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Abstract: The cube and the tetrahedron of equal volume
are not equidecomposable by means of planar cuts. Along
the way this proves that arccos(k/n), for n > 3 with the
fraction in lowest terms, is incommensurate with π.

Entrance. Here a polygon P is a certain type of
compact simply-connected subset of the plane with
non-empty interior. It is obtained by taking a polyg-
onal Jordan loop L with finitely many sides, then let-
ting P be the closure of the “inside” of L; thus ∂P = L.
The motivation for Hilbert’s question, below, is the
observation that every two polygons of the same area
are “scissor congruent” by straight line cuts. (Should
the Greeks have discovered this?)

To be specific, suppose we cut P into two poly-
gons Q0 and Q1 by a chord connecting two points on
∂P (and so that the “interior” of the chord lies in the interior
of P). Thus Q0 ∪ Q1 = P and Q0 ∩ Q1 is the chord.
For two finite collection of polygons

C =
{
P1,Q2, . . . ,QN

}
F =

{
R0,R1,R2, . . . ,RN

}
say that the two collections are straight-line con-
gruent, C ≡ F, if we can cut P1 into two pieces,
Q0 and Q1 as above, such that each Qj is congruent
with Rj via an orientation-preserving isometry of the
plane. Finally, let ‘≡’ actually be the transitive clo-
sure of the above relation. Interpret the statement
“P ≡ Q” by identifying P with the singleton collec-
tion {P} and Q with {Q}.

1: Bolyai (-Gerwien) Theorem. Two polygons are
straight-line congruent IFF they have the same
area. ♦

Proof. See the pictures on the preceding handwritten
page. �

Hilbert’s Third Problem
An analogous question can be posed for polyhedra, in
3-space. For simplicity, just consider a convex poly-
hedron P; a bounded subset of R×3, with non-void
interior, obtained by intersecting finitely many closed
half-spaces.

2: Question. If P and Q are convex polyhedra of equal
volume, are they “straight-plane congruent”? ♦

Dehn answered Hilbert’s question in the negative.

3: Dehn’s Theorem. The cube and regular tetrahedron
(of the same volume) are not straight-plane congruent.♦

Proof.Given two intersecting planes in 3-space, let the
scaled-angle between them denote the dihedral angle
between them divided by π. Thus, the scaled-angle of
each edge of the cube is 1

2 . Let α denote the scaled-
angle of the tetrahedron. Now suppose, for the sake
of contradiction, that the cube and tetrahedron can
both be planarly-cut into a collection {P1, . . . ,PN} of
polyhedra. Let Θ denote the (finite) set of numbers
which appear as the scaled-angles of the {Pj}Nj=1. Let
V denote the Q-vectorspace spanned by the “vectors”
1, α and the members of Θ; thus the dimension of V
is at most 2 + |Θ|.

The lemma below will show that α is irrational.
Thus “vectors” 1 and α are independent and so we can
define a Q-linear functional Λ: V→ R which maps 1
–and consequently all rational numbers– to zero, and
maps α 7→ 1.

For an edge e of a polyhedron P, let ê denote the
scaled-angle between the two faces meeting at e. If
the scaled-angles of P all lie in V we can define

Υ〈P〉 :=
∑

edges e

Len(e) · Λ
(
ê
)
,I-a:

where the sum is taken over all the edges of P. Ev-
idently Υ〈cube〉 = 0 yet Υ〈tetrahedron〉 is positive
since it equals 6 times the edge-length of the tetrahe-
dron. So demonstrating that

If P is cut by a plane into {Q0,Q1}
then Υ〈Q0〉+ Υ〈Q1〉 = Υ〈P〉I-b:

will yield the contradition that

Υ〈cube〉 =
∑N

j=1
Υ〈Pj〉 = Υ〈tetrahedron〉 ,

whence the theorem.
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Υ〈〉 is an invariant of straight-plane
congruence

The first possibility, for an edge e of P, is that the
cutting-plane slices across e. Then e is cut into two
pieces a0 and a1, with aj an edge of Qj , satisfying
Len(a0) + Len(a1) = Len(e). Since each âj = ê we
have that

Len(a0) · Λ
(
â0
)

+ Len(a1) · Λ
(
â1
)

= Len(e)Λ
(
ê
)
.

This holds also in the case where e was not touched
by the plane and hence one of a0 or a1 is the “empty
edge”.

The second possibility for an edge, e, of P is that
the cutting-plane contains e. Thus e is bifurcated into
two edges c0 and c1, with cj an edge of Qj . Moreover,
Len(cj) = Len(e) and ĉ0 + ĉ1 = ê. Thus and conse-
quently

Len(c0)Λ
(
ĉ0
)

+ Len(c1)Λ
(
ĉ1
)

= Len(e)Λ
(
ê
)
.

