

Staple!

Moda
MAA4227 MAA5229**Home-D**Prof. JLF King
Touch: 6May2016

*Carefully TYPE, double-or-triple-spaced, grammatical essays solving the three problems. This is due at **BoC on Friday, 11Feb2011**.*

Please follow the CHECKLIST on our Teaching page.

Definitions. Say that two integers p and q (not both zero) are **relatively prime**, written $p \perp q$, if $\text{Gcd}(p, q)$ is 1. A rational $\frac{p}{q}$ is in **LCTerms** (lowest common terms) if $p, q \in \mathbb{Z}_+$ with $q > 0$, and $p \perp q$.

A rational number x is a **dyadic rational** if, in LCTerms, it is $p/2^n$, with $p \in \mathbb{Z}$ and n a natnum. Thus each integer k is dyadic, since $k = k/2^0$. Also $-\frac{17}{32}$ and $\frac{5}{10}$ are dyadic rationals, but $\frac{1}{10}$ is not, and neither is π nor $\sqrt{32}$. Use **cty** and **discty** to abbreviate “continuity” and “discontinuity”.

Suppose that B is a set of reals (such as an interval) and we have a function $f: B \rightarrow \mathbb{R}$. Let $\text{Cty}(f)$ denote the set of $x \in B$ at which f is continuous. Let $\text{DisCty}(f)$ denote the set of $x \in B$ at which f is discontinuous.

For a set $S \subset \mathbb{R}$, let $\mathbf{1}_S$ denote the “**indicator function** of S ”: For $x \in \mathbb{R} \setminus S$, then, $\mathbf{1}_S(x) := 0$. And $\mathbf{1}_S(x) := 1$, for x in S .

D1: Let $\mathbb{D} \subset \mathbb{Q}$ be the set of **dyadic rationals**. Define the **mountain function** $M: \mathbb{R} \rightarrow \mathbb{R}$ by:

$$M(x) := \begin{cases} \frac{1}{q} & \text{if } x \in \mathbb{D} \text{ and } x = \frac{p}{q} \text{ in LCTerms;} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{D}. \end{cases}.$$

Thus $M(0) = 1$ and $M(\frac{-6}{64}) = \frac{1}{32}$ and $M(\frac{1}{3}) = 0$ and $M(\pi) = 0$.

Prove that M is discontinuous at x IFF x is a dyadic rational. In particular, for each dyadic P , give a “**witness** of discty of $M()$ at P ”. I.e, give a *particular* positive number $\varepsilon := \text{Formula}(P)$ and sequence $\mathbf{x} := \text{Formula}(P)$, such that

$$\forall n: |M(x_n) - M(P)| \geq \varepsilon,$$

yet $\lim(\mathbf{x})$ equals P .

D2: Prove that the mountain fnc is R.I on $[0, 1]$, with $\int_0^1 M = 0$, by: Given $\varepsilon > 0$, produce (with rigorous proof) a $\delta > 0$ so that each pptn \mathbf{P} of $[0, 1]$ with $\text{Mesh}(\mathbf{P}) < \delta$ satisfies that $\text{RS}^M(\mathbf{P}) < \varepsilon$.

D3: If $g: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable with $g'(3) = 7$, then g is strictly-incr on some open interval about 3. T F

End of Home-D

D1: _____ 95pts

D2: _____ 65pts

D3: _____ 45pts

Total: _____ 205pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague). Name/Signature/Ord*

..... Ord: _____

..... Ord: _____