FTC}}{=} B_{K+1}(t).$$

Hence (\dagger_{K+1}) . We’ve shown that $(\dagger_K) \Rightarrow (\dagger_{K+1})$, as desired. ♦

Ex. C1. Note that $\frac{d}{dv} ([5+1-v] \cdot e^v) = [5-v] \cdot e^v$. So $[\text{Id} \circledast \exp](t) \stackrel{\text{def}}{=} \int_0^t [t-v] \cdot e^v \, dv = [[t+1-v] \cdot e^v]_{v=0}^{v=t} = e^t - [t+1]$. □

Ex.C2. Let $f(x) := x^2$ and $\beta(x) := 30[x^4 + x]$. Then

$$[f * \beta](t) = \int_0^t [t - v]^2 \cdot 30[v^4 + v] dv.$$

The integrand is a poly, which we could multiply-out, then integrate. Alternatively, cheerfully apply (\dagger_2) , and antidiff β thrice to get

$$\frac{30x^7}{5 \cdot 6 \cdot 7} + \frac{30x^4}{2 \cdot 3 \cdot 4} = \frac{x^7}{7} + \frac{5x^4}{4}.$$

Multiply by $2!$ to conclude that

$$[f * \beta](t) = \frac{2}{7} \cdot t^7 + \frac{5}{2} \cdot t^4. \quad \square$$

Ex.C3. Let's convolve exponentials $f(x) := e^{Bx}$ and $g(x) := e^{Cx}$, where $B, C \in \mathbb{C}$.

CASE: $B = C$ The integrand for computing $[f * f](5)$ is $e^B [5-v] \cdot e^{Bv} \stackrel{\text{note}}{=} e^{B \cdot 5}$; constant. Its integral is thus $5 \cdot e^{B \cdot 5}$. Hence

$$21a: [x \mapsto e^{Bx}]^{*2}(t) = [f * f](t) = t \cdot e^{Bt}.$$

In functional notation, $f * f = Id \cdot f$.

[In the $B=0$ case, this says $1 * 1 = Id$, which is indeed correct.]

CASE: $B \neq C$ Define difference $D := C - B$. The $[f * g](5)$ integrand is $e^B [5-v] \cdot e^{Cv} \stackrel{\text{note}}{=} e^{B \cdot 5} \cdot e^{D \cdot v}$. Its integral is $\frac{e^{B \cdot 5}}{D} \cdot e^{D \cdot v} \Big|_{v=0}^{v=5}$, i.e., $\frac{e^{B \cdot 5}}{D} \cdot [e^{D \cdot 5} - 1]$.

This equals $\frac{1}{D} [e^{C \cdot 5} - e^{B \cdot 5}]$. Consequently,

$$21b: [f * g](t) = \frac{[e^{Ct} - e^{Bt}]}{C - B} \stackrel{\text{note}}{=} \frac{[e^{Bt} - e^{Ct}]}{B - C}.$$

I.e., $f * g = \frac{g - f}{C - B} = \frac{f - g}{B - C}$.

This is symmetric in B and C , as it must be. \square

A shorthand. I'll write ' $[9x] * e^{3x}$ equals...' to mean:

Let $f(u) := 9u$ and $g(z) := e^z$.
Then $[f * g](x)$ equals...

I.e, I will sometimes use the same letter for the input-
vars, and the output-var. \square

Ex.C4.1. We seek to compute $H := [9x] * e^{3x}$.

Let's solve this just by using properties of convolution. Let $\mathbf{G} := e^{3x}$. Since $[\int 3\mathbf{G}] = \mathbf{G} + \text{Const}$, and $\mathbf{G}|_{x=0}$ is 1, it follows that

$$\dagger: 1 * [3\mathbf{G}] = \mathbf{G} - 1.$$

Since convolution is bilinear,

$$\begin{aligned} H &= 9[x * \mathbf{G}] = \textcolor{red}{x} * [9\mathbf{G}] \\ &= [\textcolor{red}{1} * \textcolor{red}{1}] * [9\mathbf{G}] \\ &= 1 * [1 * [9\mathbf{G}]], \end{aligned}$$

since $*$ is associative. Computing the inside-convolution,

$$\begin{aligned} 1 * [9\mathbf{G}] &= 3 \cdot [1 * [3\mathbf{G}]] \stackrel{\text{by } (\dagger)}{=} 3 \cdot [\mathbf{G} - 1] = 3\mathbf{G} - 3. \\ \text{So, } H &= \textcolor{red}{1} * [3\mathbf{G} - 3 \cdot \textcolor{blue}{1}] \\ &= [\textcolor{red}{1} * 3\mathbf{G}] - 3 \cdot [\textcolor{red}{1} * \textcolor{blue}{1}] \\ &= [\mathbf{G} - 1] - 3x = e^{3x} - 1 - 3x. \end{aligned} \quad \square$$

Ex.C4.2. The preceding example showed that

$$\begin{aligned} \dagger: 1 * \mathbf{G} &= \frac{1}{3}[\mathbf{G} - 1], \quad \text{and} \\ 1^{*2} * \mathbf{G} &= \frac{1}{9}[\mathbf{G} - 1 - 3x]. \end{aligned}$$

Continuing, $1^{*3} * \mathbf{G}$ is *one-ninth* of

$$\begin{aligned} &[1 * \mathbf{G}] - [1 * 1] - 3[1 * x] \\ &= \frac{1}{3}[\mathbf{G} - 1] - x - 3 \cdot \frac{x^2}{2} \\ &= \frac{1}{3} \left[\mathbf{G} - 1 - 3x - 3^2 \cdot \frac{x^2}{2} \right] \\ &\stackrel{\text{note}}{=} \frac{1}{3} \left[\mathbf{G} - \frac{[3x]^0}{0!} - \frac{[3x]^1}{1!} - \frac{[3x]^2}{2!} \right]. \end{aligned}$$

Hence

$$1^{*3} * \mathbf{G} = \frac{1}{27} \cdot \left[\mathbf{G} - \left[\frac{[3x]^0}{0!} + \frac{[3x]^1}{1!} + \frac{[3x]^2}{2!} \right] \right].$$

The pattern is clear:

For each natnum N , with \mathbf{G} denoting e^{3x} ,

$$\frac{1}{N!} \cdot [x^N * \mathbf{G}] \stackrel{\text{recall}}{=} 1^{*N+1} * \mathbf{G}$$

$$22a: \quad = \frac{1}{3^{N+1}} \left[\mathbf{G} - \sum_{k=0}^N \frac{[3x]^k}{k!} \right].$$

Rewriting,

$$22b: x^N \circledast e^{3x} = \frac{N!}{3^{N+1}} \left[e^{3x} - \sum_{k=0}^N \frac{[3x]^k}{k!} \right].$$

The above sum, $\sum_{k=0}^N \frac{[3x]^k}{k!}$, we recognize as the **N^{th} -Maclaurin-polynomial of e^{3x}** ; see below. Before generalizing this result, let us compute an example with [shudder] *actual numbers*.

Let $R := [6 - 9x + 54x^2] \circledast e^{3x}$. Then

$$R = 6 \cdot [1 \circledast \mathbf{G}] - 9 \cdot [x \circledast \mathbf{G}] + 54 \cdot [x^2 \circledast \mathbf{G}].$$

From (22b), or (‡), note

$$\begin{aligned} 6 \cdot [1 \circledast \mathbf{G}] &= 6 \cdot \frac{1}{3} \cdot [\mathbf{G} - 1] = 2\mathbf{G} - 2, \quad \text{and} \\ -9 \cdot [x \circledast \mathbf{G}] &= -9 \cdot \frac{1}{9} \cdot [\mathbf{G} - 1 - 3x] = -\mathbf{G} + 1 + 3x, \quad \text{and} \\ 54 \cdot [x^2 \circledast \mathbf{G}] &= 54 \cdot \frac{2!}{3^3} \cdot [\text{Terms}] = 4 \left[\mathbf{G} - 1 - 3x - \frac{9}{2}x^2 \right]. \end{aligned}$$

Adding these together says that

$$R = 5e^{3x} - [5 + 9x + 18x^2]. \quad \square$$

Maclaurin polynomial. For a natnum N , consider a function G which is N -times differentiable. Then the “ N^{th} **Maclaurin polynomial** of G ” is the unique polynomial p of $\text{Deg}(p) \leq N$, whose first $N+1$ derivatives agree with G ’s at the origin. I.e

$$\begin{aligned} p(0) &= G(0), \quad p'(0) = G'(0), \quad p''(0) = G''(0), \\ \dots, p^{(N-1)}(0) &= G^{(N-1)}(0), \quad p^{(N)}(0) = G^{(N)}(0). \end{aligned}$$

An explicit formula for p is

$$p(x) := \sum_{k=0}^N \frac{G^{(k)}(0)}{k!} \cdot x^k.$$

Use $\text{Mac}_{G,N}$ to denote this p ; it is the N^{th} **Maclaurin polynomial of G** . \square

23: Convolve-Mac Thm. Consider an integrable fnc β on $[0, \infty)$, and fix a natnum N . Let $g = g_N$ be a fnc whose $[N+1]^{st}$ -derivative is β , i.e, $g^{(N+1)} = \beta$. Then

$$\mathbf{1}^{\circledast[N+1]} \circledast \beta = g - \text{Mac}_{g,N}. \quad \diamond$$

Proof. This follows immediately from Power-of- x Lemma, (20b), on page 40. \diamond

Convolve-Mac 1. Compute $f := [x^5 \circledast \cos(2x)]$.

C-M-Soln. With $\beta := \cos(2x)$, note $\frac{f}{5!} = \frac{x^5}{5!} \circledast \beta$, so

$$f = 5! \cdot [\mathbf{1}^{\circledast 6} \circledast \beta].$$

A particular 6th-antideriv of β is

$$g := -\cos(2x)/2^6 \stackrel{\text{note}}{=} -\beta/2^6.$$

Recall $\cos(t) = 1 - \frac{t^2}{2} + \frac{t^4}{24} - \frac{t^6}{6!} + \dots$. Plugging in $2x$ for t shows $1 - 2x^2 + \frac{2}{3}x^4 - \dots$ is the Mac-series for β . Hence $\text{Mac}_{\beta,5} = [1 - 2x^2 + \frac{2}{3}x^4]$. Finally,

$$\begin{aligned} f &= 5! \cdot [g - \text{Mac}_{g,5}] = -\frac{5!}{2^6} \cdot [\beta - \text{Mac}_{\beta,5}] \\ &= \frac{5 \cdot 3}{2^3} \cdot [\text{Mac}_{\beta,5} - \beta] \\ &= \frac{5}{8} \cdot [3 - 6x^2 + 2x^4] - 3\cos(2x). \end{aligned} \quad \diamond$$

Derivative notation. Below, for a two-variable function $H(x, y)$, we use $H_1()$ to mean the partial-derivative w.r.t the 1st variable; so $H_1()$ is a synonym for $H_x()$. And $H_2()$ is $H_y()$. \square

24a: Chain-rule Lemma. Consider equations

$$x = \alpha(t) \quad \text{and} \quad y = \beta(t) \quad \text{and} \quad z = H(x, y),$$

for differentiable functions α, β, H . Then composition $\varphi(t) := H(\alpha(t), \beta(t))$ is differentiable. Moreover,

$$\frac{dz}{dt} = \frac{dz}{dx} \cdot \frac{dx}{dt} + \frac{dz}{dy} \cdot \frac{dy}{dt}; \quad [\text{Leibniz}]$$

$$24b: \varphi'(t) = H_1(\alpha(t), \beta(t)) \cdot \alpha'(t) + H_2(\alpha(t), \beta(t)) \cdot \beta'(t), \quad [\text{Newton}]$$

where Leibniz names the variables, and Newton names the functions. \diamond

24c: DUI: Differentiation under Integral. Consider fnc $G(x, v)$ defined on a rectangle $\mathbf{U} := [x_0, x_1] \times [v_0, v_1]$ in the plane. Suppose partial-deriv $G_1()$ is cts on \mathbf{U} . Then for arb. values, say, 3 and 5, in $[v_0..v_1]$, the fnc

$$H(x) := \int_3^5 G(x, v) \, dv$$

is differentiable, and

$$H'(x) = \int_3^5 G_1(x, v) \, dv. \quad \diamond$$

Proof. Fix, say, $x=7$. From a non-zero ε , form difference quotient

$$\frac{H(7+\varepsilon) - H(7)}{\varepsilon} = \int_3^5 \frac{G(7+\varepsilon, v) - G(7, v)}{\varepsilon} dv.$$

Send $\varepsilon \rightarrow 0$. In order to pass that limit through the integral sign, note the following. Since $G_1(\cdot, \cdot)$ is cts on compact set \mathbf{U} , our $G(\cdot, \cdot)$ is uniformly Lipschitz in the x -direction. Hence we can use the Dominated Convergence thm to commute the limits. \diamond

24d: Leibniz-rule Lemma. Consider continuous function $G: \mathbb{J} \times \mathbb{J} \rightarrow \mathbb{R}$; hence $G_1()$ is cts. Define

$$24d*: \quad H(x, y) := \int_0^y G(x, v) dv.$$

Then $\varphi(t) := H(t, t)$ is diff'able, and

$$24d\dagger: \quad \varphi'(t) = \left[\int_0^t G_1(t, v) dv \right] + G(t, t). \quad \diamond$$

Proof. Notice that $\varphi(t) = H(\alpha(t), \beta(t))$, where fncs $\alpha(t) := t =: \beta(t)$. Applying the Chain rule (24b),

$$\begin{aligned} \varphi'(t) &= H_1(t, t) \cdot \frac{dt}{dt} + H_2(t, t) \cdot \frac{dt}{dt} \\ &= H_1(t, t) + H_2(t, t). \end{aligned}$$

By DUI (24c), our $H_1(x, y) = \int_0^y G_1(x, v) dv$. Hence

$$H_1(t, t) = \int_0^t G_1(t, v) dv.$$

By FTC, moreover, $H_2(x, t) = G(x, t)$. Thus

$$H_2(t, t) = G(t, t).$$

These three displays, together, yield (24d \dagger). \diamond

24e: Leibniz corollary. Suppose α, β are differentiable fncs on \mathbb{J} . Then $[\alpha * \beta]$ is differentiable, \diamond^{12} and

$$24d\dagger: \quad \begin{aligned} [\alpha * \beta]'(t) &= [\alpha' * \beta](t) + \alpha(0) \cdot \beta(t) \\ &\text{by symmetry} \quad [\alpha * \beta'](t) + \alpha(t) \cdot \beta(0). \end{aligned} \quad \diamond$$

Proof. Define $G(x, v) := \alpha(x - v) \cdot \beta(v)$, then H as in (24d*). So $[\alpha * \beta](t) \stackrel{\text{def}}{=} H(t, t)$. Using that $G(t, t) = \alpha(0) \cdot \beta(t)$, applying (24d \dagger) yields (24d \dagger). \diamond

\diamond^{12} Wikipedia gives a slightly different formula, but for the derivative of a 2-sided convolution. Our 1-sided convolution has an edge-effect when differentiated.

