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ABsTRACT. For particular collections P of integer-
sided ©-dimensional bricks, deBruijn gave an
IFF-condition for when the only P-packable boxes
are those which admit a parallel packing.

We show, for general P, that deBruijn’s con-
dition is computable, and provide an algorithm
to compute it in time proportional to the prod-
uct D93, where 91 is the number of bricks in P.
The method first shows that deBruijn’s condi-
tion has an equivalent formulation where tilings
using negative, as well as positive, copies of bricks
are permitted. The equivalent formulation is
then characterized in terms of the minimal bricks
in an associated finite distributive lattice of bricks.

§1 ENTRANCE

In a delightful paper entitled “Filling Boxes with
bricks”, N.G. deBruijn proposed and solved a prob-
lem inspired by his 7 yearold son’s playing with toy
wooden bricks of size 1x2x4 and being unable to
pack the 6x6x6 box with them. Subsequently,
deBruijn (the father) went on to discover that box
axbxc can be packed using all 6 = 3! orientations of
1x2x4 iff axbxc supports a “parallel packing” —that
is, iff axbxc can be filled using only one orientation
of 1x2x4. This latter means that there is some re-
ordering o/, b, ¢’ of a,b, ¢, so that

14d

and 240 and 44¢

(I use 4 to mean “divides”, and p to mean “is a
multiple of”.)

Generalizing 1x2x4 to ©-dimensional bricks, [dB]
defines a brick B = b;x---xbgp (all sides positive in-
tegers) to be harmonaic if there exists a re-arrange-
ment b}, ..., by such that

by 405 4 b5 44 by 4 by,
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that is, each sidelength divides the next sidelength.
To state the primary theorem of [dB], we establish
terminology.

Say that brick B divides (or parallel-packs) brick
T = t1x---Xtg iff copies of B can pack T. Equiva-
lently,

by 4t; and by 45 and ... and by 4 tp .

We write this as B < T. (Equivalently7 let T = B mean
that T is a multiple of B.) Thus 5x3x2 divides itself,
and divides 10x6x6, but does not divide 6x10x6.

Informally, say that a family P of D-dimensional
bricks packs box® T if and only if T can be filled by
disjoint copies of translates —no rotations allowed—
of bricks in P. We call the members of brick-set P
the “protobricks”.

Here is the property of a proto-set, P, studied in
[dB]:

Whenever a box is P-packable, then there
is a protobrick which parallel-packs it.

This property I call deBruin’s Brick Condi-
tion, BBC, and call such a P a deBruiygn family
of bricks. Here are theorems 2 and 3 from [dB].

DEBRUIIN’S THEOREM. Given brick B = byX - -Xbg,
let P be the proto-set comprising the bricks

br(1) X br(2) X ==+ X br(my

as 7 ranges over all the permutations of {1,...,D}.
Then: P is deBruijn IFF B is harmonic.

When P comprises all permutations of a single
brick B, the deBruijn Condition is computable in
time “big O” of D -log(®D), simply by attempting to
sort the sidelengths of B.

The goal of this article is to show that d3BC, with
no assumptions on P, is computable. Further, it
can be computably verified in time O(DN?), where
N = #P is the number of protobricks, each of di-
mension ®. 1 will characterize BBC and show it
identical to a lattice-theoretic property which I call
“uncombinability”.

tBoxes and bricks are the same mathematical objects, but
[ use “bricks” to pack “boxes”. A formal definition of packing
appears at the end of §1.
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Conventions. Use [k..n] for the “interval of inte-
gers” [k, n]NZ. Use the prefix nv- to mean non-void,
e.g, “a nv-collection”.

Symbols A, B, C, T name bricks. A lowercase let-
ter denotes the corresponding sidelengths, e.g,

A=ay X ---Xap and T=t x---Xtp.

Indices d and e denote derections in [1..D]. For a
brick-set S and direction d, the symbol So_,4 de-
notes’ the set {bd ‘ B e S} of d' sidelengths.

When P is not deBruijn then there is a packable
box T which is divisible by no protobrick. Such a
box is a certificate that P fails BBC.

Questions. Of examples E1-E4 below, which are
deBruijn families?
El: P = {3,7}.
E2: P = {A B,C}, where A = 25x3, B = 9x8
and C = 16x5.

E3: P®) has 3x20x14, 33x5x98 and 99x10x7.

Shows deBruijns, father and son.

Ficure E4. (No caption.)

Answers. The P() “bricks” can be thought of as
half-open intervals of length 3 and 7. These pack the
interval 10, yet neither 1 nor 5, its proper divisors,
are packable. Thus P{! is not deBruijn, and 10 is a
certificate of this.

Proto-set P{?) packs box T == 34x11.

Fiaure 1. Two copies of rectan-
gle A, two of B and a single C
pack the 34x11 rectangle T.

