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Abstract. For particular collections P of integer-

sided D-dimensional bricks, deBruijn gave an

IFF-condition for when the only P-packable boxes

are those which admit a parallel packing.

We show, for general P, that deBruijn's con-

dition is computable, and provide an algorithm

to compute it in time proportional to the prod-

uct DN

3

, where N is the number of bricks in P.

The method �rst shows that deBruijn's condi-

tion has an equivalent formulation where tilings

using negative, as well as positive, copies of bricks

are permitted. The equivalent formulation is

then characterized in terms of the minimal bricks

in an associated �nite distributive lattice of bricks.

x1 Entrance

In a delightful paper entitled \Filling Boxes with

bricks", N.G. deBruijn proposed and solved a prob-

lem inspired by his 7 year old son's playing with toy

wooden bricks of size 1�2�4 and being unable to

pack the 6�6�6 box with them. Subsequently,

deBruijn (the father) went on to discover that box

a�b�c can be packed using all 6 = 3! orientations of

1�2�4 i� a�b�c supports a \parallel packing" {that

is, i� a�b�c can be �lled using only one orientation

of 1�2�4. This latter means that there is some re-

ordering a

0

; b

0

; c

0

of a; b; c, so that

1 /j a

0

and 2 /j b

0

and 4 /j c

0

(I use /j to mean \divides", and j. to mean \is a

multiple of".)

Generalizing 1�2�4 toD-dimensional bricks, [dB]

de�nes a brick B = b

1

�� � ��b

D

(all sides positive in-

tegers) to be harmonic if there exists a re-arrange-

ment b

0

1

; : : : ; b

0

D

such that

b

0

1

/j b

0

2

/j b

0

3

/j � � � /j b

0

D�1

/j b

0

D

;
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that is, each sidelength divides the next sidelength.

To state the primary theorem of [dB], we establish

terminology.

Say that brick B divides (or parallel-packs) brick

T = t

1

�� � ��t

D

i� copies of B can pack T. Equiva-

lently,

b

1

/j t

1

and b

2

/j t

2

and : : : and b

D

/j t

D

:

We write this as B 4 T. (Equivalently, let T < B mean

that T is a multiple of B.) Thus 5�3�2 divides itself,

and divides 10�6�6, but does not divide 6�10�6.

Informally, say that a family P of D-dimensional

bricks packs box

z

T if and only if T can be �lled by

disjoint copies of translates {no rotations allowed{

of bricks in P. We call the members of brick-set P

the \protobricks".

Here is the property of a proto-set, P, studied in

[dB]:

Whenever a box isP-packable, then there

is a protobrick which parallel-packs it.

This property I call deBruijn's Brick Condi-

tion , dBBC, and call such a P a deBruijn family

of bricks. Here are theorems 2 and 3 from [dB].

deBruijn's Theorem. Given brick B = b

1

�� � ��b

D

,

let P be the proto-set comprising the bricks

b

�(1)

� b

�(2)

� � � � � b

�(D)

;

as � ranges over all the permutations of f1; : : : ;Dg.

Then: P is deBruijn IFF B is harmonic.

When P comprises all permutations of a single

brick B, the deBruijn Condition is computable in

time \big O" of D � log(D), simply by attempting to

sort the sidelengths of B.

The goal of this article is to show that dBBC, with

no assumptions on P, is computable. Further, it

can be computably veri�ed in time O(DN

3

), where

N := #P is the number of protobricks, each of di-

mension D. I will characterize dBBC and show it

identical to a lattice-theoretic property which I call

\uncombinability".

z

Boxes and bricks are the same mathematical objects, but

I use \bricks" to pack \boxes". A formal de�nition of packing

appears at the end of x1.
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2 J.L. King

Conventions. Use [k::n] for the \interval of inte-

gers" [k; n]\Z. Use the pre�x nv- to mean non-void ,

e.g, \a nv-collection".

Symbols A;B;C;T name bricks. A lowercase let-

ter denotes the corresponding sidelengths, e.g,

A = a

1

� � � � � a

D

and T = t

1

� � � � � t

D

:

Indices d and e denote directions in [1::D]. For a

brick-set S and direction d, the symbol S�!d

de-

notes

y

the set

�

b

d

�

�

B 2 S

	

of d

th

sidelengths.