24f: Convol-diff Thm. Fix a natnum N . Consider an $\mathbf{f} \in \mathbf{C}^N$ and $\mathbf{g} \in \mathbf{C}^{N-1}$. [When $N=0$, we just need \mathbf{g} locally-integrable.] Then $\mathbf{f} * \mathbf{g}$ is in \mathbf{C}^N , and

$$P_N: \quad [\mathbf{f} * \mathbf{g}]^{(N)} = [\mathbf{f}^{(N)} * \mathbf{g}] + \sum_{j+k=N-1} \mathbf{f}^{(j)}(0) \cdot \mathbf{g}^{(k)},$$

where the sum \diamond^{13} is taken over all ordered pairs (j, k) of natnums. \diamond

Proof. For $N=0$, this says $[\mathbf{f} * \mathbf{g}] = [\mathbf{f} * \mathbf{g}]$; true.

Now fix an N for which (P_N) holds. We differentiate RhS(P_N), by setting $\alpha := \mathbf{f}^{(N)}$ and $\beta := \mathbf{g}$, and applying (24d \dagger). It yields that $[\mathbf{f} * \mathbf{g}]^{(N+1)}$ equals

$$[\alpha' * \beta](t) + \alpha(0) \cdot \beta(t) + \sum_{j+\ell=N-1} \mathbf{f}^{(j)}(0) \cdot \mathbf{g}^{(\ell+1)}(t),$$

summed over ordered-pairs (j, ℓ) of natnums. Setting $k := \ell+1$, we can re-write this as

$$[\alpha' * \beta](t) + \sum_{j+k=N} \mathbf{f}^{(j)}(0) \cdot \mathbf{g}^{(k)}(t).$$

Noting that α' is $\mathbf{f}^{(N+1)}$, gives (P_{N+1}) . \diamond

Convolution-GenTar Algorithm

[See P.237 of NSS9.] A polynomial

$$q(z) := C_N z^N + \dots + C_1 z^1 + C_0 z^0,$$

with $C_N \neq 0$, hands us an operator $L := q(\mathbf{D})$. We seek a fnc $y = y(t)$ solving DE

$$25a: \quad L(y) = G,$$

for a given target fnc G .

1st-step. Use CCLDE to produce a function f solving ZeroTar $L(f) = 0$, with initial conditions

$$25b: \quad \begin{aligned} f^{(N-1)}(0) &= 1/C_N, \quad \text{and} \\ 0 = f(0) = f'(0) = \dots &= f^{(N-2)}(0). \end{aligned}$$

2nd-step. Compute $y := f \circledast G$.

What's the magic behind Convolution-GenTar algorithm? To see that y solves (25a) note, because of initial conditions (25b), that we have this:

$$\text{For } j = 0, 1, \dots, N-1: \quad y^{(j)} = [f^{(j)} \circledast G].$$

$$\begin{aligned} \text{And } y^{(N)} &= [f^{(N)} \circledast G] + [f^{(N-1)}(0) \cdot G] \\ &= [f^{(N)} \circledast G] + [\frac{1}{C_N} \cdot G]. \end{aligned}$$

Using the bilinearity of convolution, (19.2), we have that sum $\sum_{j=0}^N C_j y^{(j)}$ [which is LhS(25a)] equals

$$* : \quad \left[\left[\sum_{j=0}^N C_j f^{(j)} \right] \circledast G \right] + C_N \cdot [\frac{1}{C_N} \cdot G].$$

Since $\sum_{j=0}^N C_j f^{(j)}$ is the zero-fnc, the convolution in (*) is 0. Hence (*) equals G , as requested. ♦

Gen soln to (25a). Recall that the general ZeroTar solution $Z()$ to $[q(\mathbf{D})](Z) = 0$ has N free parameters, $\alpha_1, \alpha_2, \dots, \alpha_N \in \mathbb{C}$. Writing

$$\vec{\alpha} = (\alpha_1, \alpha_2, \dots, \alpha_N),$$

then, we denote the general *ZeroTar* soln as $Z_{\vec{\alpha}}(t)$. It follows that the sum

$$25c: \quad Y_{\vec{\alpha}} := [f \circledast G] + Z_{\vec{\alpha}}$$

is the *general GenTar-Soln* to (25a) □

The following convolution-example will be done again using Variation of Parameters at (26.10).

Convolution-GenTar Ex.1. We crave a particular soln, for $t > 0$, to $\#7^P 191, \S 4.6, \text{NSS9}$ DE

$$25a\ddagger: \quad y'' + 4y' + 4y = e^{-2t} \cdot \log(t).$$

Define $L := \mathbf{D}^2 + 4\mathbf{D} + 4\mathbf{I}$.

1st-step. Here, $N = 2$ and $\frac{1}{C_N} = \frac{1}{1} = 1$.

Aux.poly of L is $z^2 + 4z + 4 = [z - -2]^2$. Thus $f(x) := \alpha \cdot e^{-2x} + \beta \cdot x e^{-2x}$ satisfies $L(f) = 0$.

Needing $f(0) = 0$ and $f'(0) = 1$ makes $\alpha = 0$ and $\beta = 1$. Hence $f(x) = x e^{-2x}$.

2nd-step. The (25a \ddagger)-target is $G(v) := e^{-2v} \cdot \log(v)$.

Convolving, $[f \circledast G](t) \stackrel{\text{def}}{=} \int_0^t f(t-v) \cdot G(v) dv$. The integrand is $[t-v]e^{-2[t-v]} \cdot e^{-2v} \log(v) \stackrel{\text{note}}{=} [t-v]e^{-2t} \cdot \log(v)$.

Thus $[f \circledast G](t) = [[t \cdot \mathcal{A}] - \mathcal{B}] \cdot e^{-2t}$, where

$$\mathcal{A} := \int_0^t \log(v) dv \quad \text{and} \quad \mathcal{B} := \int_0^t v \log(v) dv.$$

IBParting, $\int^x \log = x[\log(x) - 1]$. Consequently,

$$\mathcal{A} = t[\log(t) - 1] - \lim_{s \searrow 0} s[\log(s) - 1] = t[\log(t) - 1],$$

since l'Hôpital's Thm shows $\lim_{s \searrow 0} s[\log(s) - 1]$ is zero.

Similarly, $\int^x v \log(v) dv = \frac{1}{4}[x^2[2\log(x) - 1]]$. So

$$\mathcal{B} = \int_0^t v \log(v) dv = \frac{1}{4}[t^2[2\log(t) - 1]],$$

again using l'Hôpital's. Hence $[t \cdot \mathcal{A}] - \mathcal{B}$ equals

$$\frac{1}{4}[t^2[4\log(t) - 4]] - \frac{1}{4}[t^2[2\log(t) - 1]], \quad \text{so}$$

$$y(t) = \frac{1}{4}t^2[2\log(t) - 3] \cdot e^{-2t}$$

is a particular soln to (25a \ddagger).

VoP, at (26.10), solves the same problem. Which method is easier?

Convol-GenTar Ex.2. We seek the gen-soln to

$$25a\dagger: \quad 3h'' - 4h' + h = \exp.$$

So $q(z) := 3z^2 - 4z + 1 = [z-1] \cdot [3z-1]$ is the aux-poly of our DiffOp, $\mathbf{L} := 3\mathbf{D}^2 - 4\mathbf{D} + \mathbf{I}$.

Applying 1st-step. Here, $N = 2$ and $\frac{1}{C_N} = \frac{1}{3}$.

The gen-soln to the ZeroTar DE $[q(\mathbf{D})](f) = 0$ is $f(x) := \alpha e^x + \beta e^{x/3}$. Solving for α, β so that $f(0) = 0$ and $f'(0) = \frac{1}{3}$ gives $f(x) = \frac{1}{2} \cdot [e^x - e^{x/3}]$. I.e

$$f = \frac{1}{2} \cdot [\exp - \Phi],$$

where $\Phi(x) := e^{x/3}$.

*Precaution is called the Mother of Wisdom;
the father was never known.*

*That should prove to you, at a glance,
that even Precaution once took a chance.*

*—Paul von der Porten, translated from the German
by his son, Arnold von der Porten.*

Applying 2nd-step. The target in (25a†) is \exp . The 2nd-step has us compute $h := f \circledast \exp$. Since convolution is bilinear,

$$h = \frac{1}{2} \cdot [[\exp \circledast \exp] - [\Phi \circledast \exp]].$$

By (21a), our $[\exp \circledast \exp](t) = t \cdot e^t$. And courtesy (21b),

$$[\Phi \circledast \exp](t) = \frac{e^t - e^{\frac{1}{3}t}}{1 - \frac{1}{3}} = \frac{3}{2} \cdot [e^t - e^{\frac{1}{3}t}].$$

Consequently, our *General-target Soln* is

$$25c\dagger: H_{\alpha_1, \alpha_2}(t) = \frac{1}{2}te^t + \alpha_1 e^t + \alpha_2 e^{\frac{1}{3}t}.$$

A subtlety: We never needed to compute $[\Phi \circledast \exp]$, once we noticed from (21b) that $[\Phi \circledast \exp]$ is a linear-comb of Φ and \exp . For the ZeroTar solns are all such lin-combs, so computing this specific one is irrelevant.

Variation of Parameters [NSS9: §4.6 & §2.4., ex.#30]

[This section assumes knowledge of matrix multiplication, and the determinant of a square matrix.]

26.1: Cramer's "Rule" Thm. Consider matrices H and T , and invertible matrix M , related by matrix-eqn

$$\underbrace{M}_{N \times N} \cdot \underbrace{H}_{N \times 1} = \underbrace{T}_{N \times 1}.$$

Here, "Multiplier" M and "Target" T are known, but "Huh?" H is unknown. Let $M_{T,r}$ be the $N \times N$ matrix M except that its r^{th} -column has been replaced by column-vector T . With h_r the entry in the r^{th} -row of H , then

$$h_r = \text{Det}(M_{T,r})/\text{Det}(M). \quad \diamond$$

Proof. The Determinant fnc is multiplicative, etc. \diamond

A list $\vec{\varphi} := (\varphi_0, \varphi_1, \dots, \varphi_{N-1})$ of sufficiently differentiable fncs engenders its **Wronskian Matrix**

$$WM(\vec{\varphi}) := \begin{bmatrix} \varphi_0 & \varphi_1 & \dots & \varphi_{N-1} \\ \varphi'_0 & \varphi'_1 & \dots & \varphi'_{N-1} \\ \varphi''_0 & \varphi''_1 & \dots & \varphi''_{N-1} \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_0^{(N-1)} & \varphi_1^{(N-1)} & \dots & \varphi_{N-1}^{(N-1)} \end{bmatrix},$$

also written as $WM(\varphi_0, \dots, \varphi_{N-1})$. Its determinant,

$$W(\varphi_0, \dots, \varphi_{N-1}) := W(\vec{\varphi}) := \text{Det}(WM(\vec{\varphi})),$$

is called the "**Wronskian** of $\vec{\varphi}$ ".

26.2: Wronskian L.I. Thm. If $\vec{\varphi} := (\varphi_0, \varphi_1, \dots, \varphi_{N-1})$ is a linearly-dependent list of functions, then $W(\vec{\varphi})$ is the zero-function.

Conversely, when each φ_j is analytic [is a power-series fnc]: If $W(\vec{\varphi})$ is the zero-function, then $\vec{\varphi}$ is linearly-dependent. \diamond

VoP algorithm [Variation of Parameters]

Step VoP0. Consider target fnc $G()$ and monic complex-polynomial

$$q(z) := z^N + C_{N-1}z^{N-1} + \dots + C_1z^1 + C_0z^0.$$

The polynomial determines a differential operator $\boxed{L := q(D)}$. We seek the general solution, y , to $L(y) = G$, i.e,

$$26.3: \quad y^{(N)} + C_{N-1}y^{(N-1)} + \dots + C_1y' + C_0y = G.$$

Step VoP1. Use CCLDE to find a linearly-independent list $\vec{Y} := (Y_0, \dots, Y_{N-1})$ of fncs, with each Y_j satisfying $L(Y_j) = 0$.

We seek a list $\vec{f} := (f_0, \dots, f_{N-1})$ of fncs, so that this sum-function

$$26.4: \quad s := \sum_{j=0}^{N-1} f_j \cdot Y_j$$

satisfies (26.3); that is, that $L(s) = G$.

VoP2. Let $h_j := f'_j$. Define column-vectors

$$26.5: \quad H := \begin{bmatrix} h_0 \\ \vdots \\ h_{N-2} \\ h_{N-1} \end{bmatrix} \quad \text{and} \quad T := \begin{bmatrix} 0 \\ \vdots \\ 0 \\ G \end{bmatrix}.$$

Compute the Wronskian matrix $M := WM(\vec{Y})$. Then H satisfies

$$\dagger: \quad \underbrace{M}_{N \times N} \cdot \underbrace{H}_{N \times 1} = \underbrace{T}_{N \times 1}.$$

Solve for each h_j , either via computing the inverse-matrix of M , or via Cramer's Rule (theorem, actually).

VoP3. Anti-differentiate to compute each function $f_j := \int h_j$. Then, parametrized by a list of numbers $\vec{\alpha} := (\alpha_0, \alpha_1, \dots, \alpha_{N-1})$, the *general soln* to (26.3) is

$$26.6: \quad y_{\vec{\alpha}} := \left[\sum_{j=0}^{N-1} \alpha_j Y_j \right] + \left[\sum_{j=0}^{N-1} f_j \cdot Y_j \right].$$

Why does this nifty VoP algorithm work? Matrix-eqn (\dagger) says, for $k = 0, 1, \dots, N-2$, that

$$\dagger(k): \quad \sum_{j=0}^{N-1} h_j \cdot Y_j^{(k)} = 0.$$

Differentiating (26.4) says that s' equals

$$\sum_{j=0}^{N-1} [f'_j Y_j + f_j Y'_j] \stackrel{\text{note}}{=} \left[\sum_{j=0}^{N-1} h_j Y_j \right] + \left[\sum_{j=0}^{N-1} f_j Y'_j \right].$$

By $(\ddagger(0))$, then,

$$s' = \sum_{j=0}^{N-1} f_j Y_j'.$$

Differentiating again, then using $(\ddagger(1))$, shows that

$$s'' = \sum_{j=0}^{N-1} f_j Y_j''.$$

Continuing, we conclude, for $k = 1, 2, \dots, N-1$, that

$$* : \quad s^{(k)} = \sum_{j=0}^{N-1} f_j Y_j^{(k)}.$$

Differentiating one last time produces

$$** : \quad s^{(N)} = \underbrace{\left[\sum_{j=0}^{N-1} h_j Y_j^{(N-1)} \right]}_{=: \text{Bob}} + \left[\sum_{j=0}^{N-1} f_j Y_j^{(N)} \right].$$

Eqns (26.4), $(*)$ and $(**)$, together, imply that

$$\mathcal{L}(s) = \text{Bob} + \left[\sum_{j=0}^{N-1} f_j \cdot \mathcal{L}(Y_j) \right].$$

But each $\mathcal{L}(Y_j) = 0$. Our end result is that

$$26.7: \quad \mathcal{L}(s) = \sum_{j=0}^{N-1} h_j Y_j^{(N-1)}.$$

And $\mathcal{L}(s) \stackrel{\text{want}}{=} G$. Hence we need to require that \mathbf{H} satisfies $\sum_{j=0}^{N-1} h_j Y_j^{(N-1)} = G$. And this is precisely what the bottom row of matrix-eqn (\dagger) says.

