

Howdy. Exam is due by **4PM, Friday, 27 April**, slid **completely under** my office door, Little Hall 402.

Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

D1: Show no work.

a The seq. $\vec{g} := (g_n)_{n=-\infty}^{\infty}$ is defined by recurrence

$$g_{n+2} = 5g_{n+1} + -3g_n$$

and initial conditions $g_0 := -1$ and $g_1 := 2$. So its n^{th} term is $g_n = C_1 \cdot \mu^n + C_2 \cdot \nu^n$, where $\mu < \nu$ are real, and

$$C_1 = \text{_____}, \mu = \text{_____},$$

$$C_2 = \text{_____} \quad \text{and} \quad \nu = \text{_____}.$$

[Hint: The corresponding matrix is $G := \begin{bmatrix} 5 & -3 \\ 1 & 0 \end{bmatrix}$. And μ, ν are its eigenvalues.]

b Let A be the 3×3 symmetric real matrix of real quadratic-form

$$7x_1^2 + 16x_1x_2 + 3x_2^2 - 16x_2x_3 - x_3^2.$$

Its eigenvalues are $-9, 3, 15$. Compute an orthogonal matrix U whose change-of-var $x = Uy$ transforms $x^T Ax$ into a quadratic-form with no mixed term.

$$U := \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}.$$

And the new quadratic-form is

$$Q(y) := \text{_____}.$$

Essay questions: On your own sheets of paper, type solns using complete sentences, explaining about HOW you solved each problem. Each essay starts a new page.

D2: Let $M := \begin{bmatrix} -2 & -6 & -1 & 5 & 9 \\ 3 & 9 & 1 & -7 & -16 \end{bmatrix}$. Then $\text{rref}(M)$ is
(SNW!)

$$R := \begin{bmatrix} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \end{bmatrix}.$$

I For subspace $V := \text{Nul}(M)$, use back-substitution, and scaling, to produce an *integer basis*

$$v_1 := \text{_____}, v_2 := \text{_____}$$

$$v_3 := \text{_____}.$$

(SNW!)

II

Show the steps of Gram-Schmidt to compute an orthogonal integer basis for V :

$$b_1 := \text{_____}, b_2 := \text{_____},$$

$$b_3 := \text{_____}.$$

Arrange that the Gcd of the entries in each vector is 1, and that the first non-zero value is positive. (Do not show computation of inner-products.)

D3: Observe that $K := \frac{1}{25} \begin{bmatrix} 39 & -48i & -15 \\ 48i & 11 & 20i \\ -15 & -20i & -25 \end{bmatrix}$ is self-adjoint. Its char-poly, $g(x) = x^3 - x^2 - 6x$, is necessarily real. Its (nec. real) evals $\alpha_1 \leq \alpha_2 \leq \alpha_3$ are

$$\alpha_1 = \text{_____}, \alpha_2 = \text{_____}, \alpha_3 = \text{_____}.$$

i

Show the spectral decomp $K = \sum_{j=1}^3 \alpha_j u_j u_j^*$. I.e

$$u_1 = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}, \quad u_2 = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}, \quad u_3 = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}.$$

(Put a multiplier in front of each bracket, so as to avoid fractions inside the brackets.)

ii

Compute the 3×3 matrix $P_1 := u_1 u_1^*$. Give a convincing argument that its LH-action **is** indeed ortho-projection on $\text{Spn}(u_1)$.

D1: _____ 85pts

D2: _____ 145pts

D3: _____ 145pts

Total: _____ 375pts

Print name _____ Ord: _____

Signature: _____

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*