

OYOP: Your 2 essay(s) must be TYPESET, and Double or Triple spaced. Use the *Print/Revise* cycle to produce good, well thought out, essays. Start each essay on a *new* sheet of paper. Do not restate the problem; just solve it.

Due: **By noon, on Friday, 27Apr2012**, slid *completely* under my office door. Then please email me.

D1: A *boomerang* is a non-convex quadrilateral; call its $[>\pi]$ interior-angle “thick”. Conversely, a quadrilateral with each angle $\leq \pi$ (a “thin” angle) is a *kite*. A dissection of a polygon \mathbf{P} into *finitely many* quadrilaterals is a “*quadratiling* of \mathbf{P} ”. [Tiles in a quadratiling *need not* be congruent to each other.]

1: Boom-Kite Theorem. *Each quadratiling, \mathcal{T} , of a convex polygon \mathbf{P} must use at least one kite.* \diamond

Useful concepts. Let V_X and V_I denote the number of external/internal \mathcal{T} -vertices. (So \mathbf{P} is an V_X -gon.) Let K and B be the number of kites/boomerangs in \mathcal{T} . (So $N := |\mathcal{T}| = K+B$.) Examine relations among V_X, V_I, K and B . Recall: “*I always ask that you do more than what I ask you to do.*” You may want $E = E(\mathcal{T})$, the number of edges in the tiling. \square

i For a quadratiled \mathbf{P} : Prove that V_X is even. [Hint: Sum the interior-angles of the \mathcal{T} -quadrilaterals in two ways.]

ii For a quadratiled convex \mathbf{P} : Prove that $K \geq 1$. Go further: STATE, then PROVE, a stronger, quantitative, thm.

iii A *1penta-tiling* of a polygon, \mathbf{Q} , uses 1 pentagon, and remaining tiles are quadrilaterals.

2: Possibly Erroneous Statement. *Each 1penta-tiling, \mathcal{F} , of a convex polygon \mathbf{Q} must have at least one convex tile.* \diamond

Analyse your proof of (ii), then provide a proof or a CEX to the “PES”.

Note. Use $\mathbf{0} = (0, 0) = [0]$ for the zero-vector. Use *ITOf* for “in terms of”.

D2: Uncle Euclid inscribed his soln to the Boomerang Problem on a crystal boomerang, which he hid. His testament contained instructions designed so that only a talented Geometer could find the boomerang:

Climb the Platonic Plateau and stand at the majestic olive tree, τ . Walk to the column-of-Granite, Γ , counting your paces. Turn right 90° , walk the same number of paces, and hammer into the ground a granite spike, g .

Return to the tree. Stride to the column-of-Obsidian, Ω , counting your paces. Turn left 90° , walk this number of

paces, and hammer into the ground an obsidian spike, ω . The boomerang will be found halfway between the spikes.

You climb the plateau, see the two columns, but the Olive Tree, τ , has rotted away. Nonetheless, you find the crystal boomerang. *How?*

a The spikes, $g(\tau)$ and $\omega(\tau)$, are functions of the (unknown) vector τ . Compute the matrix

$\mathbf{B} = \begin{bmatrix} \text{.....} & \text{.....} \\ \text{.....} & \text{.....} \end{bmatrix}$ so that $\mathbf{B}\Gamma = g(\mathbf{0})$. And matrix

$\mathbf{C} = \begin{bmatrix} \text{.....} & \text{.....} \\ \text{.....} & \text{.....} \end{bmatrix}$ so that $\mathbf{C}\Omega = \omega(\mathbf{0})$.

b ITOf τ, \mathbf{B}, Γ , and vector addition/subtraction and matrix multiplication, $g(\tau) = \text{.....}$. ITOf τ, \mathbf{C} and Ω , our $\omega(\tau) = \text{.....}$.

c The boomerang is at $\frac{1}{2}[g(\tau) + \omega(\tau)]$, which simplifies to , ITOf $\Gamma, \Omega, \mathbf{B}, \mathbf{C}$, but no τ .

d Coordinatizing the plateau, we find that $\Gamma = (3, 9)$ and $\Omega = (4, 2)$. So Boomerang = $(\text{.....}, \text{.....})$.

End of Individual-D

D1: _____ 125pts

D2: _____ 95pts

Total: _____ 220pts

Please PRINT your *name* and *ordinal*. Ta:

Ord: _____

HONOR CODE: *“I have neither requested nor received help on this exam other than from my professor.”*

Signature: _____