The Upshot. This method *indeed* computes an s with $\mathcal{L}(s) = G$ if there is a column-vector \mathbf{H} fulfilling (\dagger) . Happily, our Wronskian L.I. Thm (26.2) guarantees that \mathbf{M} is invertible, since we chose $\vec{\mathbf{Y}}$ to be linearly-independent. So define $\boxed{\mathbf{H} := \mathbf{M}^{-1}\mathbf{T}}$. \spadesuit

26.8: **VoP case $N=2$.** Here, our matrix eqn is

$$\underbrace{\begin{bmatrix} Y_0 & Y_1 \\ Y_0' & Y_1' \end{bmatrix}}_{\mathbf{M}} \cdot \begin{bmatrix} h_0 \\ h_1 \end{bmatrix} = \begin{bmatrix} 0 \\ G \end{bmatrix}.$$

So $D := \text{Det}(\mathbf{M}) = [Y_0 Y_1'] - [Y_0' Y_1]$. Hence

$$\begin{aligned} h_0 &= -Y_1 \cdot \frac{G}{D} \quad \text{and} \quad h_1 = Y_0 \cdot \frac{G}{D}. \quad \text{Thus} \\ y_{\alpha, \beta} &= [\alpha + \int h_0] Y_0 + [\beta + \int h_1] Y_1 \\ &= [\alpha + f_0] Y_0 + [\beta + f_1] Y_1 \\ &\stackrel{\text{or}}{=} [\alpha Y_0 + \beta Y_1] + [f_0 Y_0 + f_1 Y_1] \end{aligned}$$

is our general soln to (26.3). \square

26.9: General VoP Alg. When the DE is “not monic”, i.e

26.3*: $C_N y^{(N)} + C_{N-1} y^{(N-1)} + \dots + C_1 y' + C_0 y = G$, then steps VoP1,2,3 remain, except that the target col-vec becomes

$$26.5*: \quad \mathbf{T} := \begin{bmatrix} 0 \\ \vdots \\ 0 \\ G/C_N \end{bmatrix}.$$

The algorithm persists if the C_j coefficients are allowed to be functions of the independent variable. The only step that get harder is VoP1 [finding fncs sent to zero by the Diff-Op] since CCLDE no longer applies. \diamond

CC-VoP Example 1. DE $\boxed{\#7^P 191, \text{§4.6, NSS9}}$ is

$$26.10: \quad y'' + 4y' + 4y = e^{-2t} \cdot \log(t),$$

for $t > 0$. Define expressions

$$\mathcal{L} := \log(t) \quad \text{and} \quad \mathcal{R} := e^{-2t}. \quad \text{Note } \mathcal{R}' = -2\mathcal{R}.$$

Our target fnc is $G := \mathcal{R} \cdot \mathcal{L}$.

VoP1. The Op's aux.poly is $z^2 + 4z + 4 = [z - -2]^2$. So $\boxed{Y_0 := \mathcal{R} \quad \text{and} \quad Y_1 := t\mathcal{R}}$.

is an L.I. pair of fncs annihilated by the DiffOp.

VoP2. Differentiating w.r.t t ,

$$\begin{aligned} Y_0' &= -2\mathcal{R} \quad \text{and} \quad Y_1' = 1 \cdot \mathcal{R} + t \cdot [-2\mathcal{R}] \\ &= [1 - 2t]\mathcal{R}. \end{aligned}$$

So the Wronskian-determinant $D := \mathcal{W}(Y_0, Y_1)$ is

$$D = \mathcal{R} \cdot [1 - 2t]\mathcal{R} - t\mathcal{R} \cdot [-2\mathcal{R}] \stackrel{\text{note}}{=} \mathcal{R}^2.$$

Using the convenient (26.8),

$$\begin{aligned} h_0 &= -\frac{1}{D} Y_1 G = -\mathcal{R}^{-2} \cdot t\mathcal{R} \cdot \mathcal{R}\mathcal{L} \stackrel{\text{note}}{=} -t\mathcal{L}, \quad \text{and} \\ h_1 &= \frac{1}{D} Y_0 G = \mathcal{R}^{-2} \cdot \mathcal{R} \cdot \mathcal{R}\mathcal{L} \stackrel{\text{note}}{=} \mathcal{L}. \end{aligned}$$

VoP3. Computing anti-derivatives,

$$f_0 = \int [-t \cdot \mathcal{L}] dt = \frac{1}{4}[1 - 2\mathcal{L}] \cdot t^2 \quad \text{and}$$

$$f_1 = \int \mathcal{L} dt = [\mathcal{L} - 1] \cdot t.$$

So a fnc s sent to G by $\mathsf{L} := \mathbf{D}^2 + 4\mathbf{D} + 4\mathbf{I}$ is

$$f_0 Y_0 + f_1 Y_1 = f_0 \mathcal{R} + f_1 t \mathcal{R}$$

$$= \left[\frac{1}{4}[1 - 2\mathcal{L}] + [\mathcal{L} - 1] \right] \cdot t^2 \mathcal{R}$$

$$= \frac{1}{4}[2\mathcal{L} - 3]t^2 \mathcal{R} = \frac{1}{4}[2\log(t) - 3]t^2 e^{-2t}.$$

The gen. $y_{\alpha,\beta} := \alpha Y_0 + \beta Y_1 = [\alpha + \beta t]\mathcal{R}$ is annihilated by L . Hence, the gen. $s_{\alpha,\beta}$ with $\mathsf{L}(s_{\alpha,\beta}) = G$ is

$$s_{\alpha,\beta} = [\alpha + \beta t]\mathcal{R} + \left[\frac{1}{4}[2\mathcal{L} - 3] \cdot t^2 \mathcal{R} \right]$$

$$= \left[[\alpha + \beta t] + \frac{1}{4}[2\log(t) - 3]t^2 \right] \cdot e^{-2t}.$$

Convol-GenTar, at (25a†), solves the Same Problem. *Which method is easier?*

A WONDERFUL BIRD IS THE PELICAN

His bill holds more than his belican.

He can take in his beak,

Enough food for a week,

But I'm damned if I see how the helican.

—Dixion Lanier Merritt

Equidimensional operators

Motivation. Here, we act on functions of t . Equidimensional operators are designed to annihilate a power of t ; some t^r , where r need not be an integer. Indeed, if we only consider values $t > 0$, then we can allow r to be complex, recalling that $t^r \stackrel{\text{def}}{=} \exp(\log(t) \cdot r)$. \square

Defn. An “*equidimensional operator* of order 2” [*EquiDim-Op*] has form

$$E(y) := At^2y'' + Bty' + Cy$$

where $A \neq 0, B, C \in \mathbb{C}$ and $y = y(t)$. [See §4.7 in NSS9, where such operators are called *Cauchy-Euler operators* as well as *equidimensional*.]

A *Generalized EquiDim-Op* [abbrev. *Gen-EquiDim-Op*] has form

$$E(y) := At^{\Lambda+2}y'' + Bt^{\Lambda+1}y' + Ct^{\Lambda}y$$

for some $\Lambda \in \mathbb{C}$.

For a number $r \in \mathbb{C}$, observe that

$$\begin{aligned} 27a: \quad E(t^r) &= At^{\Lambda+2} \cdot r[r-1]t^{r-2} \\ &\quad + Bt^{\Lambda+1} \cdot rt^{r-1} + Ct^{\Lambda} \cdot r \\ &= t^{\Lambda+r} \cdot q(r), \end{aligned}$$

$$\text{where } q(z) := Az^2 + [B - A]z + C \quad \square$$

is the “*characteristic polynomial* of E ”.

The quadratic formula gives the roots, r_1 and r_2 , of q . Hence E sends t^{r_1} and t^{r_2} to the zero-fnc. If $\text{Discr}(q) = 0$, i.e. $r_1 = r_2$, then we can apply the below Reduction-of-order method. This will give us a fnc $s()$ which is L.I. of t^{r_1} s.t. $E(s) = 0$.

Roo algorithm [Reduction of order]

Consider coefficient-functions $C_j = C_j(t)$, defining linear Diff-Op

$$L(\varphi) := \varphi'' + C_1\varphi' + C_0\varphi.$$

Suppose we have a fnc Y , which is not identically-zero, satisfying $L(Y) = 0$.

Given a target fnc G , we seek a fnc s which is linearly-indep of Y , s.t. $L(s) = G$. This s will have for $Y \cdot f$ for an f we will compute. We start by computing $h := f'$ by means of FOLDE.

Step Roo1. Compute an anti-deriv $B_1 := \int C_1$, then let

$$M := Y^2 \cdot e^{B_1}.$$

Roo2. If G is identically-zero, then set

$$h := \frac{1}{M} \stackrel{\text{note}}{=} \frac{1}{Y^2} \cdot e^{-B_1}.$$

Otherwise, define

$$h := \frac{1}{M} \cdot \int \frac{MG}{Y} \stackrel{\text{note}}{=} \frac{1}{M} \cdot \int [Y \cdot e^{B_1} \cdot G].$$

Roo3. Compute an anti-derivative

$$f := \int h. \quad \text{Finally, define } s := Y \cdot f.$$

Why does the Roo alg. work? We solve for a fnc f such that $s := Y \cdot f$ satisfies $L(s) = G$. Let $h := f'$. Differentiating

$$s = Y \cdot f \quad \text{produces}$$

$$\begin{aligned} s' &= Y'f + Yf' \\ &\stackrel{\text{note}}{=} Y'f + Yh. \quad \text{Thus} \end{aligned}$$

$$\begin{aligned} s'' &= Y''f + Y'f' + Y'h + Yh' \\ &= Y''f + [Yh' + 2Y'h]. \end{aligned}$$

Thus $L(s) \stackrel{\text{def}}{=} s'' + C_1s' + C_0s$ equals

$$\begin{aligned} L(Y) \cdot f &+ [Yh' + 2Y'h] + C_1Yh \\ &\stackrel{\text{since } L(Y) = 0}{=} Yh' + [2Y' + C_1Y]h. \end{aligned}$$

Consequently, h satisfies $Yh' + [2Y' + C_1Y]h = G$. Dividing by Y yields FOLDE

$$27b: \quad h' + \underbrace{[2\frac{Y'}{Y} + C_1]}_{\substack{\text{FOLDE coeff-fnc} \\ \text{FOLDE target-fnc}}} \cdot h = \underbrace{\frac{G}{Y}}_{\substack{\text{FOLDE target-fnc}}}.$$

Note $\frac{Y'}{Y} = [\log(Y)]'$, so $2\frac{Y'}{Y} = [2\log(Y)]' = [\log(Y^2)]'$. Thus the FOLDE anti-deriv of the coeff-fnc is

$$B := \int [2\frac{Y'}{Y} + C_1] \stackrel{\text{note}}{=} \log(Y^2) + B_1.$$

Hence the FOLDE multiplier-fnc is

$$M := Y^2 \cdot e^{B_1}.$$

The last FOLDE-step gives the two formulas in **Roo2**. ◆

Equidim + Roo Example 1. For $t > 0$, let's find the gen.soln $\varphi = \varphi(t)$ of DE

$$27c: \quad t^2 \varphi'' - 5t \varphi' + 9\varphi = 0.$$

Operator $E(y) := t^2 y'' - 5t y' + 9y$ is equidimensional. Its char-poly is, from (27a),

$$z^2 + [-5 - 1]z + 9 = z^2 - 6z + 9 = [z - 3]^2.$$

Hence $Y(t) := t^3$ is sent to 0 by $E()$. Checking:

$$\begin{aligned} E(t^3) &= t^2 \cdot [3 \cdot 2t] - 5t \cdot [3t^2] + 9 \cdot [t^3] \\ &= 3t^3 \cdot [2 - 5 + 3] \stackrel{\text{note}}{=} 0. \end{aligned}$$

Measure twice, cut once.

-Proverb

Roo1. We make a monic version of the operator by defining $L := [1/t^2] \cdot E$, i.e

$$L(y) := y'' - \frac{5}{t} y' + \frac{9}{t^2} y.$$

With $C_1(t) := -\frac{5}{t}$, then

$$B_1(t) := \int C_1 = -5 \cdot \log(t).$$

So $\exp(B_1(t))$ equals t^{-5} . Thus

$$M(t) := [t^3]^2 \cdot t^{-5} = t.$$

Roo2. Our target fnc is the zero-fnc, so we simply compute

$$h(t) := 1/M(t) = 1/t.$$

Roo3. Antidifferentiating gives $f := \int h = \log$. Consequently, the theory tells us that

$$27d: \quad s(t) := f(t) \cdot [Y(t)] \stackrel{\text{note}}{=} \log(t) \cdot t^3$$

is sent to the zero-fnc by L [hence also by E], and is L.I of $Y(t) = t^3$. Did you check?

Checking: Let $\mathcal{G} := \log(t)$. Then

$$s = \mathcal{G}t^3. \quad \text{Thus}$$

$$s' = \frac{1}{t}t^3 + \mathcal{G} \cdot 3t^2 = [1 + 3\mathcal{G}]t^2, \quad \text{so}$$

$$s'' = \frac{3}{t} \cdot t^2 + [1 + 3\mathcal{G}] \cdot 2t = [5 + 6\mathcal{G}]t. \quad \text{Summing}$$

$$9s = [0 + 9\mathcal{G}]t^3 \quad \text{with}$$

$$-5ts' = [-5 - 15\mathcal{G}]t^3 \quad \text{and with}$$

$$t^2s'' = [5 + 6\mathcal{G}]t^3$$

is the defn of $E(s)$. The sum is indeed zero.

Roo Example 2. For $\varphi = \varphi(x)$, define operator

$$L(\varphi) := \varphi'' - \tan(x)\varphi' - [1 + \tan(x)^2]\varphi.$$

Given that $L(\tan) = 0$, we seek the general solution $g = g(x)$ to

28a: $L(g) = 1.$

As $\tan()$ blows up at $\pm\frac{\pi}{2}$, we restrict to $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$. Note that $\cos()$ is positive on $(-\frac{\pi}{2}, \frac{\pi}{2})$.

Sanity check. Define abbreviations

$$C := \cos(x), \quad S := \sin(x), \quad T := \tan(x) \stackrel{\text{note}}{=} \frac{S}{C}.$$

Let's verify that what we were given is true. Note

$$T' = [1 + T^2], \quad \text{hence} \quad T'' = 2T[1 + T^2].$$

Thus $L(T)$ equals

$$2T[1 + T^2] - T[1 + T^2] - [1 + T^2]T,$$

which is indeed zero. \square

Gen. ZeroTar soln. To find a fnc $s = s(x)$ st. $L(s) = 0$ and pair $\{T, s\}$ is L.I (linearly indep), the Roo method has us compute a fnc f so that $s := T \cdot f$ achieves these goals. This $f := \int h$ for an h that we now compute.

