

D1: Show no work. Fill-in each blank, and the appropriate letter for **True/False** questions.

a For $U \subset \mathbb{R}^3$, let (\mathbb{Y}) be stmt “If U is connected, then U is path-connected.” So: “When U is compact, then (\mathbb{Y}) ”: T F . “When U is open, then (\mathbb{Y}) ”: T F .

b Each fnc $f, g: \mathbb{R}_+ \rightarrow \mathbb{R}_+$ is uniformly-continuous. Then: “Product $f \cdot g$ is unif-cts”: T F . “Composition $f \circ g$ is unif-cts”: T F . “The reciprocal $1/f$ is unif-cts”: T F .

c Differentiable fncs $h_n: \mathbb{R} \rightarrow \mathbb{R}$ have $|h'_1()| \leq 1$, $|h'_2()| \leq 2$, $|h'_3()| \leq 3, \dots$. Suppose we have *uniform convergence* $h_n \xrightarrow{\text{unif}} G$. Then “ G is unif-cts”: T F .

d $f(t) := \int_{\exp(t)}^{\sin(t^3)} \sin(\sin(x)) \, dx$, a calc1 oriented-integral.

Then $f'(t) = \dots$

[Hint: Chain rule and Fund. Thm of Calculus.]

Essay questions: Please write each essay triple-spaced.

Each essay starts a new page.

D2: With $\mathbf{J} := [4, 8]$, suppose fncs $G, H: \mathbf{J} \rightarrow [-5, 3]$ are each RI. Give a detailed proof that their product $\varphi := G \cdot H$ is RI, by showing that for each $\varepsilon > 0$ there exists $\delta > 0$ so that each partition P which is δ -small has $\text{Osc}^\varphi(P) \leq 1000\varepsilon$.

D3: With $\mathbf{J} := [4, 5]$, suppose each $h_n: \mathbf{J} \rightarrow [-2, 2]$ and $h_1 \geq h_2 \geq \dots$; thus the pointwise limit $g := \lim_{n \rightarrow \infty} h_n$ exists. Provide a detailed proof or CEX to: “If each h_n is Riemann integrable, then so is g .” T F

End of Class-D

D1: _____ 85pts

D2: _____ 85pts

D3: _____ 65pts

Total: _____ 235pts