Since T is not a multiple of A, nor of B nor C, this
T is a certificate that P fails. Of course, P{*) can

tThis notation is meant to suggest projecting S from Brick-
space -represented by a square— to the space of dth side-
lengths of bricks.
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be augmented to be a deBruijn family —but, it turns
out, only in a trivial way. It will follow from §2 that
any finite brick-set F making P® U F deBruijn
must necessarily own the 1x1 square.

Collection P®) is deBruijn, courtesy of this mild
strengthening of deBruijn’s theorem: Suppose for
each d € [1..1D] that the poset (Pn_,, <) is totally
ordered. Then P has BBC.

This will be a direct corollary of the Equivalence
Theorem in §2. Here is an application of the corol-
lary. Suppose # and v are arbitrary maps of [1..07]
into itself. Then this list of 9% bricks,

3 x 5T 7y 3T 5T ()
is a deBruijn family.

Example E4 is (part of) a deBruijn family par exz-
cellence: Father and son together.

The Brickspace Lattice

When equipped with the divisibility relation 4, the
set L of positive integers forms a distributive lattice
(,C, <j) The corresponding “inf” operation, a A b,
is greatest common divisor; ged{a,b}. And “sup”,
aVb,islem{a,b}.
The product poset
A=L® =LxLx2.xL

is our space of bricks. And the parallel-packs rela-
tion < is the product order. Consequently (A, <) is
a distributive lattice. For the “inf” of bricks A and B
write GIb{A, B}, “greatest lower brick”. Let Lub{A, B},

“least upper brick”, denote their “sup”.

Multiples and Scalings. In brickspace A one can
think of the multiples of a fixed brick B as forming
a “cone” of boxes, with B being the cone’s vertex.
Let <(B), the cone over B, denote this set {T € A |
T = B} of multiples. A cone is a particular example
of a set U of bricks satisfying

BeUandBxxT = TeU.

Any such set U, closed under going up, I will call
an up-set.
The cone <(S) of a brick-set, by which I mean

{T‘EIBESWi‘uhB#T}7
is also an up-set. Every up-set U has this form, since
U = <(Mml(U)),

where Mml(U) is the set of <-minimal elements

of U.
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SCALING LEMMA, 2. Consider a finite brick-set F.
Suppose that T is a box such that for each large
integer k, the scaled brick

(2" ET = kty x kty x -+ X ktp

is in the cone <(F).
some F-brick.

Then T is, itself, a multiple of

ProOF. For each large k there is an F-brick B
dividing kT. Since F is finite, the Pigeon-hole Prin-
ciple asserts two large primes k£ < p and a common
brick B in F which divides both kT and pT. Conse-
quently,

B < GIb{kT,pT} ged{k,p}T.
And this latter equals T, since ged{k, p} equals 1.4

note

Packings and Tilings. Figure 1 displayed the box
T = 34x11 packed by 2copies of A, 2 of B and one
of C. Conversely, we can think of the picture as
showing how to “signed pack” C by using positive
and negative tiles: One copy of T and —2 copies of A
and of B. We say that collection {T,A, B} tiles C.
Formally, identify each brick B with the corre-
sponding Cartesian product of half-open intervals,

B = [0,b1) X [0,b3) X ---x[0,bp) .
A translate, H, of B, has the form
[hh h1—|—b1) X [hg, h2—|—b2) X - X [h@, h®—|—b9) .
The indicator function 1y, when evaluated at a point
£ € R®,is 1 or 0 as 7 is/is-not in the above product.
Box T is tidlable by proto-set P if

1+ — 1 with each coeffi-
T = Z THLH cient vy € Z,
HeF

for some finite family F of protobrick translates and
corresponding coeflicients vy. Finally, T is pack-
able if an F can be chosen with all the coefficients
equaling 1.

Let Pac(P) and Til(P) denote the set of packable,
respectively, tilable, boxes. Each of these is an up-
set and so is determined by its collection of minimal
members. When P is deBruijn then Mml(Pac(P))
is a subset of P, hence is finite. But, typically, there
are infinitely many minimal packable-boxes.*

What turns out to be decisive for the deBruijn
Condition is that the set of minimal tilable-boxes is
always finite —and computably so.

*With proto-set P{1? for example, every prime exceed-
ing 11 is a minimal P{1)_packable box.

Typeset: November 1, 1998

Filename:Article/29DeBruijnTiling/debruijntiling.a4.ams.tex

§2 THE COMBINE OPERATOR

Given bricks A, B, ..., C, observe that A parallel-
packs the “slab”

A = aq ng ngX"'Xf@,

where each ¢, = lem{a.,b.,...,c.}. Letting g; be
the greatest common divisor of {ay, ..., ¢}, take in-
tegers ka, ..., kc such that

g1 = (ka-ar)+ (kg -b1)+ -+ (kc- 1) .
Then the box
91X€2X£3X"'ng

is tiled by ka copies of slab A’ and kg copies of B’

. and finally k¢ copies of slab C'.