Computing h . Using Roo notation, $C_1 = -T$ and $C_0 = -[1 + T^2]$. Note $B_1 := \int C_1 = \log \circ C$. Consequently, $e^{B_1} = \exp \circ \log \circ C \stackrel{\text{note}}{=} C$. Our FOLDE multiplier is thus $M := T^2 \cdot e^{B_1} = T^2 \cdot C = S^2/C$.

In the ZeroTar case, Roo says

$$h = 1/M = C/S^2. \quad \text{Thus}$$

$$f \stackrel{\text{def}}{=} \int h = -1/S.$$

Roo says to define $s := T \cdot f \stackrel{\text{note}}{=} -1/C$. But since the target is zero, and L is linear, we may freely multiply by a non-zero constant. Hence, we shall define s as $s := 1/C$.

CHECK: To verify that s is annihilated by $L()$, note

$$s' = \frac{1}{C}T. \quad \text{Thus,}$$

$$s'' = [\frac{1}{C}T] \cdot T + \frac{1}{C}[1 + T^2] = \frac{1}{C}[1 + 2T^2]. \quad \text{So,}$$

$$L(s) = \frac{1}{C} \cdot [1 + 2T^2] - T \cdot T - [1 + T^2] \cdot 1 \stackrel{\text{note}}{=} 0,$$

as predicted by the theory. \spadesuit

Remark. To solve $L(g) = 1$ we could start with either ZeroTar soln; T or $\frac{1}{C}$. But since we have already computed the multiplier-fnc for T , we will use T . \square

Solving $L(g) = 1$. Recall $M = T^2 \cdot C$, when using ZeroTar T . Roo asserts that our h is

$$h := \frac{1}{M} \cdot \int \frac{MG}{T},$$

where, now, $G \equiv 1$ is our target function. The integrand is $T \cdot e^{B_1} \cdot G = T \cdot C \cdot 1 = S$. Hence

$$h = \frac{1}{M} \cdot \int S = \frac{1}{T^2 C} \cdot [-C] = \frac{-1}{T^2}. \quad \text{Thus,}$$

$$f(x) \stackrel{\text{def}}{=} \int^x h = \frac{1}{T} + x. \quad \text{Consequently,}$$

$$g(x) = T \cdot f(x) = 1 + [xT].$$

It is tedious, but easy, to verify $L(1 + xT) = 1$. So

28b: $g_{\alpha, \beta}(x) := [1 + x \tan(x)] + \alpha \tan(x) + \frac{\beta}{\cos(x)}$

is the gen.soln to $L(g_{\alpha, \beta}) = 1$. \spadesuit

Other methods. We solved DE (28a) via Roo + Roo. Alternatively, we could have used Roo + VoP or algorithm Roo + Convol-GenTar. \square

Tarantulas tarantulas

Everybody loves tarantulas

*If there's just fuzz where your hamster was
It's probably because of tarantulas*

—chorus of “The Tarantula Song” —Bryant Oden

Stopped at a traffic light, the car in front has vanity plate **ML8ML8**. What color is the car?

7i

Commutation relations. Boldface symbols

D, I, 0, T? and **M?**

denote operators with fixed meanings. We'll use sans-serif letters **L, P, Q, U, V** for *operator-variables*; variables that we can assign operators to. Make the convention that, e.g., VP means $V \circ P$, and V^3 means $V \circ V \circ V$. Hence $V^0 = \mathbf{I}$.

Use " \Leftarrow " to mean 'commutes with'. So $U \Leftarrow V$ means that $UV = VU$.

29.2: Op-commutation lemma. Here $\alpha, \beta \in \mathbb{C}$, and f, g are functions.

- a: Translation-ops are linear and commute with each other. Indeed, $\mathbf{T}_\beta \mathbf{T}_\alpha = \mathbf{T}_{\beta+\alpha} = \mathbf{T}_\alpha \mathbf{T}_\beta$.
- b: Multiply-ops are linear and commute with each other. Specifically, $\mathbf{M}_f \mathbf{M}_g = \mathbf{M}_{f \cdot g} = \mathbf{M}_g \mathbf{M}_f$.
- c: Each translation-op commutes with **D**.
- d: Operator \mathbf{M}_g commutes with **D** IFF g is constant. The general commutation relation is

$$\begin{aligned} \mathbf{D} \mathbf{M}_g &= \mathbf{M}_{g'} + [\mathbf{M}_g \mathbf{D}], \quad \text{E.g.} \\ \mathbf{D} \mathbf{M}_t &= \mathbf{I} + [\mathbf{M}_t \mathbf{D}]. \end{aligned}$$

- e: Operator \mathbf{M}_f commutes with \mathbf{T}_β IFF β is a period of f . The commutation relation [written with composition symbol \circ , for clarity] is

$$\mathbf{T}_\beta \circ \mathbf{M}_f = \mathbf{M}_{\mathbf{T}_\beta(f)} \circ \mathbf{T}_\beta. \quad \diamond$$

Proof of (c). Exercise. Use the Chain rule. ♦

Pf of (d). Well, $\mathbf{D} \mathbf{M}_g(y) = \mathbf{D}(g \cdot y) = g'y + gy'$, which equals $\mathbf{M}_{g'}(y) + [\mathbf{M}_g \mathbf{D}](y)$, i.e., $[\mathbf{M}_{g'} + [\mathbf{M}_g \mathbf{D}]](y)$. ♦

Pf of (e). Let $f_\beta := \mathbf{T}_\beta(f)$ and, for y an arbitrary fnc, let $y_\beta := \mathbf{T}_\beta(y)$. So $\mathbf{M}_{\mathbf{T}_\beta(f)} = \mathbf{M}_{f_\beta}$. Thus

$$* \colon \mathbf{M}_{f_\beta} \mathbf{T}_\beta(y) = f_\beta \cdot y_\beta = \mathbf{T}_\beta(f \cdot y) = \mathbf{T}_\beta \mathbf{M}_f(y),$$

yielding the stated commutation relation.

Now, if $\mathbf{M}_\beta \Leftarrow \mathbf{T}_f$ then $\mathbf{M}_f \mathbf{T}_\beta = \mathbf{T}_\beta \mathbf{M}_f = \mathbf{M}_{f_\beta} \mathbf{T}_\beta$, by (*). Evaluating at the constant function 1 shows that $\mathbf{M}_{f_\beta}(1) = \mathbf{M}_f(1)$. Consequently $f_\beta = f$. ♦

Example. Numerical expressions can be simplified [e.g. 7+1 equals 8], as can *fnc* expressions [e.g. $\cos^2 + \sin^2$ equals the constant-*fnc* 1²], and so too can *operator* expressions. For example, the above lemma allows this

$$\begin{aligned} M_5 D M_{\sin} D &\xrightarrow{\text{by (29.2d)}} M_5 [M_{\cos} + M_{\sin} D] D \\ &\xrightarrow{\text{by (29.2b)}} M_5 \cos D + M_5 \sin D^2. \end{aligned}$$

Another: Note that

$$T_{\pi/2} M_{\cos} \xrightarrow{\text{by (e)}} M_{T_{\pi/2}(\cos)} T_{\pi/2} = M_{\sin} T_{\pi/2}.$$

Hence

$$T_{\pi/2} M_{\cos} T_{3\pi/2} = M_{\sin} T_{2\pi}. \quad \square$$

Matrix exponential

Fix posint N and let MAT denote the set of $N \times N$ matrices. Use $\mathbf{0}, \mathbf{I} \in \text{MAT}$ for the zero-matrix and identity-matrix. For $\mathbf{M} \in \text{MAT}$, define

$$* \colon \exp(\mathbf{M}) := e^{\mathbf{M}} := \sum_{k=0}^{\infty} \left[\frac{1}{k!} \cdot \mathbf{M}^k \right].$$

30.1: *MiniChallenge: MatrixExp by hand.* Fix an $\alpha \in \mathbb{C}$ and set $\mathbf{S} := \begin{bmatrix} \alpha & \alpha \\ 0 & 0 \end{bmatrix}$. Compute $e^{\mathbf{S}}$ and $e^{t\mathbf{S}}$. \square

Soln. Let's do this for $\alpha := 5$; we'll see the pattern.

Always, \mathbf{S}^0 is the identity matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$. And for $k \in \mathbb{Z}_+$, easily $\mathbf{S}^k = \begin{bmatrix} 5^k & 5^k \\ 0 & 0 \end{bmatrix}$.

Writing \mathbf{S}^0 in the same pattern, then,

$$\mathbf{S}^0 = \begin{bmatrix} 5^0 & 5^0 \\ 0 & 0 \end{bmatrix} + \mathbf{C}, \quad \text{where } \mathbf{C} := \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix}.$$

Applying defn (*), our $e^{t\mathbf{S}}$ equals

$$\begin{aligned} & \frac{1}{0!} \cdot t^0 \cdot \mathbf{C} + \sum_{k=0}^{\infty} \frac{1}{k!} \cdot t^k \cdot \begin{bmatrix} 5^k & 5^k \\ 0 & 0 \end{bmatrix} \\ &= \mathbf{C} + \begin{bmatrix} \sum_{k=0}^{\infty} \frac{1}{k!} \cdot t^k 5^k & \sum_{k=0}^{\infty} \frac{1}{k!} \cdot t^k 5^k \\ 0 & 0 \end{bmatrix}. \end{aligned}$$

This $\sum_{k=0}^{\infty} \frac{1}{k!} t^k 5^k$ is just the Taylor series of e^{5t} , so

$$e^{t\mathbf{S}} = \begin{bmatrix} 0 & -1 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} e^{5t} & e^{5t} \\ 0 & 0 \end{bmatrix} \stackrel{\text{note}}{=} \begin{bmatrix} e^{5t} & e^{5t} - 1 \\ 0 & 1 \end{bmatrix}.$$

Nothing was special about the complex number 5, so for our original \mathbf{S} we conclude that

$$30.2: e^{t\mathbf{S}} = \exp\left(t \cdot \begin{bmatrix} \alpha & \alpha \\ 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} e^{\alpha t} & e^{\alpha t} - 1 \\ 0 & 1 \end{bmatrix}.$$

Plugging in $t=1$ gives

$$30.3: e^{\mathbf{S}} = \exp\left(\begin{bmatrix} \alpha & \alpha \\ 0 & 0 \end{bmatrix}\right) = \begin{bmatrix} e^{\alpha} & e^{\alpha} - 1 \\ 0 & 1 \end{bmatrix}.$$

By the way, at $t=0$, note that (30.2) is the identity matrix. *Coincidence? Space aliens? I think not!* \spadesuit

Defn. An $N \times N$ matrix \mathbf{M} is *nilpotent* if $\exists k \in \mathbb{Z}_+$ such that $\mathbf{M}^k = \mathbf{0}_{N \times N}$. The *smallest* such k is the “*nilpotency degree* of \mathbf{M} ”, written $\text{NilDeg}(\mathbf{M})$. [Thus “ $\text{NilDeg}(\mathbf{M}) = \infty$ ” means \mathbf{M} is *not* nilpotent.] Always:

The nilpotency degree of a nilpotent $N \times N$ matrix is $\leq N$.

Matrices $\mathbf{A}, \mathbf{B} \in \text{MAT}$ are *similar*¹⁴ [to each other] if there exists¹⁴ an invertible $\mathbf{U} \in \text{MAT}$ such that

$$\mathbf{B} = \mathbf{U} \mathbf{A} \mathbf{U}^{-1}. \quad \text{Write this relation as } \mathbf{A} \sim \mathbf{B}.$$

Easily, relation \sim is an equivalence relation.

This \mathbf{A} is *diagonalizable* if \mathbf{A} is similar to *some* diagonal matrix.

Read $\mathbf{A} \Leftarrow \mathbf{B}$ as “ \mathbf{A} commutes with \mathbf{B} ” i.e., $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A}$. \square

31: **MatExp theorem.** Series (*) always converges. Moreover, for scalars α, β and $\mathbf{A}, \mathbf{B}, \mathbf{R}, \mathbf{D} \in \text{MAT}$:

a: *Exp() of a diagonal matrix* $\mathbf{D} := \begin{bmatrix} \alpha_1 & & \\ & \ddots & \\ & & \alpha_N \end{bmatrix}$ *yields diagonal matrix* $e^{\mathbf{D}} = \begin{bmatrix} e^{\alpha_1} & & \\ & \ddots & \\ & & e^{\alpha_N} \end{bmatrix}$, so $e^{t\mathbf{D}} = \begin{bmatrix} e^{\alpha_1 t} & & \\ & \ddots & \\ & & e^{\alpha_N t} \end{bmatrix}$.

Thus $e^{\mathbf{0}} = \mathbf{I}$.

b: If matrices $\mathbf{A} \Leftarrow \mathbf{B}$, then $e^{\mathbf{A}+\mathbf{B}} = e^{\mathbf{A}} \cdot e^{\mathbf{B}}$. Hence, every $e^{\mathbf{R}}$ is invertible, and $[e^{\mathbf{R}}]^{-1} = e^{-\mathbf{R}}$. Also, $e^{[\alpha+\beta]\mathbf{R}} = e^{\alpha\mathbf{R}} \cdot e^{\beta\mathbf{R}}$.

c: For \mathbf{R} arbitrary and \mathbf{U} invertible, let $\mathbf{D} := \mathbf{U}^{-1} \mathbf{R} \mathbf{U}$; so $\mathbf{R} := \mathbf{U} \mathbf{D} \mathbf{U}^{-1}$. Then $e^{\mathbf{U} \mathbf{D} \mathbf{U}^{-1}} = \mathbf{U} e^{\mathbf{D}} \mathbf{U}^{-1}$. I.e., [Conjugation by \mathbf{U}] commutes-with $\exp()$.

From above, $t\mathbf{R} = \mathbf{U} \cdot t\mathbf{D} \cdot \mathbf{U}^{-1}$, since scalars commute with matrices, and thus

$$e^{t\mathbf{R}} = \mathbf{U} \cdot e^{t\mathbf{D}} \cdot \mathbf{U}^{-1}.$$

d: Function $[t \mapsto e^{t\mathbf{R}}]$ is differentiable, and

$$\frac{d}{dt} e^{t\mathbf{R}} = \mathbf{R} \cdot e^{t\mathbf{R}} = e^{t\mathbf{R}} \cdot \mathbf{R}. \quad \diamond$$

¹⁴We also say “ \mathbf{A} and \mathbf{B} are conjugate to each other”, or “matrix \mathbf{U} conjugates \mathbf{A} to \mathbf{B} .” In general, \mathbf{U} is *not* unique; there could be an invertible $\mathbf{W} \neq \mathbf{U}$ s.t. $\mathbf{W}\mathbf{A}\mathbf{W}^{-1} = \mathbf{B} = \mathbf{U}\mathbf{A}\mathbf{U}^{-1}$.

32.1: MiniChallenge: CEX to $e^{A+B} = e^A e^B$.

Find 2×2 matrices A and B which form a counterexample (abbrev. CEX) to assertion $e^{A+B} = e^A e^B$. \square

Soln. MatExp (31b) tells us to search among non-commuting pairs; that is, $AB \neq BA$. About the simplest non-commuting pair there is, is

$$32.2: \quad A := \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad B := \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Is this pair a CEX?! (This is so exciting!)

