



Staple!

Abstract Algebra  
MAS4301 3175

Home-D

Prof. JLF King  
Tuesday, 08Apr

**Hi.** Exam is due **4PM, Tuesday, 15Apr2008**, slid under my office door, LIT402. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.. Fill-in **all** blanks (*handwriting; don't bother to type*) on this sheet **including** the blanks for the essays!

**D1:** Show no work.

a

Let  $\Gamma$  be the  $\text{TTT}$ -aut group of  $4 \times 4$  TicTacToe, and let  $\mathbb{T}$  be the set of 10  $\text{TTT}$ s on which  $\Gamma$  acts. Let  $U$  denote the upper (horizontal)  $\text{TTT}$  and let  $L$  denote the upper-left to lower-right  $\text{TTT}$ . The Orb-Stab says

$$|\text{Stab}_{\Gamma}(U)| = \text{_____} \quad \text{and} \quad |\text{Stab}_{\Gamma}(L)| = \text{_____}.$$

List  $\text{Stab}_{\Gamma}(U) \cap \{t, s, f, r\}$ :  
\_\_\_\_\_

b

Perms  $\alpha, \beta \in S_6$  have sigs  $[2^1, 1^4]$  and  $[3^2]$ , resp.. So  $|\mathcal{C}(\alpha)| = \text{_____}$ , and  $|\mathcal{C}(\beta)| = \text{_____}$ .

c

Set  $G := (\mathbb{Z}_{24}, +)$  and  $H := \langle 8 \rangle_G$ . In the quotient group  $Q := \frac{G}{H}$ , then,  $\text{Ord}_Q(14 + H) = \text{_____}$ .

d

#26<sup>P</sup>191.  $G/H \cong \text{Circle}$ :  $\mathbb{Z}_2 \times \mathbb{Z}_2$     $\mathbb{Z}_4$    DNE.

e

#10<sup>P</sup>255. In  $\mathbb{Z}_7$ :  
\_\_\_\_\_

*Essay questions: Fill-in all blanks.*

**D2:** Suppose  $Z(G)$  is finite and odd, where  $G$  is a (possibly infinite) group. Prove that  $G$  has *no* order-2 *normal* subgroup.

**D3:** A **PB** (pegboard) is  $\mathbf{B}_{\vec{L}} := [0..L_1] \times \dots \times [0..L_D]$  or, more generally, a connected subset  $\mathbf{B} \subset \mathbb{Z}^{D \times D}$ . Some cells are occupied by pegs. A jump goes from  $\bullet\bullet\circ$  to  $\circ\circ\bullet$ , and can be applied in all of the  $2D$  directions. A **psn** (position) is a map  $\Lambda: \mathbf{B} \rightarrow \{\bullet, \circ\}$ . Write  $\Lambda \sim \Lambda'$  if a single jump changes  $\Lambda$  to psn  $\Lambda'$ . Write  $\Lambda \rightsquigarrow \Lambda'$  if position  $\Lambda$  can go to  $\Lambda'$  in a finite sequence (possibly none) of jumps. Use  $\mathbf{P} := \{\text{Set of positions}\}$ ; so  $|\mathbf{P}| = 2^{|\mathbf{B}|}$ .

For a cell  $\alpha \in \mathbf{B}$ , use  $\alpha^\bullet$  for the psn with  $\alpha$  occupied and all other cells empty. (And  $\alpha^\circ$  has  $\alpha$  empty, with all other cells occupied. So  $\alpha^\bullet, \alpha^\circ \in \mathbf{P}$ .) For cells  $\alpha, \beta$ , write  $\alpha \gg \beta$  (" $\alpha$  chevron  $\beta$ ") if  $\alpha^\circ \rightsquigarrow \beta^\bullet$ . Say that  $\alpha$  is **blocked** (w.r.t  $\mathbf{B}$ ) if there is no cell  $\beta \in \mathbf{B}$  with  $\alpha \gg \beta$ .

i

(Use  $V$  for the Klein-4-gp.) Let  $\mathcal{K}: \mathbb{Z}^{D \times D} \rightarrow V \times \dots \times V$  ( $2^{D-1}$  copies) denote the Klein invariant. On board  $\mathbb{Z}^{D \times D}$ , there are many  $\mathcal{K}$ -equiv-classes. Describe them; in  $\dim=2$ , draw a nice picture of them. Define  $\mathcal{K}$  on finite positions by  $\mathcal{K}(\Lambda) := \prod_{\alpha \in \Lambda} \mathcal{K}(\alpha)$ .

For cells, write  $\alpha \overset{\mathcal{K}}{\gg} \beta$  if  $\mathcal{K}(\alpha^\circ) = \mathcal{K}(\beta^\bullet)$ . So a cell  $\alpha$  is  **$\mathcal{K}$ -blocked** (w.r.t  $\mathbf{B}$ ) if there is no  $\beta$  in  $\mathbf{B}$  with  $\alpha \overset{\mathcal{K}}{\gg} \beta$ . What are the  $\mathcal{K}$ -blocked cells in  $\mathbf{B}_{\vec{L}}$ ? In  ${}^3+{}^7$ ? In  ${}^W+{}^H$ ? ( $\mathbf{B}$  has form "+" of two crossing rectangles.)

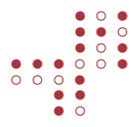
ii

Is  $\gg$  symmetric?; is  $\gg$   $\mathcal{K}$ ? Is  $\gg$  transitive?; is  $\gg$   $\mathcal{K}$ ? How do the answers depend on the board  $\mathbf{B}$ ?

Call the righthand psn "Blob". The board,  $\mathbf{B}$ , is enclosed by the decagon of Blob's edges.

Prove that Blob is blocked. [Hint: Use  $\mathcal{K}()$  together with hop-equivalence.]

Can Blob be jump-reduced to a single peg on the board, when allowing jumps on all of  $\mathbb{Z} \times \mathbb{Z}$ ?



iv

On  $\mathbf{B} := 4 \times 4$ , is  $\gg$  the same as  $\gg$ ? In  $\mathbb{Z}^{D \times D}$ , two cells are **hop-equivalent** if a peg could jump from one cell to the other, assuming that a peg to-be-jumped-over materialized when needed. On  $\mathbb{Z}^{D \times D}$  there are many hop-equivalence-classes. How can you combine hop-equivalence and  $\mathcal{K}()$  to find if  $\alpha \gg \beta$ ?

v

Generalize everything. E.g, a **coal**(escence) moves  $\bullet\bullet\circ$  to  $\circ\circ\bullet$ . Not only is  $\mathcal{K}()$  jump-invariant, it is also coal-invariant! On  $\mathbf{B} := 4 \times 4$ , what is  $\overset{\text{coal}}{\gg}$ ?  $\overset{\text{coal}}{\gg}$ ?

vi

Draw a Klein  $\{a, b, c\}$ -labeling of the vertices of a triangular tesselation (equiv., the regions of a hexagonal board). What are the  $\mathcal{K}$ -blocked cells on  $T_4$ ? What can you say about  $T_n$ ? (Triangle with  $n$  cells on each edge; has  $\frac{(n+1)n}{2}$  cells.)

End of Home-D

D1: \_\_\_\_\_ 125pts

D2: \_\_\_\_\_ 35pts

D3: \_\_\_\_\_ 115pts

Total: \_\_\_\_\_ 275pts

HONOR CODE: "I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)." \_\_\_\_\_

Name/Signature/Ord

\_\_\_\_\_

Ord: \_\_\_\_\_

Ord: \_\_\_\_\_

Ord: \_\_\_\_\_