

D1: Show no work. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a Let \mathcal{L} be this list of 8 symbols: $A, G, R, T, U, \alpha, \beta, \omega$.

In matrix-eqn $\begin{bmatrix} R & U & G \\ T & A & \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \\ \omega \end{bmatrix}$, Cramer's Rule writes x_3 as ratio $f(\mathcal{L})/q(\mathcal{L})$ of polynomials

$f(\mathcal{L}) =$
.....
and $q(\mathcal{L}) =$
.....

b Let $S: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ rotate the plane CCW by 60° , then vertically stretch by a factor of 8. W.r.t the std basis,

$$[S]_{\varepsilon}^{\varepsilon} = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}.$$

c Every 3×3 matrix M has $\text{Det}(5M) = \alpha \cdot \text{Det}(M)$, where α is

circle
5⁹ 5³ 5² 5 3⁵ 9⁵ 3²⁵ None-of-these

d The seq. $\vec{g} := (g_n)_{n=-\infty}^{\infty}$ is defined by recurrence

$$g_{n+2} = 4g_{n+1} + 5g_n$$

and initial conditions $g_0 := 11$ and $g_1 := 7$. So its n^{th} term is $g_n = C_1 \cdot \mu^n + C_2 \cdot \nu^n$, where $\mu \leq \nu$ are real, and

$C_1 =$
....., $\mu =$
.....

$C_2 =$
....., $\nu =$
.....

e Let $M(x) := \begin{bmatrix} 3x-2 & 7x^4-8 & 10 \\ 5 & 9x-2 & 2x-8 \\ 8x & x^5-2 & x^3+2 \end{bmatrix}$.

The high-order term of polynomial $\text{Det}(M(x))$ is Cx^N , where $C =$
..... and $N =$
.....

f Let $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ by reflecting the plane across the θ -angle line. [Picture on blackboard.] Then $M := [T]_{\varepsilon}^{\varepsilon}$ equals

$\begin{bmatrix} \cos(\alpha) & \cos(\beta) \\ \sin(\alpha) & \sin(\beta) \end{bmatrix}$, where $\alpha =$
..... and
 $\beta =$
..... Also, $\text{Det}(M) =$
.....

[Hint: Where does T send e_1 ? And where is $T(e_2)$?]

g

Here, matrices B, C, X, Y range over $\text{MAT}_{2 \times 2}(\mathbb{R})$.

1

If 3 is an B -eval, then 9 is an B^2 -eval. T F

2

Suppose $w \neq 0$ is an evec for B^2 . Then w is an evec for B . T F

3

If $B \xrightarrow{\text{sim}} C$ then $[B^2 + B^3] \xrightarrow{\text{sim}} [C^2 + C^3]$. T F

4

If $B \xrightarrow{\text{sim}} C$ and $X \xrightarrow{\text{sim}} Y$ then $BX \xrightarrow{\text{sim}} CY$. T F

D2: OYOP: Essay: *Write on every third line, so that I can easily write between the lines.*

DEFN: A collection $\mathcal{C} := \{U_1, \dots, U_K\}$ of subspaces is **linearly-independent** if: ...

THM: For linear-transformation $T: V \rightarrow V$, eigenspaces W_1, \dots, W_8 have (distinct) eigenvalues β_1, \dots, β_8 . Prove that $\mathcal{D} := \{W_1, \dots, W_8\}$ is linearly-independent.

End of Class-D

D1: _____ 160pts

D2: _____ 65pts

Total: _____ 225pts

Please PRINT your **name** and **ordinal**. Ta:

.....
.....

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature: _____