Since A is a diagonal matrix, our (31a) says

$$e^A = \begin{bmatrix} e^1 & 0 \\ 0 & e^0 \end{bmatrix} = \begin{bmatrix} e & 0 \\ 0 & 1 \end{bmatrix}.$$

Our B has nilpotency-degree 2 [i.e. $B^2 = \mathbf{0}_{2 \times 2}$], so

$$e^B = \frac{1}{0!} \mathbf{I} + \frac{1}{1!} B = \mathbf{I} + B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}.$$

Before even computing e^{A+B} , note that

$$32.3: \quad e^A \cdot e^B = \begin{bmatrix} e & 0 \\ 0 & 1 \end{bmatrix} \neq \begin{bmatrix} e & 1 \\ 0 & 1 \end{bmatrix} = e^B \cdot e^A.$$

Since $A+B$ does equal $B+A$, this implies that –in one order or the other– we indeed have a CEX.

To find out which, we compute e^S , where the sum

$$S := A + B \stackrel{\text{note}}{=} \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}.$$

Our previous work, (30.3), says that exponential

$$32.4: \quad e^S = \begin{bmatrix} e^1 & e^1 - 1 \\ 0 & 1 \end{bmatrix} \stackrel{\text{note}}{=} \begin{bmatrix} e & e - 1 \\ 0 & 1 \end{bmatrix}.$$

So: **No two of $e^A e^B$, $e^B e^A$, e^{A+B} are equal.** \spadesuit

33: **Lemma.** Consider a mystery vector-valued function

$$Z(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_N(t) \end{bmatrix}.$$

Suppose Z satisfies $Z' = R \cdot Z$, where R is an $N \times N$ matrix of numbers. Then each column, Y , of e^{tR} satisfies $Y' = R \cdot Y$. Hence the soln to $Z' = RZ$ is

$$33a: \quad Z(t) = e^{tR} \cdot Z(0). \quad \diamond$$

34.1: **Diagonalizable Example.** Unknown fncs $x=x(t)$ and $y=y(t)$ satisfy

$$34.2: \quad \begin{aligned} x' &= -5x + 9y \quad \text{and} \\ y' &= -6x + 10y. \end{aligned}$$

So the coeff-matrix is $R := \begin{bmatrix} -5 & 9 \\ -6 & 10 \end{bmatrix}$. Magic [or a nice guy] produces a conjugating matrix $U := \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$ s.t

$$D := U^{-1} R U \stackrel{\text{note}}{=} \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$$

is a diagonal matrix. \heartsuit^{15} Hence $e^{tR} = U e^{tD} U^{-1}$. I.e,

$$\begin{aligned} e^{tR} &= U \begin{bmatrix} e^t & 0 \\ 0 & e^{4t} \end{bmatrix} U^{-1} \\ 34.3: \quad &\stackrel{\text{note}}{=} \begin{bmatrix} 3e^t - 2e^{4t} & -3e^t + 3e^{4t} \\ 2e^t - 2e^{4t} & -2e^t + 3e^{4t} \end{bmatrix}. \end{aligned}$$

Our general soln, parameterized by numbers α and β , is

$$\begin{aligned} x_{\alpha, \beta}(t) &= [3e^t - 2e^{4t}] \cdot \alpha + [-3e^t + 3e^{4t}] \cdot \beta, \\ \ddagger: \quad y_{\alpha, \beta}(t) &= [2e^t - 2e^{4t}] \cdot \alpha + [-2e^t + 3e^{4t}] \cdot \beta. \end{aligned}$$

As they must, $\alpha = x(0)$ and $\beta = y(0)$. \square

35.1: **Nilpotent Example.** UFs $x = x(t)$ and $y = y(t)$ satisfy

$$35.2: \quad \begin{aligned} x' &= 2x - y \quad \text{and} \\ y' &= 4x - 2y. \end{aligned}$$

Hence the coeff-matrix is $R := \begin{bmatrix} 2 & -1 \\ 4 & -2 \end{bmatrix}$. Note $R^2 = \mathbf{0}$. [I.e, R has nilpotency-degree 2.] Thus

$$35.3: \quad e^{tR} = \mathbf{I} + tR \stackrel{\text{note}}{=} \begin{bmatrix} 1 + 2t & -t \\ 4t & 1 - 2t \end{bmatrix}.$$

Therefore, the soln to (35.2) is

$$\ddagger: \quad \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} 1 + 2t & -t \\ 4t & 1 - 2t \end{bmatrix} \cdot \begin{bmatrix} x(0) \\ y(0) \end{bmatrix}. \quad \square$$

\heartsuit^{15} Note that $U^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$

Defn. The **characteristic polynomial** of an $N \times N$ matrix \mathbf{M} is

$$36.1: \quad \varphi_{\mathbf{M}}(z) := \text{Det}(\mathbf{M} - z\mathbf{I})$$

And the **trace** of \mathbf{M} is

$$36.2: \quad \text{Trace}(\mathbf{M}) := \begin{bmatrix} \text{Sum of elements on} \\ \text{main diagonal of } \mathbf{M} \end{bmatrix}.$$

Consider $\mathbf{Q} := \begin{bmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{bmatrix}$. Then $\text{Trace}(\mathbf{Q}) = [\mathbf{a} + \mathbf{d}]$.
And $\mathbf{Q} - z\mathbf{I} = \begin{bmatrix} \mathbf{a} - z & \mathbf{b} \\ \mathbf{c} & \mathbf{d} - z \end{bmatrix}$. Hence

$$36.3: \quad \begin{aligned} \varphi_{\mathbf{Q}}(z) &= z^2 - [\mathbf{a} + \mathbf{d}]z + [\mathbf{a}\mathbf{d} - \mathbf{b}\mathbf{c}] \\ &\stackrel{\text{note}}{=} z^2 - \text{Trace}(\mathbf{Q}) \cdot z + \text{Det}(\mathbf{Q}). \end{aligned}$$

For a general $N \times N$ matrix \mathbf{M} : If we write

$$\varphi_{\mathbf{M}}(z) = [-1]^N z^N + \Omega_{N-1} z^{N-1} + \dots + \Omega_0,$$

then $\Omega_0 = \text{Det}(\mathbf{M})$ and $\Omega_{N-1} = [-1]^{N-1} \cdot \text{Trace}(\mathbf{M})$.
I.e,

$$36.4: \quad \begin{aligned} \varphi_{\mathbf{M}}(z) &= [-1]^N z^N + [-1]^{N-1} \text{Trace}(\mathbf{M}) z^{N-1} \\ &\quad + \Omega_{N-2} z^{N-2} + \dots + \Omega_1 z + \text{Det}(\mathbf{M}). \end{aligned}$$

Over \mathbb{C} , our char-poly factors as

$$\varphi_{\mathbf{M}}(z) = [-1]^N \cdot [z - \alpha_1] \cdot [z - \alpha_2] \cdots [z - \alpha_N].$$

This list $\alpha_1, \alpha_2, \dots, \alpha_N$ of (possibly complex) numbers is the list of **eigenvalues** of \mathbf{M} . If \mathbf{M} is diagonalizable, then

$$\mathbf{M} \sim \begin{bmatrix} \alpha_1 & & \\ & \ddots & \\ & & \alpha_N \end{bmatrix}.$$

Moreover, the *only* diagonal matrices to which \mathbf{M} is similar are those whose main diagonal is some permutation of $\alpha_1, \dots, \alpha_N$. \square

36.5: Distinct-roots Thm. Suppose that the char-poly

$$\varphi_{\mathbf{R}}(z) = [z - \beta_1] \cdot [z - \beta_2] \cdots [z - \beta_N] \cdot [-1]^N$$

of $N \times N$ matrix \mathbf{R} has N distinct (possibly complex) roots. β_1, \dots, β_N .¹⁶ Then \mathbf{R} is indeed similar¹⁷ to diagonal matrix $\begin{bmatrix} \beta_1 & & \\ & \ddots & \\ & & \beta_N \end{bmatrix}$.

¹⁶Recall, these are the eigenvalues of matrix \mathbf{R} .

¹⁷Alas, it may be difficult to compute a conjugating matrix.

In particular, for column-vector $\mathbf{Z}(t) := \begin{bmatrix} x_1(t) \\ \vdots \\ x_N(t) \end{bmatrix}$

satisfying DE $\mathbf{Z}' = \mathbf{R}\mathbf{Z}$, each $x_j(t)$ is simply a linear-combination of exponentials $e^{\beta_1 t}, \dots, e^{\beta_N t}$.

Letting \mathbf{m} denote the maximum of the real-parts of the eigenvalues, it follows that no $x_j(t)$ can grow faster than [constant times $e^{\mathbf{m} \cdot t}$], as $t \nearrow \infty$. \diamond

36.6: Example. Consider $\mathbf{X}'(t) = \mathbf{B} \cdot \mathbf{X}(t)$, where,

$$\mathbf{B} := \begin{bmatrix} 115 & 207 & -54 \\ -72 & -130 & 34 \\ -24 & -45 & 13 \end{bmatrix}.$$

The char-poly of \mathbf{B} is

$$\varphi_{\mathbf{B}}(z) = -[z + 5] \cdot [z^2 - 3z + 8].$$

The discriminant of quadratic $q(z) := z^2 - 3z + 8$ is $\text{Discr}(q) = [-3]^2 - 4 \cdot 1 \cdot 8 = -23$. The roots of q are thus

$$S := [3 + \sqrt{23}i]/2 \quad \text{and} \quad \bar{S} \stackrel{\text{note}}{=} [3 - \sqrt{23}i]/2.$$

So $\varphi_{\mathbf{B}}(z) = -[z - -5][z - S][z - \bar{S}]$ in std form.

Since the three $\varphi_{\mathbf{B}}$ -roots are distinct, the Distinct-roots thm tell us that \mathbf{B} is similar to diagonal matrix

$$\begin{bmatrix} -5 & S & \bar{S} \end{bmatrix}.$$

So each entry in $\mathbf{X}(t)$ is a lin-comb of $e^{-5t}, e^{St}, e^{\bar{S}t}$. The max of the real-parts of $-5, S, \bar{S}$ is $\frac{3}{2}$. As $t \nearrow \infty$, then, no soln grows faster than $\text{Const} \cdot \exp(\frac{3}{2}t)$. \square

Recoding: Exchanging dimension for DE-order

For numbers $\Omega_k \in \mathbb{C}$ and U.F $x=x(t)$,

$$37a: \quad x^{(N)} = \sum_{k=0}^{N-1} [\Omega_k \cdot x^{(k)}].$$

is an N^{th} -order DE in 1-dim'al space. Define col-vec

$$Z(t) := \begin{bmatrix} x(t) \\ x'(t) \\ \vdots \\ x^{(N-2)}(t) \\ x^{(N-1)}(t) \end{bmatrix},$$

which is $N \times 1$. We can restate (37a) as

$$37b: \quad Z' = R \cdot Z, \quad \text{where } R \text{ is } N \times N \text{ matrix} \quad \text{⑯18}$$

$$37c: \quad R := \begin{bmatrix} 0 & 1 & & & & \\ & 0 & 1 & & & \\ & & 0 & 1 & & \\ & & & \ddots & \ddots & \\ & & & & 0 & 1 \\ \Omega_0 & \Omega_1 & \Omega_2 & \dots & \Omega_{N-2} & \Omega_{N-1} \end{bmatrix}.$$

[The unshown entries are zero. The cyan entries form the main diagonal.] The solution to (37a,37b) is

$$Z(t) = e^{t \cdot R} \cdot Z(0) = \exp(t \cdot R) \cdot Z(0).$$

But of course, we can solve (37a) with CCLDE, and do not need the matrix-exp. Here is a more interesting example:

37d: *Recoding Example.* Imagine U.Fs $x=x(t)$ and $y=y(t)$ related by DEs

$$37a\dagger: \quad \begin{aligned} x''' - 2x'' - 3x + 4y &= 0, \quad \text{and} \\ y' + 5x'' + 6x' + 7x - 8y &= 0. \end{aligned}$$

We can cheerfully recode this system as a 1st-order DE in $3+1 = 4$ dim'al space, with U.F $Z=Z(t)$, as follows.

$$37b\dagger: \quad \text{Note } Z' = R \cdot Z, \quad \text{where } Z := \begin{bmatrix} y \\ x \\ x' \\ x'' \end{bmatrix} \quad \text{and}$$

$$37c\dagger: \quad R := \begin{bmatrix} 8 & -7 & -6 & -5 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -4 & 3 & -0 & 2 \end{bmatrix}.$$

Hence the soln to (37a \dagger ,37b \dagger) is $Z(t) = e^{t \cdot R} \cdot Z(0)$.

In this instance, $e^{t \cdot R}$ is not so easy to compute, but it can be polynomially approximated by, say,

$$\exp(t \cdot R) \approx \sum_{k=0}^{50} \left[t^k R^k / k! \right],$$

with easily computable error-bounds. \square

Aside. Into WolframAlpha, typing

`{8, -7, -6, -5}, {0, 0, 1, 0}, {0, 0, 0, 1}, {-4, 3, -0, 2}`

i.e. `{ { 8, -7, -6, -5 }, { 0, 0, 1, 0 }, { 0, 0, 0, 1 }, { -4, 3, -0, 2 } }`

indicates that $\varphi_R()$ has two real eigenvalues and a complex-conjugate pair of eigenvalues. As $t \nearrow \infty$, the growth rate of every soln is absolute-bnded by $\text{Const} + \text{Const} \cdot \exp(10.7 \cdot t)$. \square

⑯18 See “Companion matrix” in Wikipedia.

MacFOLDE

Let's generalize.

38: Product-rule Lemma. Suppose $A(t)$ is a $J \times K$ matrix, and $B(t)$ is a $K \times N$ matrix, each differentiable fncs. Then $J \times N$ matrix $P(t) := A(t) \cdot B(t)$ is differentiable, and

$$P'(t) = [A'(t) \cdot B(t)] + [A(t) \cdot B'(t)]. \quad \diamond$$

N.B. I.e, $P = [A' B] + [AB']$. Matrix-mult is not commutative, so it is *likely* that P fails to equal, e.g, $[BA'] + [AB']$. \square

39.1: Warning! Consider the matrix-valued fnc,

$$B(t) := \begin{bmatrix} 3 & 2t \\ 0 & 0 \end{bmatrix}, \quad \text{so} \quad B'(t) = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}.$$

Observe that

$$B(t) \cdot B'(t) = \begin{bmatrix} 0 & 6 \\ 0 & 0 \end{bmatrix}, \quad \text{yet} \quad B'(t) \cdot B(t) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Consequently, $B'(t)$ does *not* commute with $B(t)$. In symbols, $B' \not\equiv B$. \square

39.2: Lemma. Consider a differentiable matrix-valued function $B(t)$ where, for each t , our $B(t)$ is an $N \times N$ matrix. At each time t , suppose $B'(t) \equiv B(t)$. Then

$$\frac{d}{dt} e^{B(t)} = B'(t) \cdot e^{B(t)} = e^{B(t)} \cdot B'(t). \quad \diamond$$

With C a matrix of numbers, and $B(t) := C \cdot t$, note that $B'(t) = C$. Hence $B'(t)$ does commute with $B(t)$.