When P is not deBruijn then there is a packable

box T which is divisible by no protobrick. Such a

box is a certi�cate that P fails dBBC.

Questions. Of examples E1{E4 below, which are

deBruijn families?

E1: P

h1i

:= f3; 7g.

E2: P

h2i

:= fA;B;Cg, where A = 25�3, B = 9�8

and C = 16�5.

E3: P

h3i

has 3�20�14, 33�5�98 and 99�10�7.

Shows deBruijns, father and son.

Figure E4. (No caption.)

Answers. The P

h1i

\bricks" can be thought of as

half-open intervals of length 3 and 7. These pack the

interval 10, yet neither 1 nor 5, its proper divisors,

are packable. Thus P

h1i

is not deBruijn, and 10 is a

certi�cate of this.

Proto-set P

h2i

packs box T := 34�11.

A
BC

B
A

Figure 1. Two copies of rectan-

gle A, two of B and a single C

pack the 34�11 rectangle T.

Since T is not a multiple of A, nor of B nor C, this

T is a certi�cate that P

h2i

fails. Of course, P

h2i

can

y

This notation is meant to suggest projecting S from Brick-

space {represented by a square{ to the space of dth side-

lengths of bricks.

be augmented to be a deBruijn family {but, it turns

out, only in a trivial way. It will follow from x2 that

any �nite brick-set F making P

h2i

[ F deBruijn

must necessarily own the 1�1 square.

Collection P

h3i

is deBruijn, courtesy of this mild

strengthening of deBruijn's theorem: Suppose for

each d 2 [1::D] that the poset

�

P�!d

; /j

�

is totally

ordered. Then P has dBBC.

This will be a direct corollary of the Equivalence

Theorem in x2. Here is an application of the corol-

lary. Suppose � and � are arbitrary maps of [1::N]

into itself. Then this list of N bricks,

3� 5

�(1)

� 7

�(1)

; : : : ; 3

N

� 5

�(N)

� 7

�(N)

;

is a deBruijn family.

Example E4 is (part of) a deBruijn family par ex-

cellence: Father and son together.

The Brickspace Lattice

When equipped with the divisibility relation /j , the

set L of positive integers forms a distributive lattice

�

L ; /j

�

. The corresponding \inf" operation, a ^ b,

is greatest common divisor ; gcdfa; bg. And \sup",

a _ b, is lcmfa; bg.

The product poset

� := L

�D

= L � L�

D

: : :� L

is our space of bricks. And the parallel-packs rela-

tion 4 is the product order. Consequently (�;4) is

a distributive lattice. For the \inf" of bricks A and B

write GlbfA;Bg, \greatest lower brick". Let LubfA;Bg,

\least upper brick", denote their \sup".

Multiples and Scalings. In brickspace � one can

think of the multiples of a �xed brick B as forming

a \cone" of boxes, with B being the cone's vertex.

Let ∢(B), the cone over B, denote this set fT 2 � j

T < Bg of multiples. A cone is a particular example

of a set U of bricks satisfying

B 2 U and B 4 T =) T 2 U :

Any such set U, closed under going up, I will call

an up-set .

The cone ∢(S) of a brick-set , by which I mean

�

T

�

�

9B 2 S with B 4 T

	

;

is also an up-set. Every up-setU has this form, since

U = ∢
�

Mml(U)

�

;

where Mml(U) is the set of 4-minimal elements

of U.
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deBruijn's Harmonic Brick Condition is computable 3

Scaling Lemma, 2. Consider a �nite brick-set F.

Suppose that T is a box such that for each large

integer k, the scaled brick

(2

0

) kT := kt

1

� kt

2

� � � � � kt

D

is in the cone ∢(F). Then T is, itself, a multiple of

some F-brick.

Proof. For each large k there is an F-brick B

dividing kT. Since F is �nite, the Pigeon-hole Prin-

ciple asserts two large primes k < p and a common

brick B in F which divides both kT and pT. Conse-

quently,

B 4 Glb

�

kT; pT

	

note

=== gcdfk; pgT :

And this latter equals T, since gcdfk; pg equals 1.�

Packings and Tilings. Figure 1 displayed the box

T = 34�11 packed by 2 copies of A, 2 of B and one

of C. Conversely, we can think of the picture as

showing how to \signed pack" C by using positive

and negative tiles: One copy of T and �2 copies of A

and of B. We say that collection fT;A;Bg tiles C.