These two possibilities account for all the edges
of P. Moreover, wherever the cutting-plane cuts a
face of P into two faces, we can imagine that P had a
“degenerate” edge there of scaled-angle 1. And since
Λ(1) equals zero, the sum in (I-a) is unaffected by
addition of a degenerate edge. So by means of these
degenerate edges, we have arranged that every edge
of the Qj arises from either the first xor second pos-
sibility above. Summing the two foregoing displays
over all the edges of Q0, Q1 and P yields the desired
Υ〈Q0〉+ Υ〈Q1〉 = Υ〈P〉 and completes the proof. �

4: Lemma. The dihedral angle θ of a regular tetra-
hedron is incommensurate with 2π. (Hence α def

=== θ/π is
irrational.) ♦

Proof. Take the tetrahedron to have sidelength 1. On
an equilateral triangle of sidelength 1, an altitude has
length ` :=

√
3/2. Thus θ is the angle between the two

“
√

3/2” sides of the
√

3/2,
√

3/2, 1 isosceles triangle.
By the Law of Cosines, c2 = a2 + b2 − 2abcos(C), we
get that

12 = `2 + `2 − 2``cos(θ)

= 2`2
[
1− cos(θ)

]
=

3

2

[
1− cos(θ)

]
.

Hence cos(θ) = 1/3.
Consequently, the complex number z := eiθ –which

is not real– satisfies

z +
1

z
=

2

3

and so 3z2 − 2z + 3 = 0.
FTSOContradiction, suppose that θ is some ratio-

nal multiple p
q · 2π (with q ∈ Z+). Then zq = 1. So z is

a root of the two polynomials

U(x) := xq − 1 and D(x) := 3x2 − 2x+ 3 .

These are members of QJ·K, the ring of polynomials
over the rationals. The Euclidean Algorithm qives us
quotient and remainder polys m and r. They satisfy

U = mD + r , where m,r ∈ QJ·K

with Deg(r) < Deg(D) = 2. So r() is linear. But
r(z) = 0 and linear polynomials only have real roots.
Thus r must be the zero-polynomial.♥1

Since U = mD, the Gauss Lemma [S. Lang’s Algebra
p. 127, or T.Hungerford’s Algebra p. 162, or my notes] says
that

GC(U) = GC(m) ·GC(D) ;

their algebraic “content”s multiply. [Define the content
(Gauss-content) of the zero-polnomial as GC(Zip) := 0. For a
non-zip poly F ∈ QJ·K, its content GC(F ) is the unique ra-
tional number p

q
so that F () = p

q
·H(), where H is the unique

polynomial in ZJ·K with positive lead coefficient and whose coef-
ficients have no common divisor. A polynomial F is primitive
if GC(F ) = 1 and its lead-coeff is positive.] But U and D
have content 1 and so m must have integral coeffi-
cients. Thus factorization U=mD is over ZJxK. But
U is monic, so the leading-coeff of every factor of it
must be ±1. Unlike the lead-coeff of D. �

Remark. Using the Hahn-Banach theorem, we can
extend our linear functional Λ to be defined on all
of R, thus making Υ defined for all polyhedra, rather
than just those with dihedral angles spanned by a cer-
tain finite set. On the other hand, the advantage of
using vectorspace V is that the Axiom of Choice is
avoided. �

♥1Here is an alternate way to see that D() divides U(). Both
z and 1/z are zeros of D() and of U(). And z 6= 1

z
, since θ is

not real. So the D-zeros are distinct, and are also zeros of U .
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By rewording the argument, it generalizes to the
following.

5: Corollary. Suppose k⊥n with k∈Z and n ∈ [3 ..∞).
Then θ := arccos(k/n) is incommensurate with π. ♦

Pf. Set z := eiθ. Since z + 1
z = 2k

n , our z is a root of

D(x) := nx2 − 2kx+ n .

If θ is of the form p
q · 2π then z is also a root of

U(x) := xq − 1. As before, D divides U in QJxK, and
so we can write

2U = m ·D∗:

for some polynomial m. Now GC(D) = Gcd(n, 2k)
and thus equals 1 or 2, since k ⊥ n. Hence GC(D)
divides 2 = GC(2U) and so, by the Gauss Lemma,
m has integral coefficients. Equating the “xq” coeffi-
cients in (∗) yields

2 = integer · n ;

an impossibility, since n is at least 3. �
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