This “constant coefficient” case is the case that interests us, so I call the following the **Matrix-CC-FOLDE** algorithm, abbreviated **MacFOLDE**, even though the algorithm *does* apply whenever, for each t , matrix $B'(t)$ commutes with $B(t)$.

Step MFOL 0. We have U.F $Z = Z(t)$ which is a time-varying $N \times 1$ matrix. Write the DE in the form

$$40a: \quad \frac{dZ}{dt} + [C \cdot Z] = G(t),$$

where C is an $N \times N$ matrix of numbers, and $G(t)$ is an $N \times 1$ time-varying fnc. An antiderivative of C is $B(t) := t \cdot C$.

Define *multiplier function*

$$40b: \quad M(t) := e^{B(t)} \stackrel{\text{note}}{=} e^{tC}.$$

Observe that $M'(t) = M(t) \cdot C$. By (38), then,

$$\begin{aligned} [M(t) \cdot Z]' &= [M(t) \cdot C \cdot Z] + [M(t) \cdot Z'] \\ **: &= M(t) \cdot [C \cdot Z] + Z' \\ &= M(t) \cdot G(t). \end{aligned}$$

Step MFOL 1. Define the column-vector function $P(t) := M(t) \cdot G(t)$, then compute

$$Q(t) := \int^t P().$$

For an arbitrary column-vec $\vec{\alpha} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_N \end{bmatrix}$ of numbers, [where $M=M(t)$, $Z=Z(t)$, $Q=Q(t)$]

$$M \cdot Z = \vec{\alpha} + Q.$$

Multiplying by $M^{-1} \stackrel{\text{note}}{=} e^{-tC}$, and putting the t back in the notation, we have that

$$40c: \quad \underbrace{Z_{\vec{\alpha}}(t)}_{N \times 1} = \underbrace{e^{-tC}}_{N \times N} \cdot \left[\underbrace{\vec{\alpha}}_{N \times 1} + \underbrace{Q(t)}_{N \times 1} \right].$$

And if we arrange that $Q(0) = \vec{0}$, by defining

$$Q(t) := \int_0^t P(), \quad \text{then}$$

$$40d: \quad \underbrace{Z(t)}_{N \times 1} = \underbrace{e^{-tC}}_{N \times N} \cdot \left[\underbrace{Z(0)}_{N \times 1} + \underbrace{Q(t)}_{N \times 1} \right].$$

Aside: Since C is constant, our e^{-tC} is simply $M(-t)$.

41.1: *Revisiting (35.1), from P.55.* Imagine unknown fncs $x = x(t)$ and $y = y(t)$ satisfying system

$$41.2: \begin{aligned} x' &= 2x - y & \text{and} \\ y' &= 4x - 2y + 2. \end{aligned}$$

Setting $Z(t) := \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$ and $C := \begin{bmatrix} 2 & 1 \\ -4 & 2 \end{bmatrix}$ and $G(t) := \begin{bmatrix} 0 \\ 2 \end{bmatrix}$, we can rewrite (41.2) as

$$*: Z' + C \cdot Z = G.$$

With this Z and C , our (35.2) example from page 55, was $Z' + C \cdot Z = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. As before, $\text{NilDeg}(C) = 2$. Thus

$$40b\dagger: M(t) := e^{tC} = \mathbf{I} + tC = \begin{bmatrix} 1 - 2t & t \\ -4t & 1 + 2t \end{bmatrix},$$

since C is negative the R from (35.1). Computing,

$$P := M \cdot G = \begin{bmatrix} 1 - 2t & t \\ -4t & 1 + 2t \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2t \\ 2 + 4t \end{bmatrix}.$$

Integrating

$$Q := \int_0^t P = \begin{bmatrix} t^2 \\ 2t + 2t^2 \end{bmatrix} \stackrel{\text{note}}{=} t \cdot \begin{bmatrix} t \\ 2 + 2t \end{bmatrix}.$$

In preparation for (40d), product $e^{-tC} \cdot \frac{1}{t} Q$ equals

$$\overbrace{\begin{bmatrix} 1 + 2t & -t \\ 4t & 1 - 2t \end{bmatrix}}^{\substack{e^{-tC} = M(-t)}} \cdot \begin{bmatrix} t \\ 2 + 2t \end{bmatrix} \stackrel{\text{note}}{=} \begin{bmatrix} -t \\ 2 - 2t \end{bmatrix}.$$

Thus

$$e^{-tC} \cdot Q = \begin{bmatrix} -t^2 \\ 2t - 2t^2 \end{bmatrix}.$$

With initial condition $x(0) = 0 = y(0)$, then,

$$\begin{aligned} x(t) &= -t^2, & \text{and} \\ y(t) &= 2t - 2t^2. \end{aligned}$$

So the gen.soln to (41.2) is $e^{-tC} \begin{bmatrix} x(0) \\ y(0) \end{bmatrix} + e^{-tC} Q$, i.e

$$\begin{aligned} \dagger: x(t) &= [1 + 2t] \cdot x(0) - t \cdot y(0) - t^2, & \text{and} \\ y(t) &= 4t \cdot x(0) + [1 - 2t] \cdot y(0) + [2t - 2t^2]. \end{aligned}$$

Compare this with (35.1 \dagger), on P.55. \square

§A Appendix: Misc examples

These may be cited from anywhere.

42: Poly-coeffs yet \exists soln not \mathbf{C}^2 . Find a non- \mathbf{C}^2 function $y = y(t)$ that, for $t \in \mathbb{R}$, satisfies

$$42a: \quad y'y + y^2 = G, \quad \text{where} \\ G(t) := t^4 - 2t^3 + 2t - 1.$$

ASIDE: This DE has form $P \cdot y'y + Q \cdot y^2 = G$. The coeff-fncts P, Q and target-fnc G are \mathbf{C}^∞ ; indeed, *polynomials*; and P, Q are *constant*. Nonetheless, this DE admits a soln that is not even twice-differentiable. \square

Soln. EASY SCAN: The DiffOp is invariant under negation; if f is a soln, then so is $-f$.

Could a degree- N poly satisfy (42a)? Well, the y^2 term forces $N \geq 2$. Thus $\text{Deg}(y' \cdot y) = 2N - 1$ and $\text{Deg}(y^2) = 2N$, so N must be 2. The method of UNDETERMINED COEFFS applies and we find that

$$42b: \quad f(t) := [t - 1]^2$$

satisfies (42a). Thus $-(t - 1)^2$ is also a soln.

IDEA: The 0th and 1st derivatives of these solns *agree* at $t=1$, which are the only derivatives used by the DiffOp. So: At $t=1$, we can *stitch* these solns together. This gives this *new* soln:

$$\dagger: \quad y(t) := \begin{cases} +[t - 1]^2 & \text{if } t \geq 1 \\ -[t - 1]^2 & \text{if } t < 1 \end{cases} \xrightarrow{\text{note}} |t - 1| \cdot [t - 1].$$

Its derivative,

$$y'(t) = 2 \cdot |t - 1|,$$

fails to be differentiable at $t=1$. So (\dagger) is not twice-differentiable, hence not \mathbf{C}^2 .

Let's check that (\dagger) satisfies (42a). Computing,

$$\begin{aligned} y' \cdot y &= 2 \cdot [t - 1]^3 = 2t^3 - 6t^2 + 6t - 2, \\ y^2 &= [t - 1]^4 = t^4 - 4t^3 + 6t^2 - 4t + 1. \end{aligned}$$

Adding these together produces (42a). \spadesuit

42c: N.B.: Our three fncts, (\dagger) and $\pm [t - 1]^2$, each solve first-order DE (42a), *and*: Their 0th and 1st derivatives agree at $t=1$. So even possession of *two* initial

conditions to a first-order DE, need not be sufficient to uniquely specify a soln.

ASIDE: Our $G(t)$ factors as $[t - 1]^3 \cdot [t + 1]$. \square

A FLEA AND A FLY IN A FLUE

Were imprisoned, so what could they do?
Said the fly, "let us flee!"
Said the flea, "let us fly!"
So they flew through a flaw in the flue.

—Ogden Nash

§B Binomial coeffs & the Product rule

For a natnum n , use “ $n!$ ” to mean “ n factorial”; the product of all posints $\leq n$. So $3! = 3 \cdot 2 \cdot 1 = 6$ and $5! = 120$. Also $0! = 1 = 1!$.

For natnum B and arb. complex number α , define

$$\begin{aligned} \text{Rising Fctril: } [\alpha \uparrow B] &:= \alpha \cdot [\alpha + 1] \cdot [\alpha + 2] \cdots [\alpha + [B-1]], \\ \text{Falling Fctril: } [\alpha \downarrow B] &:= \alpha \cdot [\alpha - 1] \cdot [\alpha - 2] \cdots [\alpha - [B-1]]. \end{aligned}$$

E.g., $[\mathbb{B} \downarrow \mathbb{B}] = \mathbb{B}! = [\mathbb{1} \uparrow \mathbb{B}]$. Two further examples,

$$\left[\frac{2}{7} \downarrow 4 \right] = \frac{2}{7} \cdot \frac{-5}{7} \cdot \frac{-12}{7} \cdot \frac{-19}{7} \text{ and } [\mathbb{1} \downarrow 3] = 1 \cdot 0 \cdot -1 = 0.$$

In particular, for $n \in \mathbb{N}$: If $B > n$ then $[\mathbb{n} \downarrow \mathbb{B}] = 0$. We pronounce $[\mathbb{5} \downarrow \mathbb{B}]$ as “5 falling-factorial B ”.

Binomial. The *binomial coefficient* $\binom{7}{3}$, read “7 choose 3”, means *the number of ways of choosing 3 objects from 7 distinguishable objects*. Emphasising putting 3 objects in our left pocket and the remaining 4 in our right, we may write the coeff as $\binom{7}{3,4}$. [Read as “7 choose 3-comma-4.”] Evidently

$$\dagger: \quad \binom{N}{j} \xrightarrow{\text{with } k := N - j} \binom{N}{j, k} = \frac{N!}{j! \cdot k!} = \frac{[\mathbb{N} \downarrow j]}{j!}.$$

Note $\binom{7}{0} = \binom{7}{0,7} = 1$. Finally, the Binomial theorem says

$$\mathfrak{L}: \quad [x + y]^N = \sum_{j+k=N} \binom{N}{j, k} \cdot x^j y^k,$$

where (j, k) ranges over all *ordered* pairs of natural numbers with sum N .

For natnum N , binomials satisfy this addition law:

$$\ast: \quad \binom{N+1}{B+1} = \binom{N}{B} \xrightarrow{\text{Pick last object.}} + \binom{N}{B+1} \xrightarrow{\text{Avoid last object.}}.$$

Extending this to all $B \in \mathbb{Z}$ forces:

$$\binom{N}{B} = 0, \quad \text{when } B > N \text{ or } B \text{ negative.}$$

Case $B > N$ is automatic in formula $\binom{N}{B} = \frac{[\mathbb{N} \downarrow B]}{B!}$.

Multinomial. In general, for natural numbers $\mathbf{N} = k_1 + \dots + k_P$, the *multinomial coefficient* $\binom{N}{k_1, k_2, \dots, k_P}$ is the number of ways of partitioning \mathbf{N} objects, by putting k_1 objects in pocket-one, k_2 objects in pocket-two, … putting k_P objects in the P^{th} pocket. Easily

$$\dagger: \quad \binom{N}{k_1, k_2, \dots, k_P} = \frac{N!}{k_1! \cdot k_2! \cdot \dots \cdot k_P!}.$$

Unsurprisingly, $[x_1 + \dots + x_P]^N$ equals the sum of terms

$$\mathfrak{L}\mathfrak{L}: \quad \binom{N}{k_1, \dots, k_P} \cdot x_1^{k_1} \cdot x_2^{k_2} \cdots x_P^{k_P},$$

taken over all natnum-tuples $\vec{k} = (k_1, \dots, k_P)$ that sum to N . [That is multinomial analog of the Binomial Thm.]

Define the sum $S_\ell := k_1 + k_2 + \dots + k_\ell$. Then multinomial LhS(\dagger) equals this product of binomials:

$$\binom{N}{k_1} \cdot \binom{N - S_1}{k_2} \cdot \binom{N - S_2}{k_3} \cdots \binom{N - S_{P-1}}{k_P}.$$

[The last term is $\binom{k_P}{k_P} \stackrel{\text{note}}{=} 1$.]

Calculus applications

Bi/Multi-nomials appear in differentiation formulas.

43a: Product Rule. For natnum N , and N -times differentiable functions f and g :

$$\ast: \quad [f \cdot g]^{(N)} = \sum_{j+k=N} \binom{N}{j, k} \cdot f^{(j)} \cdot g^{(k)},$$

where (j, k) ranges over all *ordered pairs* of natural numbers with sum N . ◇

E.g: $[f \cdot g]^{(4)} = fg^{(4)} + 4f^{(1)}g^{(3)} + 6f^{(2)}g^{(2)} + 4f^{(3)}g^{(1)} + f^{(4)}g$.

43b: Lemma. For posints N, J, K with $J+K = N+1$,

$$\mathbb{Y}: \quad \binom{N}{J-1, K} + \binom{N}{J, K-1} = \binom{N+1}{J, K}. \quad \diamond$$

Proof. The LhS(\mathbb{Y}) equals

$$\frac{J}{J} \cdot \frac{N!}{[J-1]! K!} + \frac{N!}{J! [K-1]!} \cdot \frac{K}{K} = \frac{[J+K] \cdot N!}{J! K!},$$

which equals RhS(\mathbb{Y}). ◆

Pf of (43a). At $N=0$, our $(*)$ says $fg = fg$; a tautology. Fixing N for which $(*)$ holds, note $[f \cdot g]^{(N+1)}$ equals $\sum_{j+k=N} \binom{N}{j,k} [f^{(j)} \cdot g^{(k)}]^t$, which equals

$$\overbrace{\sum_{j+k=N} \binom{N}{j,k} f^{(j+1)} g^{(k)}}^A + \overbrace{\sum_{j+k=N} \binom{N}{j,k} f^{(j)} g^{(k+1)}}^B.$$

Letting $J := j+1$ and $K := k$, rewrite A as

$$\dagger: A = \sum_{\substack{J+K=N+1, \\ J \geq 1}} \binom{N}{J-1, K} \cdot f^{(J)} g^{(K)}.$$

Similarly, with $K := k+1$ and $J := j$, rewrite B as

$$\ddagger: B = \sum_{\substack{J+K=N+1, \\ K \geq 1}} \binom{N}{J, K-1} \cdot f^{(J)} g^{(K)}.$$

Separating out the $K=0$ term from (\dagger) and the $J=0$ term from (\ddagger) , says that $A + B$ equals

$$\begin{aligned} & \binom{N}{N, 0} f^{(N+1)} g^{(0)} + \binom{N}{0, N} f^{(0)} g^{(N+1)} \\ & + \sum_{\substack{J+K=N+1, \\ J, K \geq 1}} \left[\binom{N}{J-1, K} + \binom{N}{J, K-1} \right] \cdot f^{(J)} g^{(K)}. \end{aligned}$$

Use the lemma, (Y) , to rewrite the summand. Thus $A + B$ equals

$$f^{(N+1)} g^{(0)} + f^{(0)} g^{(N+1)} + \sum_{\substack{J+K=N+1, \\ J, K \geq 1}} \binom{N+1}{J, K} \cdot f^{(J)} g^{(K)}.$$

And this equals $\sum_{j+k=N+1} \binom{N+1}{j, k} \cdot f^{(j)} g^{(k)}$, as desired. ♦

Larger product. Given a tuple $\mathbf{J} = (j_1, \dots, j_P)$ of natnums, let $\mathbf{+J} := j_1 + \dots + j_P$. With $N := \mathbf{+J}$, let $\binom{N}{\mathbf{J}}$ mean multinomial coeff $\binom{N}{j_1, j_2, \dots, j_P}$. Finally, given a tuple $\vec{\mathbf{f}} := (f_1, \dots, f_P)$ of differentiable fncs, let $\vec{\mathbf{f}}^{(\mathbf{J})}$ abbreviate this product of derivatives:

$$\vec{\mathbf{f}}^{(\mathbf{J})} := f_1^{(j_1)} \cdot f_2^{(j_2)} \cdot \dots \cdot f_P^{(j_P)}.$$

[When tuple \mathbf{J} is used this way, it is called a *multi-index*.]

