

Staple!

Numbers & Polys
MAS3300

Prof. JLF King
Touch: 21Feb2017

Home-D

Note. Write expressions unambiguously e.g, “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with **negative** signs!)

D1: Show no work.

[z] Professor King sometimes gives freebie questions.
Circle one: **True** **What a guy!** **Who?**

[a] The finite set $\mathcal{P}(\mathcal{P}(\{3\text{-Stooges}\}))$ has cardinality \dots .

[b] For $G := \{1, 2, 3, 4\}$, consider $f: G \rightarrow \mathcal{P}(G)$ by

$$\begin{aligned} f(1) &:= \{3, 4\}, & f(2) &:= G, \\ f(3) &:= \emptyset, & f(4) &:= \{1, 4\}. \end{aligned}$$

The set $B := \{x \in G \mid f(x) \not\ni x\}$ is $\{\dots\}$.

[c*] Compute the $\beta \in [0..176)$ st. $15 \cdot \beta \equiv 1 \pmod{176}$. The Euclidean Alg. yields that $\beta = \dots$.

[d*] In let x be the rational number $0.\overline{216}$. Write $x = \frac{p}{q}$ for co-prime posints $p = \dots$, $q = \dots$.
[Hint: Look at the hint after (4.29).]

[e*] Let $\alpha := \sqrt{3} + \sqrt{7}$. Redoing the computation of class, $x^4 + \dots + x + \dots$ is a quartic intpoly having α as a root.

Typed essay questions. Recall that every “**if**” must be matched by a “**then**”.

D2: Define an open and half-open interval $U := (0, 1)$ and $H := (0, 1]$. Give, with proof, an *explicit bijection* $g: U \leftrightarrow H$ of the form

$$g(x) := \begin{cases} \dots, & \text{if } x \in S; \\ \dots, & \text{if } x \in \dots; \end{cases}$$

where the denumerable subset $S := \left\{ \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots \right\}$ is a “Cantor’s Hotel” inside of U . For your g , what is $g\left(\frac{2}{3}\right) = \dots$? Now use a full sheet of paper to make a large labeled **accurate graph** of g . [Hint: Your g will necessarily be discontinuous.]

D3: Here A, B, C, D, E are sets. Let C^D be the set of maps $f: D \rightarrow C$. (The exponent is the Domain.) Give, with proof, an *explicit bijection*

$$\Phi: A^{D \times E} \rightarrow [A^D]^E.$$

D4: Carefully write a formal proof that there exist *irrational* positive reals w, z so that w^z is *rational*, as follows: Let

$$S := \sqrt{7}, \quad T := \sqrt{2} \quad \text{and} \quad P := S^T.$$

Argue that either S^T is such an example, or P^T is.

End of Home-D

D1: _____ 150pts

D2: _____ 70pts

D3: _____ 70pts

D4: _____ 70pts

Total: _____ 360pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).* _____ *Name/Signature/Ord*

Ord:

Ord:

Ord:
