



Staple!

Ord: \_\_\_\_\_

Differential Eqns  
MAP2302

## D-Practice

Prof. JLF King  
Touch: 17Nov2017**Hi.** Whatever you do, **Don't Panic!** This freebie practice is light-years longer than the actual exam.Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed. Write expressions unambiguously e.g., “ $1/a + b$ ” should be bracketed either  $[1/a] + b$  or  $1/[a + b]$ . (Be careful with negative signs!)Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than  $.9797\cdots$ .Use “ $f(x)$  notation” when writing fncs; in particular, for trig and log fncs. E.g., write “ $\sin(x)$ ” rather than the horrible  $\sin x$  or  $[\sin x]$ .**Notation.** For the Laplace transform of  $f$ , use  $\mathcal{L}(f) = \hat{f}$ . Use  $\mathcal{L}^{-1}$  for the inVerse Laplace-transform operator. Use **H()** for the **Heaviside fnc**, also called the unit-step fnc. And use **δ()** for the **Dirac delta “function”**.**D1:** Show no work.**a** With **1()** the constant-1 fnc and  $F(x) := \sin(5x)$ , then, convolution

$$[\mathbf{1} * F](x) = \text{_____}$$

**b** With **1()** the constant-1 fnc and  $F(x) := e^{2x}$ , then, convolution

$$[\mathbf{1}^{*4} * F](x) = \text{_____}$$

**c** With  $f(x) := e^{7x}$  and  $g(x) := e^{4x}$ , then

$$[f * g](5) = \text{_____}$$

**d** Matrices  $A, B, U$  are  $2 \times 2$ , with  $U$  is invertible. Then  $e^{A+B} = e^A \cdot e^B$ :

$$Ue^B U^{-1} = e^{UBU^{-1}} : \quad AT \quad AF \quad Nei$$

If  $e^B$  invertible, then  $B$  is invertible:  $AT \quad AF \quad Nei$ **e** Fncs  $x(t)$  and  $y(t)$  satisfy this system of DEs,

$$\begin{aligned} x' + x - 3y &= 0, \\ y' + 6x - 8y &= 0. \end{aligned}$$

It can be written as  $\mathbf{Y}' = \mathbf{M} \cdot \mathbf{Y}$ ,  
where  $\mathbf{Y} := \begin{bmatrix} x \\ y \end{bmatrix}$  and  $\mathbf{M}$  is matrixCharacteristic poly of  $\mathbf{M}$  is  $\varphi_{\mathbf{M}}(z) =$ A soln has  $x(t)$  a linear combination of  $e^{\alpha t}$  and  $e^{\beta t}$  for numbers  $\alpha =$  \_\_\_\_\_ and  $\beta =$  \_\_\_\_\_.**f** Matrix  $G := \begin{bmatrix} 2 & -1 & 3 \\ 4 & -2 & 4 \\ 0 & 0 & 0 \end{bmatrix}$ is nilpotent. Computing,  $G^2 =$ The  $(1, 3)$ -entry of  $e^{Gt}$  is**g** We can re-write function

$$f(t) := \cdot \cos\left(\frac{3}{4}\pi + 5t\right) + \sqrt{2} \cdot \cos\left(\frac{3}{2}\pi + 5t\right)$$

as  $f(t) = R \cdot \cos(\theta + 5t)$ , for real numbers

$$R = \text{_____} \geq 0 \text{ and } \theta = \text{_____} \in [0, 2\pi).$$

**h** Let  $B := \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix}$ ,  $M := \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$ . and  $R := MBM^{-1}$ . Then

$$e^{Rt} = \text{_____}$$

**i** The Laplace transform of fnc  $f(t) := \cos(7t)$  is  $\hat{f}(s) =$ For IVP  $3y'' - y = \cos(7t)$  with  $y(0)=2$  and  $y'(0)=5$ , then,

$$\hat{y}(s) =$$

$$\mathcal{L}(t^{26}e^{3t})(s) = \text{_____}$$

$$\mathcal{L}(\sin(2t) \cdot \exp(3t))(s) = \text{_____}$$

Determine the inverse-transform, please.

$$\mathcal{L}^{-1}\left(\frac{3s+5}{s^2+2s+5}\right)(t) = \text{_____}$$

**k** Suppose  $y(0) = 2$ ,  $y'(0) = 3$ ,  $y''(0) = 5$ . Then  $\mathcal{L}(y^{(3)} + 2y')(s)$  equals  $[[p(s) \cdot \hat{y}(s)] + q(s)]$  for **polynomials**

$p(s) =$   
 and  $q(s) =$

OYOP: In grammatical English *sentences*, write your essay on every *third* line (usually), so that I can easily write between the lines.

**D2:** i Start your essay with this sentence-fragment, and complete the defn using as many sentences as you need:

*Saying that function  $f: [0, \infty) \rightarrow \mathbb{R}$  has “exponential order 5”, i.e.  $f \in \text{Ord}(5)$ , means that...*

ii Give one example of a continuous fnc  $g: [0, \infty) \rightarrow \mathbb{R}$  which lies neither in  $\text{Ord}(1)$ , nor in  $\text{Ord}(2)$ , nor in  $\text{Ord}(3)$  .... I.e, this fnc  $g$  violates *every* exponential order.

**D3:** Give a *careful* argument, that  $\mathcal{L}(f \circledast g)$  equals  $\widehat{f} \cdot \widehat{g}$ .

**D4:** Let  $g(t) := \mathbf{H}(t - 5) \cdot f(t - 5)$ . Give a *careful* argument, that  $\widehat{g}(s)$  equals  $e^{-5s} \cdot \widehat{f}(s)$ .

**D5:** i Start your essay with this sentence-fragment, and complete the defn using as many sentences as you need:

*An  $N \times N$  matrix  $B$  is nilpotent if... Moreover, saying that its nilpotency degree is 4 means that...*

ii Give an example of  $3 \times 3$  matrix which has nilpotency degree 2.

End of D-Practice