Formally, identify each brick B with the corre-

sponding Cartesian product of half-open intervals,

B = [0; b

1

)� [0; b

2

)� � � � � [0; b

D

) :

A translate, H, of B, has the form

[h

1

; h

1

+b

1

)� [h

2

; h

2

+b

2

)� � � � � [h

D

; h

D

+b

D

) :

The indicator function 1

H

, when evaluated at a point

~x 2 R
D

, is 1 or 0 as ~x is/is-not in the above product.

Box T is tilable by proto-set P if

1

T

=

X

H2F




H

1

H

;

with each coe�-

cient 


H

2 Z,

for some �nite family F of protobrick translates and

corresponding coe�cients 


H

. Finally, T is pack-

able if an F can be chosen with all the coe�cients

equaling 1.

Let Pac(P) and Til(P) denote the set of packable,

respectively, tilable, boxes. Each of these is an up-

set and so is determined by its collection of minimal

members. When P is deBruijn then Mml

�

Pac(P)

�

is a subset of P, hence is �nite. But, typically, there

are in�nitely many minimal packable-boxes.

?

What turns out to be decisive for the deBruijn

Condition is that the set of minimal tilable-boxes is

always �nite {and computably so.

?

With proto-set P

h1i

, for example, every prime exceed-

ing 11 is a minimal P

h1i

-packable box.

x2 The Combine operator

Given bricks A;B; : : : ;C, observe that A parallel-

packs the \slab"

A

0

:= a

1

� `

2

� `

3

� � � � � `

D

;

where each `

e

:= lcmfa

e

; b

e

; : : : ; c

e

g. Letting g

1

be

the greatest commondivisor of fa

1

; : : : ; c

1

g, take in-

tegers k

A

; : : : ; k

C

such that

g

1

= (k

A

� a

1

) + (k

B

� b

1

) + � � �+ (k

C

� c

1

) :

Then the box

g

1

� `

2

� `

3

� � � � � `

D

is tiled by k

A

copies of slab A

0

and k

B

copies of B

0

: : : and �nally k

C

copies of slab C

0

.

The above is an example of the combine oper-

ation; we will write T = Comb

1

�

fA; : : : ;Cg

�

. For-

mally, given a �nite brick-set F and direction d, let

Comb

d

(F) denote the brick t

1

�� � ��t

D

, where

t

d

:= gcd

�

F�!d

�

and t

e

:= lcm

�

F�!e

�

;

for each direction e 6= d.

Lastly, brick-set P is uncombinable if:For every

A;B 2 P and each direction d, the box Comb

d

fA;Bg

is divisible by some brick in P.

Here is the principal result of this note.

Equivalence Theorem, 3. For each �nite brick-

set P, conditions (i,ii,iii) are equivalent.

i: P is a deBruijn set, i.e, Pac(P) = ∢(P).

ii: Til(P) = ∢(P).

iii: P is uncombinable.

Tools. The theorem will follow from the foregoing

Scaling Lemma, as well as two theorems which we

cite from [Kin1] but which have antecedents going

back at least to 1971.

Let Ext

d

(P), the \d

th

extension of P", denote this

set of bricks:

�

Comb

d

(F)

�

�

F is a �nite nv-subset of P

	

It is not di�cult to see that the extension operators

commute, Ext

e

� Ext

d

= Ext

d

� Ext

e

, and each oper-

ator is idempotent. In consequence, the iteration

Ext

D

�

Ext

D�1

�

: : :Ext

2

�

Ext

1

(P)

�

: : :

�

�
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4 J.L. King

is the set of all boxes that can be built from P by

means of Combine operators.Abbreviate this set by

Ext

D::1

(P).

Let's apply this operator to the bricks fA;B;Cg

of �gure 1. Since Ext

2::1

�

P

h2i

�

owns the 1�1 square,

this square is tilable. Consequently, for a �nite aug-

mentation F[P

h2i

to be deBruijn, F must own 1�1.

History. Versions of the next two results appear in

several papers.

Under the assumption that P is permutation-

invariant (permuting the sides of any protobrick yields an-

other), Katona & Sz�asz (1971) prove lemma 5 and

give an intricate criterion for when a box is P-tilable.