43c: Gen. Product Rule. Fix natnum N , posint P , and N -times differentiable functions, $\vec{\mathbf{f}} := (f_1, \dots, f_P)$. Then

$$V_P: [f_1 \cdot \dots \cdot f_P]^{(N)} = \sum_{\mathbf{J}: \mathbf{+J}=N} \binom{N}{\mathbf{J}} \cdot \vec{\mathbf{f}}^{(\mathbf{J})}. \quad \diamond$$

Proof. Eqn (V_1) asserts tautology $f_1^{(N)} = f_1^{(N)}$. We proceed by induction on P . Fixing P such that (V_P) , we now establish (V_{P+1}) .

Fix $P+1$ fncs f_1, \dots, f_P, g , and let $\Phi := f_1 \cdot \dots \cdot f_P$. Then $[f_1 \cdot \dots \cdot f_P \cdot g]^{(N)}$ is $[\Phi \cdot g]^{(N)}$. By $(*)$, it equals

$$*1: \sum_{s+k=N} \binom{N}{s, k} \cdot \Phi^{(s)} \cdot g^{(k)},$$

where (s, k) ranges over all natnum-pairs with sum N . Courtesy (V_P) , our $\Phi^{(s)}$ equals

$$\sum_{\mathbf{J}: \mathbf{+J}=s} \binom{s}{\mathbf{J}} \cdot \vec{\mathbf{f}}^{(\mathbf{J})}, \quad \text{where } \mathbf{J} = (j_1, \dots, j_P).$$

Plugging this in to $(*1)$ gives

$$*2: \sum_{s+k=N} \left[\sum_{\mathbf{J}: \mathbf{+J}=s} \binom{N}{s, k} \cdot \vec{\mathbf{f}}^{(\mathbf{J})} \cdot g^{(k)} \right].$$

But product $\binom{N}{s, k} \cdot \vec{\mathbf{f}}^{(\mathbf{J})}$ equals multinomial $\binom{N}{j_1, \dots, j_{P+1}}$. Renaming k to j_{P+1} , and g to f_{P+1} , writes $(*2)$ as

$$\sum_{\substack{j_1 + \dots + j_P + j_{P+1} \\ = N}} \binom{N}{j_1, \dots, j_{P+1}} \cdot f_1^{(j_1)} \cdot \dots \cdot f_P^{(j_P)} \cdot f_{P+1}^{(j_{P+1})},$$

which indeed is RhS of (V_{P+1}) . ♦

Deriv(product). Consider $f(t) := 3^t$, $g(t) := \sin(5t)$ and $h(t) := e^{7t}$. The 6th-derivative, $[f \cdot g \cdot h]^{(6)}$, is a sum of terms. What is the coeff of the $f'' \cdot g' \cdot h'''$ term?

Soln. By the generalized product rule, (43c), the coefficient of $f^{(2)} g^{(1)} h^{(3)}$ is

$$\binom{6}{2, 1, 3} \stackrel{\text{note}}{=} \binom{6}{2} \binom{4}{1} \binom{3}{3} = \frac{6 \cdot 5}{2 \cdot 1} \cdot \frac{4}{1} \cdot 1 = 60.$$

Continuing, note:

$$f^{(2)} = [\log(3)]^2 \cdot f; \quad g^{(1)}(t) = 5 \cos(5t); \quad h^{(3)} = 7^3 \cdot h.$$

So one summand in the sum forming $[f \cdot g \cdot h]^{(6)}$, is

$$60 \cdot \log(3)^2 \cdot 5 \cdot 7^3 \cdot [3^t \cdot \cos(5t) \cdot e^{7t}]. \quad \diamond$$

§C Order-3 VoP

CC-VoP Example 2. U.F $s = s(t)$ satisfies

$$44a: \quad s''' - s'' = t e^t.$$

A good approach is to define $q := s''$, solve DE

$$\mathbb{Y}: \quad q' - q = G$$

where $G(t) := t e^t$, then anti-diff twice. First-order DE (\mathbb{Y}) can be solved via FOLDE (17a), or Poly-Exp (10a), or Convol-GenTar (25a) P.44, or VoP (26.4).

But for illustration, I'm going to solve the original (44a) by VoP. Set $E := e^t$ and $\mathbb{L} := \mathbf{D}^3 - \mathbf{D}^2$.

VoP1. The aux.poly of \mathbb{L} is $[z - 0]^2[z - 1]$. So $\{Y_0 := 1, Y_1 := t, Y_2 := e^t\}$ is an L.I. triple of fncs annihilated by \mathbb{L} .

VoP2. The Wronskian-matrix of $(1, t, e^t)$ is

$$*: \quad \mathbb{M} := \begin{bmatrix} 1 & t & E \\ 0 & 1 & E \\ 0 & 0 & E \end{bmatrix}. \quad \text{So } D := \text{Det}(\mathbb{M}) = E.$$

We compute fncs h_0, h_1, h_2 satisfying matrix-eqn $\mathbb{M} \cdot \mathbb{H} = \mathbb{T}$, where

$$\mathbb{H} := \begin{bmatrix} h_0 \\ h_1 \\ h_2 \end{bmatrix} \quad \text{and} \quad \mathbb{T} := \begin{bmatrix} 0 \\ 0 \\ G \end{bmatrix}.$$

Cramer's thm has us examine matrices

$$\begin{bmatrix} 0 & t & E \\ 0 & 1 & E \\ G & 0 & E \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & E \\ 0 & 0 & E \\ 0 & G & E \end{bmatrix}, \quad \begin{bmatrix} 1 & t & 0 \\ 0 & 1 & 0 \\ 0 & 0 & G \end{bmatrix}.$$

Their determinants are, respectively,

GE[t - 1], \quad -GE, \quad G.

Dividing each by the $(*)$ -Wronskian, E , gives

$$h_0 = G[t - 1], \quad h_1 = -G, \quad h_2 = G/E.$$

VoP3. Computing anti-derivatives,

$$f_0 = \int h_0 = \int x e^x \cdot [x - 1] dx = e^t [t^2 - 3t + 3], \text{ and}$$

$$f_1 = \int h_1 = \int -x e^x dx = e^t [1 - t], \quad \text{and}$$

$$f_2 = \int h_2 = \int \frac{x e^x}{e^x} dx = \frac{t^2}{2}.$$

So a soln to (44a) is

$$\begin{aligned} s &= f_0 Y_0 + f_1 Y_1 + f_2 Y_2 \\ &= e^t [t^2 - 3t + 3] \cdot 1 + e^t [1 - t] \cdot t + \frac{t^2}{2} \cdot e^t \\ &= \left[\frac{t^2}{2} - 2t + 3 \right] \cdot e^t. \end{aligned}$$

Recall $\mathbb{L}(e^t) = 0$, so $\mathbb{L}(3e^t) = 0$, and we may thus use the simpler soln

$$s = \left[\frac{t^2}{2} - 2t \right] \cdot e^t$$

to (44a).

You have to do your own growing no matter how tall your grandfather was.

—Abraham Lincoln

§D It's about Brine, it's about Space,
it's about brine moving place to
place...

The rather cute theme song.

Remark. Brine is saline-water, NaCl in H₂O.

The Cascading tanks on the next page is an instance of *Compartmental analysis.* □

Compartmental analysis [§3.2–NSS9]

Brine with $1.3 \frac{\text{lb}}{\text{gal}}$ salt flows at rate $4 \frac{\text{gal}}{\text{min}}$ into a tank that initially holds 12gal of $2 \frac{\text{lb}}{\text{gal}}$ -salt brine. The tank is well-mixed, and brine is flowing out at rate $4 \frac{\text{gal}}{\text{min}}$. We seek a formula for $y(t)$, the number of lbs of salt in the tank at time t .

Henceforth, use italic boldface θ to mean 0min.

Units:	Symbol:	Description:
lb	$y(t)$	Salt in tank @ t .
gal	$W(t)$	Water in tank @ t .
	$U := W(\theta)$	Initial amount of water.
lb/gal	S	Input salinity.
	$\sigma(t)$	Salinity in tank @ t .
	$D := \sigma(\theta) - S$	Initial Difference in salinities.
gal/min	R	Input flow-rate of water.
	ρ	Output flow-rate of water.
	$A := R - \rho$	Accumulation flow-rate.
	$L := \rho - R = -A$	Loss flow-rate.
min	$E := U/L$	Time-to-Empty, when $L > 0 \frac{\text{gal}}{\text{min}}$.
1/min	$\Gamma := \frac{R}{U}$	A useful constant.

By definition of the quantities involved

$$45a: \quad W(t) = U + At \quad \text{and} \quad \sigma(t) = \frac{y(t)}{W(t)}.$$

Our salt-fnc y satisfies DE

$$45b: \quad y'(t) = \underbrace{R \cdot S}_{\text{Input}} - \underbrace{\rho \cdot \sigma(t)}_{\text{Output}} \stackrel{\text{note}}{=} SR - \frac{\rho}{W(t)} \cdot y(t).$$

To match our FOLDE notation, let

$$G := SR \quad \text{and} \quad C(t) := \frac{\rho}{W(t)}.$$

So we can re-write (45b) as

$$y'(t) + C(t)y(t) = G.$$

Case: $R=\rho$, not zero. Hence $C()$ is the constant $\Gamma := \frac{R}{U} \neq 0$. Step (F0) of FOLDE has us anti-diff, then exponentiate, to get

$$45c: \quad M(t) := e^{\Gamma t}.$$

Step (F1): Anti-diff'ing product $G \cdot e^{\Gamma t}$ gives

$$Q(t) := \frac{G}{\Gamma} \cdot e^{\Gamma t} \stackrel{\text{note}}{=} SU \cdot e^{\Gamma t}.$$

For an arb.constant α , then, step (F2) gives

$$45d: \quad y(t) = e^{-\Gamma t} \cdot [\alpha + SU \cdot e^{\Gamma t}] = \frac{\alpha}{e^{\Gamma t}} + SU.$$

Divide through by U, and rename $\frac{\alpha}{U}$ to α [which is, after all, arbitrary] to get

$$\sigma(t) = \frac{\alpha}{e^{\Gamma t}} + S.$$

Solve for α , and re-order, to obtain that

$$45e: \quad \sigma(t) = S + \frac{D}{e^{[\frac{R}{U} \cdot t]}}.$$

Or use SoV. Alternatively, write (45b) as

$$\frac{dy}{dt} = G - \Gamma \cdot y$$

and separate variables to get

$$\frac{1}{G - \Gamma y} \cdot dy = 1 \cdot dt.$$

Only considering when $G - \Gamma y > 0$, we anti'diff to get

$$\frac{1}{\Gamma} \cdot \log(G - \Gamma y) = t + \alpha,$$

using arb.constant α . Cross-mult then exponentiate to get $G - \Gamma y = 1/e^{\Gamma t + \Gamma \alpha}$. Replace $e^{-\Gamma \alpha}$ by $-\alpha$ [skipping some details] to get

$$G - \Gamma y = \frac{-\alpha}{e^{[\Gamma \cdot t]}}.$$

Solve for $y=y(t)$, giving

$$y(t) = \frac{\alpha}{e^{\Gamma \cdot t}} + \frac{G}{\Gamma} \stackrel{\text{note}}{=} \frac{\alpha}{e^{\Gamma t}} + SU.$$

And this is RhS(45d).

Case: $R \neq \rho$. I.e, $A \neq 0$, so $W()$ is not constant.

In this section, we only consider values of t where $W(t) \stackrel{\text{note}}{=} U + At$ is positive.

Step (F0): Anti-diff $C(t) = \frac{\rho}{U+At}$ to get

$$B(t) := \frac{\rho}{A} \cdot \log(U + At),$$

using (*). Setting $\theta := \frac{\rho}{A}$, then, exponentiating gives

$$M(t) = [U + At]^\theta.$$

Step **(F1)**: Anti-diff'ing product $G \cdot M(t)$ hands us

$$Q(t) := \frac{G}{A \cdot [\theta + 1]} \cdot [U + At]^{\theta+1}.$$

Note $[A\theta] + A = R$ and $\frac{G}{R} = S$. Step **(F2)** has us add an arb.constant α , then divide by $M(t)$, giving

$$y(t) = \frac{1}{M(t)} \cdot [S \cdot [U + At]^{\theta+1} + \alpha].$$

Dividing by $W(t) \stackrel{\text{note}}{=} [U + At]$ yields

$$\sigma(t) = S + \frac{\alpha}{[U + At]^{R/A}},$$

since $\theta + 1 = \frac{R}{A}$. Dividing top and bottom by $[U]^{R/A}$, and solve for α to arrive at this:

$$45f: \sigma(t) = S + \frac{D}{[1 + \frac{A}{U} \cdot t]^{R/A}},$$

The A rate is positive:negative as the tank is filling:draining. When draining, it is convenient to express this formula in terms of the *Loss flow-rate*, L , and *time-to-Empty*, E . Since $\frac{A}{U} = \frac{-L}{U} = \frac{-1}{E}$, our (45f) becomes

$$45g: \sigma(t) = S + D \cdot [1 - \frac{1}{E} \cdot t]^{R/L},$$

Plausibility. Soln (45f) handles when $A \neq 0$. Do we get our $A=0$ soln, (45e), as a limit when we send A to zero? Let's check, by applying L'Hôpital's rule to the denominator of (45f). Let

$$\mathcal{L} := \lim_{A \rightarrow 0} [1 + \frac{A}{U} \cdot t]^{R/A}.$$

Since log is continuous, $\log(\mathcal{L}) = \widehat{\mathcal{L}}$, where

$$\widehat{\mathcal{L}} := \lim_{A \rightarrow 0} \frac{R}{A} \cdot \log(1 + \frac{A}{U} \cdot t).$$

Applying L'Hôpital's, L'Hôpital's rule

$$\begin{aligned} \lim_{A \rightarrow 0} \frac{\log(1 + \frac{t}{U} \cdot A)}{A} &\stackrel{\text{L'Hôp}}{=} \lim_{A \rightarrow 0} \frac{\left[\frac{1}{1 + \frac{t}{U} \cdot A} \right] \cdot \frac{t}{U}}{1} \\ &= \lim_{A \rightarrow 0} \left[\frac{t}{U + t \cdot A} \right] \\ &= \frac{t}{U + [t \cdot 0]} = \frac{t}{U}. \end{aligned}$$

Hence $\widehat{\mathcal{L}} = R \cdot \frac{t}{U}$. Consequently

$$\mathcal{L} = e^{\frac{R}{U} \cdot t},$$

which indeed equals the denominator of (45e).

