

General. (This is the first exam of 2nd-semester Topology.)

Your exam must be typed, but mathematical symbols may be hand-written. Diagrams may be hand-drawn. **Due:** 19Feb at 5PM, slid under my office door. (Home-D given out **11 Feb2008**.)

Notation. TS, topological space. If \mathcal{A} is a collection of subsets of a set Ω , then an “ \mathcal{A} -cover” (of Ω) is a collection $\mathcal{C} \subset \mathcal{A}$ such that $\bigcup(\mathcal{C}) = \Omega$. \square

D0: Given a TS (Ω, \mathcal{T}) and subcollection $\mathcal{A} \subset \mathcal{T}$, suppose that each \mathcal{A} -cover has a countable subcover.

a Prove: If \mathcal{A} is a *base* for \mathcal{T} , then Ω is Lindelöf.

b In contrast, produce an example where \mathcal{A} is a *pre-base* for \mathcal{T} , yet Ω is not Lindelöf.

D1: Suppose X is a compact TS and Y is Lindelöf. Prove that $X \times Y$ is Lindelöf.

D2: Munkres, #7^P143. Let \mathcal{S} denote the subspace topology on Z .

Let \widehat{Z} be the same set, $[\mathbb{R} \times \{0\}] \cup [\{0\} \times \mathbb{R}]$, but equipped with the quotient topology, \mathcal{Q} .

b (cont.) Show that \widehat{Z} has the T_1 separation property.

c Is one of \mathcal{S}, \mathcal{Q} (strictly) finer/coarser than the other? Compare \widehat{Z} with the Deck of Cards (DoC) space. For y real, let P_y denote the point $(0, y)$ in the plane and let I denote the subset $(0, 1]$ (a half-open interval) of the x -axis.

Let $C_y := \{P_y\} \cup I$. What is the closure of C_y in \widehat{Z} ? Is C_y open? compact?

D3: Munkres, #10^P158.

D4: Invent a good problem involving compactness. Now (preferably) solve this problem.

Comments. Recall \mathbb{R}_ℓ , the reals equipped with the lower-limit topology. We showed in class that \mathbb{R}_ℓ is Lindelöf, and we discussed $\mathbb{R}_\ell \times \mathbb{R}_\ell$. Recall the **Tube Lemma**. \square