In two seminal papers, Barnes (1982) develops

commutative algebra machinery to determine when

a polyomino is tilable by others. He establishes (4)

{thatMml

�

TilP

�

is �nite{ but with a di�erent char-

acterization of the minimal set, and proves (5) with

a common value for K

1

; : : : ;K

D

.

Lemma 4 [Kin1, Equality Thm]. Til(P) equals the cone

over Ext

D::1

(P).

This says that iterating all possible Combines is

su�cient to generate all of the minimal bricks in

Til(P).Here is a sample computation.

Calculating rank. Let A be the 5�6�7 brick and

let P :=

�

A;A

0

;A

00

	

, where each stroke means to

rotate the sides by one position; A

0

= 6�7�5 and

A

00

= 7�5�6. Necessarily, the set Mml

�

Ext

3::1

(P)

�

is

rotation invariant. It comprises these �ve bricks

A : 5 � 6 � 7

B := Comb

1

fA;A

0

g : 1 � (6 � 7) � (7 � 5)

_

B := Comb

1

fA

0

;A

00

g : 1 � (7 � 5) � (5 � 6)

�

B := Comb

1

fA

00

;Ag : 1 � (5 � 6) � (6 � 7)

C := Comb

5

fB;

_

B;

�

Bg : 1 � 1 � (5 � 6 � 7)

and their rotates. Thus Mml

�

Til(P)

�

, which equals

Mml

�

Ext

3::1

(P)

�

, has 15 bricks. Call the cardinality

of Mml

�

Til(P)

�

the rank of P.

Lemma 5 [Kin1, Computability Thm]. There are com-

putable integers K

1

; : : : ;K

D

(depending on P) so

that whenever T is a box with each sidelength t

d

>

K

d

, then:

T tilable =) T packable.

Remark. An algorithm in x3 will use these numbers

and so we give a formula here. It su�ces

z

to let

z

A justi�cation, as well as a better (lower) value for K

d

in terms of Frobenius numbers, appears in [Kin1].

K

d

:= (J�1)L, where L = lcm

�

P�!d

�

and J is the

number of distinct primes in the factorization of L.

We can now verify (3), the Equivalence Theorem.

Proof of i()ii. Certainly (ii))(i) since, by

de�nition, Til(P) � Pac(P) � ∢(P).

To establish the converse implication, �x a tilable

box T. For all large k, courtesy lemma 5, the scaled

box kT is packable. Hence kT 2 ∢(P), since P is

deBruijn. By the Scaling Lemma, then, some proto-

brick parallel-packs T, as desired. �

Proof of ii()iii. Equality (ii) is, thanks to

lemma 4, equivalent to∢
�

Ext

D::1

(P)

�

= ∢(P), which

is equivalent to

Ext

D::1

(P) � ∢(P) :

This latter inclusion certainly implies that P is un-

combinable. And the converse follows from the ob-

servation that Combine is a non-decreasing func-

tion of its operands: If A

0 < A and B

0 < B then

CombfA

0

;B

0

g < CombfA;Bg. �

Corollary 3

0

. For each direction d 2 [1::D], sup-

pose that the poset

�

P�!d

; /j

�

is totally ordered.

Then P is deBruijn.

Proof. It is enough to show that the hypothesis

on P�!d

implies that Ext

d

(P) � ∢(P).

Consider a nv-subset F � P and choose a proto-

brick T 2 F so that, with respect to divisibility,

each sidelength t

d

is the minimum of the integers

in F�!d

. Automatically, t

d

divides the d-th side-

length of Comb

d

(F). Thus T divides Comb

d

(F) . �

x3 Questions & Algorithms

Let � = �(T) denote the number of bits needed to

describe a box T; so �(T) is roughly log

2

(t

1

)+ � � �+

log

2

(t

D

). The foregoing gives an algorithm, linear

in �, for whether a candidate box is P-tilable: Test

whether there exists a divisor B 2 Mml

�

Ext

D::1

P

�

of T. This takes time

y

proportional to rank(P) �

�. Several interrelated queries are suggested, two of

which are open.

Question Q1. Is there a linear-time algorithm for

P-packability?

y

As a function of �, linear is the best we can get. Alas,

the algorithm is often impractical, since rank(P) can be huge.