The above is an example of the combine oper-
ation; we will write T = Comby ({A7 . 7C}). For-
mally, given a finite brick-set F and direction d, let
Comby(F) denote the brick ¢;x---xtgp, where

ty = ged (FD_>d) and t, =lem (Fg_m) ,
for each direction e # d.

Lastly, brick-set P is uncombinable if: For every
A, B € P and each direction d, the box Comby{A, B}
is divisible by some brick in P.

Here is the principal result of this note.

EQUIVALENCE THEOREM, 3. For each finite brick-
set P, conditions (i,ii,iii) are equivalent.

i: P is a deBruijn set, i.e, Pac(P) = <(P).

ii: Til(P) = <«(P).

iii: P is uncombinable.

Tools. The theorem will follow from the foregoing
Scaling Lemma, as well as two theorems which we
cite from [Kinl1] but which have antecedents going
back at least to 1971.

Let Exty(P), the “d"extension of P”, denote this
set, of bricks:

{Comby(F) | F is a finite nv-subset of P}

It is not difficult to see that the extension operators
commute, Ext, o Ext; = Exty o Ext., and each oper-
ator is idempotent. In consequence, the iteration

Extp (Ext@_l ( .. Exts (Extl(P)) .. ))
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is the set of all boxes that can be built from P by
means of Combine operators. Abbreviate this set by
Extp 1 (P) .

Let’s apply this operator to the bricks {A,B,C}
of figure 1. Since Exty 3 (P<2>) owns the 1x1 square,
this square is tilable. Consequently, for a finite aug-
mentation FUP?) to be deBruijn, F must own 1x1.

History. Versions of the next two results appear in
several papers.

Under the assumption that P is permutation-
invariant (permuting the sides of any protobrick yields an-
other), Katona & Szdsz (1971) prove lemma 5 and
give an intricate criterion for when a box is P-tilable.

In two seminal papers, Barnes (1982) develops
commutative algebra machinery to determine when
a polyomino is tilable by others. He establishes (4)
—that I\/ImI(TiIP) is finite— but with a different char-
acterization of the minimal set, and proves (5) with
a common value for Kq,...,Kq».

LEMMA 4 [Kin1, Equality Thm]. Til(P) equals the cone
over Extp_1(P).

This says that iterating all possible Combines is
sufficient to generate all of the minimal bricks in
Til(P). Here is a sample computation.

Calculating rank. Let A be the 5x6x7 brick and
let P = {A,A,A”} where each stroke means to
rotate the sides by one position; A’ = 6x7x5 and
A" = 7x5x6. Necessarily, the set I\/ImI(Extg.,l(P)) is
rotation invariant. It comprises these five bricks

A : X 6 x0T

B = Comb;{A, A’} Ix(6-7)x (7-5)
B = Comb; {A",A"} : 1x (7-5) x (5-6)
B = Comb, {A",A} : 1x(5-6)x (6-7)
C:=Combs{B,B,B}: 1x 1 x(5:6-7)

and their rotates. Thus Mml(Til(P)), which equals
I\/ImI(Extg.,l(P))7 has 15 bricks. Call the cardinality
of Mml(Til(P)) the rank of P.

LEMMA 5 [Kinl, Computability Thm]. There are com-
putable integers K1,...,Kp (depending on P) so
that whenever T is a box with each sidelength t; >
K4, then:

T tilable = T packable.

Remark. An algorithm in §3 will use these numbers
and so we give a formula here. It sufficest to let

tA justification, as well as a better (lower) value for Ky
in terms of Frobenius numbers, appears in [Kinl].
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Kq=(J—1)L, where L =lcm (PD—>d) and J is the
number of distinct primes in the factorization of L.
We can now verify (3), the Equivalence Theorem.

PRrROOF OF i<=ii. Certainly (ii)=-(i) since, by
definition, Til(P) D Pac(P) D <«(P).

To establish the converse implication, fix a tilable
box T.For all large k, courtesy lemma 5, the scaled
box kT is packable. Hence kT € <(P), since P is
deBruijn. By the Scaling Lemma, then, some proto-
brick parallel-packs T, as desired. ¢

PROOF OF ii<=iii. Equality (ii) is, thanks to
lemma 4, equivalent to <(Extp_1(P)) = <(P), which
is equivalent to

Extn 1(P) C <(P).