Cascading tanks

Calling the above tank "tank-1", we generalize to have tank-1 feed into tank-2, which feeds into tank-3 etc. Each tank has constant input and output flow-rate R . The amount of water in each tank is U .

Use $\sigma_N(t)$ for the salt-concentration in tank- N at time t , and use [recall that italic boldface \mathbf{O} means 0min.]

$$\begin{aligned} D_N &:= \sigma_N(\mathbf{0}) = S. \text{ As a convenience,} \\ D_0 &= S - S \stackrel{\text{note}}{=} 0 \frac{\text{lb}}{\text{gal}} \text{ and} \\ *: \sigma_0(\cdot) &\equiv S, \end{aligned}$$

by imagining that the source is an ∞ -volume tank-0.

We will show, for $N = 0, 1, 2, \dots$, that ¹⁹

$$\begin{aligned} \sigma_N(t) &\stackrel{?}{=} S + \frac{f_N(t)}{e^{\Gamma t}}, \text{ where} \\ 45h: f_N(t) &:= \sum_{k=0}^N \frac{1}{k!} \cdot D_{N-k} \cdot [\Gamma t]^k \\ &\stackrel{\text{note}}{=} \sum_{k=0}^{N-1} \frac{1}{k!} \cdot D_{N-k} \cdot [\Gamma t]^k, \end{aligned}$$

since D_0 is zero. To illustrate this defn:

$$\sigma_0(t) = S;$$

$$\sigma_1(t) = S + \frac{D_1}{e^{\Gamma t}};$$

$$\sigma_2(t) = S + \frac{D_1 \Gamma t + D_2}{e^{\Gamma t}};$$

$$\sigma_3(t) = S + \frac{\frac{1}{2} D_1 [\Gamma t]^2 + D_2 \Gamma t + D_3}{e^{\Gamma t}};$$

$$\sigma_4(t) = S + \frac{\frac{1}{6} D_1 [\Gamma t]^3 + \frac{1}{2} D_2 [\Gamma t]^2 + D_3 \Gamma t + D_4}{e^{\Gamma t}}.$$

N.B: The numerator in $\sigma_4(t)$ is

$$\frac{D_1 [\Gamma t]^3}{3!} + \frac{D_2 [\Gamma t]^2}{2!} + \frac{D_3 [\Gamma t]^1}{1!} + \frac{D_4 [\Gamma t]^0}{0!}.$$

¹⁹ Note that $\text{Deg}(f_N) \leq N-1$, since D_0 is zero.

For future use, verify this recurrence relation:

$$**: [f_{N+1}]' = \mathbf{\Gamma} \cdot f_N.$$

Specifically,

$$***: f_{N+1}(t) = D_{N+1} + \mathbf{\Gamma} \cdot \int_0^t f_N.$$

For convenience, we restate...

$$\begin{aligned} \sigma_N(t) &= S + \frac{f_N(t)}{e^{\mathbf{\Gamma}t}}, \quad \text{where} \\ 45h: \quad f_N(t) &\coloneqq \sum_{k=0}^N \frac{1}{k!} \cdot D_{N-k} \cdot [\mathbf{\Gamma}t]^k \\ &\stackrel{\text{note}}{=} \sum_{k=0}^{N-1} \frac{1}{k!} \cdot D_{N-k} \cdot [\mathbf{\Gamma}t]^k, \end{aligned}$$

Proving (45h). Product $\mathbf{\Gamma}t$ is unitless, so $f_N(t)$ is in lb/gal ; hence so is $S + [f_N(t)/e^{\mathbf{\Gamma}t}]$, as it should be.

Secondly $f_N(0) = \frac{1}{0!} \cdot D_{N-0} \cdot 1 \stackrel{\text{note}}{=} D_N$. Thus $S + \frac{f_N(0)}{e^0}$ equals $S + D_N$, which indeed equals $\sigma_N(0)$, as it should. What remains, is for us to verify that (45h) satisfies the appropriate DE.

Base case. Note $f_0(\cdot) = \frac{1}{0!} \cdot D_0 \stackrel{\text{note}}{=} 0 \frac{\text{lb}}{\text{gal}}$. Hence $\sigma_0(\cdot)$ is the constant-fnc S , as (*) indeed says.

Induction. Fix a natnum N for which (45h) holds. Here, let y and σ denote y_{N+1} and σ_{N+1} . Our (45b) DE becomes

$$y'(t) = \underbrace{R \cdot \sigma_N(t)}_{\text{Input}} - \underbrace{R \cdot \sigma(t)}_{\text{Output}}.$$

Divide by U , the [constant] amount of water in each tank, to get FOLDE

$$45i: \quad y'(t) + \mathbf{\Gamma} \cdot \sigma(t) = \mathbf{\Gamma} \cdot \sigma_N(t).$$

As in (45c), FOLDE gives multiplier-fnc $M(t) := e^{\mathbf{\Gamma}t}$. We wish to anti-diff product

$$\begin{aligned} P(t) &:= e^{\mathbf{\Gamma}t} \cdot \mathbf{\Gamma} \cdot \sigma_N(t) \\ &\stackrel{\text{by (45h)}}{=} S \mathbf{\Gamma} \cdot e^{\mathbf{\Gamma}t} + \mathbf{\Gamma} \cdot f_N(t). \end{aligned}$$

Courtesy (**), we can choose anti-deriv

$$Q(t) := \int^t P = S \cdot e^{\mathbf{\Gamma}t} + f_{N+1}(t).$$

Adding the appropriate salinity constant α , then dividing by $M(t) = e^{\mathbf{\Gamma}t}$, produces

$$\sigma_{N+1}(t) = S + \frac{\alpha + f_{N+1}(t)}{e^{\mathbf{\Gamma}t}}.$$

We've already checked that (45h) gives the correct value at $t = 0$, hence α must be $0 \frac{\text{lb}}{\text{gal}}$. The conclusion is that formula (45h) is correct at stage $N+1$. **QED**

§E Matrix-exp: A bit further

§F Intro to Calculus of Variations

46.1: If $e^A e^B = e^B e^A$, must $A \leq B$? **No.** The following example is from Prof. Howard Haber's [UC SANTA CRUZ] notes.

(In progress.)

CEX. With $\tau \in \mathbb{C}$ non-zero, let $\mathbf{T} := \begin{bmatrix} \tau & 1 \\ 0 & 0 \end{bmatrix}$. For $k = 1, 2, \dots$, note $\mathbf{T}^k = \begin{bmatrix} \tau^k & \tau^k/\tau \\ 0 & 0 \end{bmatrix}$. Furthermore,

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \mathbf{T}^0 = \begin{bmatrix} \tau^0 & \tau^0/\tau \\ 0 & 0 \end{bmatrix} + \mathbf{C}, \quad \text{where } \mathbf{C} := \begin{bmatrix} 0 & -1/\tau \\ 0 & 1 \end{bmatrix}.$$

Our defn $e^{\mathbf{T}} \stackrel{\text{def}}{=} \sum_{k=0}^{\infty} \frac{1}{k!} \cdot \mathbf{T}^k$ results in

$$\begin{aligned} e^{\mathbf{T}} &= \frac{1}{0!} \cdot \mathbf{C} + \sum_{k=1}^{\infty} \frac{1}{k!} \cdot \begin{bmatrix} \tau^k & \tau^k/\tau \\ 0 & 0 \end{bmatrix} \\ &= \mathbf{C} + \begin{bmatrix} e^{\tau} & e^{\tau}/\tau \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} e^{\tau} & [e^{\tau} - 1]/\tau \\ 0 & 1 \end{bmatrix}. \end{aligned}$$

Let \mathbf{T}_n be this matrix \mathbf{T} when $\tau := n \cdot 2\pi i$ and $n \in \mathbb{Z}$; since $e^{\tau} = 1$, each $\exp(\mathbf{T}_n) = \mathbf{I}$, the identity matrix.

Last step. Matrix $\mathbf{A} := \begin{bmatrix} 2\pi i & 0 \\ 0 & 0 \end{bmatrix}$, is diagonal, hence

$$e^{\mathbf{A}} = \begin{bmatrix} e^{2\pi i} & 0 \\ 0 & e^0 \end{bmatrix} \stackrel{\text{note}}{=} \mathbf{I}.$$

With $\mathbf{B} := \mathbf{T}_1$, observe $\mathbf{A} + \mathbf{B} = \mathbf{T}_2$. From above, then, $e^{\mathbf{B}} = \mathbf{I} = e^{\mathbf{A}+\mathbf{B}}$. Consequently,

Each of $e^{\mathbf{A}} e^{\mathbf{B}}$, $e^{\mathbf{A}+\mathbf{B}}$, and $e^{\mathbf{B}} e^{\mathbf{A}}$, equals \mathbf{I} .

Yet \mathbf{A} and \mathbf{B} do not commute. For with $\tau := 2\pi i$,

$$\mathbf{AB} = \begin{bmatrix} \tau^2 & \tau \\ 0 & 0 \end{bmatrix} \neq \begin{bmatrix} \tau^2 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{BA}. \quad \spadesuit$$

Stated theorems are in the TOC.
Applications of theorems may appear in this index.

\circledast , *see* convolution
 \approx , approximately equal,
 \equiv , identically equal,
 $[b..c]$, *see* interval of integers
 $\llbracket x \uparrow K \rrbracket$, *see* rising factorial
 $\llbracket x \downarrow K \rrbracket$, *see* falling factorial
 $\{ \text{Object} \mid \text{Property} \}$, set-builder,
 \sim , *i.e.*: asymptotic to
 \sim , *seesimilar* matrices 54
 \therefore , has units of . . . , e.g. Height :: \textcircled{d} ,
 $\textcircled{d}, \textcircled{t}, \textcircled{n}, \textcircled{w}, \textcircled{p}$, abstract unit of
 distance=length, time, mass,
 weight=force, temperature,
 \textcircled{O} , no units, dimensionless,
 $\textcircled{?}$, units depend on application,

amplitude, 11
 Argand plane, 10
 $\text{asinh}, \text{acosh}$, 31
 auxiliary polynomial, 13

binomial coefficient, 61

birth multiplier
 natural, 27

carrying capacity, 27

catenary, 33

Cauchy-Euler, *see* equidimensional operator

Cesàro equation, 39

CEX, *see* counterexample

char-poly, *see* characteristic polynomial 1

characteristic polynomial, 49, 56

circular reasoning, *see* tautology

$\text{cis}()$, cosine + i -sine, 11

Completing-the-square, 10

complex conjugate, 10

complex plane, 10

Convol-diff thm, 43

convolution, 40

\cosh , 31
 counterexample, 55
 \mathbf{C}^N , fncs with N^{th} -deriv cts, 17

$\text{Det}()$, determinant of a matrix,
 Diff^N , N -times diff'able fncs, 17
D, differentiation operator, 2
 discriminant, 9, 17
 $\text{Discr}()$, *see* discriminant
 Dixon Lanier Merritt, 48
 Dominated Convergence thm, 43
 doubling time, 28
DUI thm, 43

 Eggs, 1, 4, 5, 9, 39, 40, 45, 48, 50–
 52, 60, 63, 67
 eigenvalue, 56, 57
EquiDim-Op, 49
 equidimensional operator, 49
 exact DE, 23
 exact-ifyng fnc, 24
 $\exp(z)=e^z$, exponential fnc, 10
 exponential
 complex, 10
 matrix, 54

falling factorial, 1, 61
 frequency, 11
FTC = Fund. Thm of Calculus,
Fund. thm of Algebra, 10

Gen-EquiDim-Op, 49
 Generalized EquiDim-Op, 49
 generation time, *see* doubling time

homogeneous function, 7
 hyperbolic sinh,cosh, 31

I, identity operator, 2
 identity function, 2, 40
 $\text{Im}(\omega)$, imaginary part of $\omega \in \mathbb{C}$, 10
 implicit solution, 23
 interval of integers, 1
IVP, *i.e.*: Initial-Value Problem

IVT = Intermediate-Value Thm,

L'Hôpital's rule , 66
L.I., *see* linearly-independent
LhS(), lefthand side of . . . ,
Leibniz corollary, 43
 Lewis Carroll, *see* Volkswagen
 $\lim(e^{\text{rick}})$, 60
 linear mapping, 17
 linear-comb, lin-comb, *i.e.*: linear-
 combination
 linearly-independent set, 17
 logarithm, 1
 Logistic model, 27

Maclaurin polynomial, 42

Malthusian model, 27

Matrices

diagonalizable, 54
 nilpotent, 54, 55
 similar, 54
 trace, 56
 Wronskian, 46

ML8, *see* Lewis Carroll

multi-index, 62

multinomial coefficient, 61

multiply operators, 52

nilpotency degree, 54

nilpotent, *see* Matrices

NilDeg(M), 54

phase-shift, 11

poly, *i.e.*: polynomial

PolyExp, 1, 15

PolyExp-sum, 1

polynomial

auxiliary, 13

discriminant, 9

Maclaurin, 42

Power-of-x Lemma, 42

Product Rule thm, 61, 62

Proof

circular, *see* circular reasoning

$\text{Re}(\omega)$, real part of $\omega \in \mathbb{C}$, 10
 recoding a system of DEs, 57
 restricted sinh,cosh, 31
 $\text{RhS}()$, righthand side of . . . ,
 rising factorial, 1, 61

Same-freq Lemma, 11
 Same-span Lemma, 17
 scalar, 17
 scale-invariant function, 7
 similar matrices, 54
 sinh, 31
 span of a set of vectors, 17
 suspension bridge, 34

tarGet fnc, 2
 tautology, *see* Proof, circular
 Theorems
 Convol-diff, 43
 Dominated Convergence, 43
 DUI, 43
 Fund. thm of Algebra, 10
 L'Hôpital's rule, 66
 Leibniz, 43
 Power-of- x , 42
 Product Rule, 61, 62
 Same-freq, 11
 Same-span, 17
 trace of a matrix, 56
 translation operators, 52

vector space, 17
 Volkswagen, 52
 VS, *see* vector space

Whewell equation, 39
 Wronskian, *see* Matrices

zero-operator, 52

That's All, Folks!

-Bugs Bunny

Filename:

Problems/Analysis/Calculus/diffq-algorithms.latex

As of: Monday 31Aug2015. Typeset: 15Mar2023 at 21:20.