A maliciously chosen proto-set, among those comprising six

rectangles, can have rank 7; 828; 352 (but no larger). Behav-

ior of the rank function is studied in [Kin1,2] and [Ha&To].
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Question Q2. LetM(P) := Mml

�

Pac(P)

�

, the mini-

mal packable boxes. Is \IsM(P) �nite?" comput-

able? When �nite, is the setM(P) computable?

Question Q3. Courtesy (3ii), when the righthand

inclusion of

Til(P) � Pac(P) � ∢(P)

is equality, then so is the lefthand inclusion. Does

the converse hold?

Discussion. Courtesy lemma 5, were we only to

consider boxes whose sidelengths are su�ciently great,

the answer to Q1 would be \yes". But without such

restriction, Q1 is open {even in the D = 2 case.

However, there is one situation with an unrestricted

\yes". This is when M(P) is �nite, suggesting Q2.

The proposition, below, answers Q2, as follows:

ComputeMml

�

Ext

D::1

P

�

. If all these bricks are pack-

able, then this set is M(P); otherwise M(P) is in�-

nite.

Proposition 6. Given a �nite brick-set P, let M

be Mml

�

Pac(P)

�

. Then the following are equivalent,

and are implied by (3i,ii,iii)

j: M is �nite.

jj: Til(M) = ∢(M), i.e, M is uncombinable.

jjj: Til(P) = Pac(P).

Proof. Automatically

(�) Pac(M) = Pac(P) = ∢(M) ;

soM is deBruijn. When M is �nite, (j), then impli-

cation (i))(ii) applies to M, yielding (jj).

Evidently P � ∢(M), so Til(P) = Til(M). By

(jj) and (�), then, Til(P) = ∢(M) = Pac(P), giv-

ing (jjj).

From (jjj) and Lemma 4,

M = Mml

�

Til(P)

�

= Mml

�

Ext

D::1

(P)

�

:

The latter is �nite, since Ext

D::1

(P) is. �

Gift certi�cates. With no extra work, the

proof of (3) gives an algorithm {when P fails to

be deBruijn{ to produce a certi�cate of failure.

This simple algorithm is in terms of the numbers

K

1

; : : : ;K

D

from lemma 5.

a: Find a brick T which is minimal in Ext

D::1

(P),

yet is divisible by no protobrick. Let K

0

be the

minimum of K

d

=t

d

, taken over d = 1; : : :D.

b: Compute integers k

0

< k

1

< � � � < k

N

, with

k

0

> K

0

, so that each two are relative prime.

?

This has arranged that at least one of the scaled

bricks, below, is divisible by no protobrick.

c: Scan the list of scaled bricks, k

0

T; k

1

T; : : : ; k

N

T,

for one which has no protobrick divisor.

Each such scaled brick is packable, hence is a cer-

ti�cate.

Uncombinability algorithm. Step a:, up above,

asked us to �nd what could be called a minimal \cer-

ti�cate of combinability". This can be accomplished

by the algorithm, below, which runs in O(DN

3

)

\ticks". Here, we presume that each of these side-

length calculations,

a /j b ; gcdfa; bg ; lcmfa; bg ;

costs one tick.

LOOP over each pair A;B 2 P, with A 6= B,

DOing steps 1: 2: 3:, below.

IF the EXIT statement of 3: is never executed,

PRINT \P is uncombinable".

1: INITIALIZE D-tuples L, G and Dir, by

L

d

:= lcmfa

d

; b

d

g, G

d

:= gcdfa

d

; b

d

g

and Dir

d

:= FALSE, for d = 1; : : : ;D.

2:FOR each brick C 2 P:

IF (C 4 L) THEN

LET Dir

e

:= TRUE for all those

directions e such that c

e

/j G

e

.

3: IF (exists e with Dir

e

= FALSE) THEN

PRINT \No protobrick divides Comb

e

fA;Bg"

and then EXIT.
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?

One method is to let q

0

:= 1 and q

i

be the ith prime. Then

q

0

< q

1

< � � � < q

N

is a pairwise co-prime list. To translate

this past K

0

, let P be the product of all the primes which

are less-equal the di�erence q

N

� q

0

. If M is any multiple

of P , then the numbers k

i

:= M + q

i

, for i = 0; : : : ;N, are

necessarily pairwise-prime. So we pick M to be the smallest

multiple of P such that M + q

0

exceeds K

0

.

An in-depth discussion of related problems appears in [EPP].
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