This latter inclusion certainly implies that P is un-
combinable. And the converse follows from the ob-
servation that Combine is a non-decreasing func-
tion of its operands: If A’ = A and B’ = B then
Comb{A’,B'} = Comb{A, B}. ¢

CoRroLLARY 3. For each direction d € [1..D], sup-
pose that the poset (P[j_>d, <j) is totally ordered.
Then P is deBruijn.

ProOF. It is enough to show that the hypothesis
on Po_,, implies that Ext,(P) C <(P).

Consider a nv-subset F C P and choose a proto-
brick T € F so that, with respect to divisibility,
each sidelength t; is the minimum of the integers
in Fo_,4. Automatically, t; divides the d-th side-
length of Comby(F). Thus T divides Comby(F) . ¢

§3  QUESTIONS & ALGORITHMS

Let 3 = B(T) denote the number of bits needed to
describe a box T; so §(T) is roughly log, (t1) 4+ -- -+
log,(tn). The foregoing gives an algorithm, linear
in 3, for whether a candidate box is P-tilable: Test
whether there exists a divisor B € MmI(Ext@,.lP)
of T. This takes time! proportional to rank(P) -
(3. Several interrelated queries are suggested, two of
which are open.

Question Q1. Is there a linear-time algorithm for
P-packability?

tAs a function of §, linear is the best we can get. Alas,
the algorithm is often impractical, since rank(P) can be huge.
A maliciously chosen proto-set, among those comprising six
rectangles, can have rank 7,828,352 (but no larger). Behav-
ior of the rank function is studied in [Kin1,2] and [Ha&To].
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Question Q2. Let M(P) := Mml(Pac(P)), the mini-
mal packable boxes. Is “Is M(P) finite?” comput-
able? When finite, is the set M(P) computable?

Question 3. Courtesy (3ii), when the righthand
inclusion of

Til(P) D Pac(P) D> <(P)

is equality, then so is the lefthand inclusion. Does
the converse hold?

Discussion. Courtesy lemma 5, were we only to
consider boxes whose sidelengths are sufficiently great,
the answer to Q1 would be “yes”. But without such
restriction, Q1 is open —even in the D = 2 case.
However, there is one situation with an unrestricted
“yes”. This is when M(P) is finite, suggesting Q2.

The proposition, below, answers Q2, as follows:
Compute I\/ImI(ExtQ,l P). If all these bricks are pack-
able, then this set is M(P); otherwise M(P) is infi-
nite.

ProprosITION 6. Given a finite brick-set P, let M
be Mml(Pac(P)). Then the following are equivalent,
and are implied by (3i,ii,iii)
j: M is finite.
jj: TiI(M) = <(M), i.e, M is uncombinable.
jij: Til(P) = Pac(P).

PRroor.

()

so M is deBruijn. When M is finite, (j), then impli-
cation (i)=-(ii) applies to M, yielding (jj).
Evidently P C <(M), so Til(P) = Til(M). By
(jj) and (%), then, Til(P) = <(M) = Pac(P), giv-
ing (jij)-
From (jjj) and Lemma 4,

Automatically

Pac(M) = Pac(P) = <(M),

M = Mml(Til(P)) = Mml(Extp_1(P)).

The latter is finite, since Extg 1 (P) is. ¢

Gift certificates. With no extra work, the
proof of (3) gives an algorithm —when P fails to
be deBruijn— to produce a certificate of failure.
This simple algorithm is in terms of the numbers
Ki,...,Ko from lemma 5.

a: Find a brick T which is minimal in Extg_1(P),
vet is divisible by no protobrick. Let K' be the
minimum of K,/ty, taken over d =1,...9.
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b: Compute integers kg < ki1 < --- < ke, with

ko > K', so that each two are relative prime.*
This has arranged that at least one of the scaled
bricks, below, is divisible by no protobrick.

c: Scan the list of scaled bricks, koT, k1T, ...

for one which has no protobrick divisor.

3 ka7

Each such scaled brick is packable, hence is a cer-
tificate.

Uncombinability algorithm. Step a:, up above,
asked us to find what could be called a minimal “cer-
tificate of combinability”. This can be accomplished
by the algorithm, below, which runs in O(DMN?)
“ticks”. Here, we presume that each of these side-
length calculations,

adb, gedfa,b},

costs one tick.
LOOP over each pair A/B € P, with A # B,
DOing steps 1:2:3:, below.
IF the EXIT statement of 3: is never executed,
PRINT “P is uncombinable”.

1: INITIALIZE ®-tuples L, G and Dir,
Ly =lem{ag, by}, Gg = ged{aq, by}
and Dirg = FALSE, ford=1,...,9.

2: FOR each brick C € P:

IF (C < L) THEN
LET Dir, .= TRUEFE for all those
directions e such that c. 4 G..

3:IF (exists e with Dir, = FALSE) THEN
PRINT “No protobrick divides Comb.{A,B}”
and then EXIT.

lem{a,b},

by
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