

Note. Below, \mathbf{V} and \mathbf{W} are VSes, and $T: \mathbf{V} \rightarrow \mathbf{V}$ and $S: \mathbf{W} \rightarrow \mathbf{W}$ are linear.

D1: a $\mu = \dots \leq \nu = \dots$

are the eigenvalues of $G := \begin{bmatrix} -3 & 21 \\ -2 & 10 \end{bmatrix}$. Let $D := \begin{bmatrix} \mu & 0 \\ 0 & \nu \end{bmatrix}$.

Then $D = U^{-1}GU$ where the 2×2 integer matrix U is

$$U = \left[\begin{array}{c|c} & \\ \hline & \\ & \end{array} \right].$$

b Apply Cramer's Rule to write x_1 as a *rational function*,

$x_1 = \dots$, of variables

$$A, G, R, T, U, \alpha, \beta, \gamma, \text{ where } \begin{bmatrix} R & U & G \\ 0 & A & 0 \\ 0 & 0 & T \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}.$$

c The point $P := (5, -2)$, in the plane, has orthogonal projection $Q := (\dots, \dots)$ on \mathbb{L} , the line $y = 1 + 3x$. [Check that $Q \in \mathbb{L}$ and $[P - Q] \perp \mathbb{L}$.]

Essay questions. Start each question on a new sheet of paper. Do Not restate the problem. Write your sentences on every third line, so that I can easily write between the lines.

D2: On $\mathbf{V} := \mathbb{R}^9$, these T -eigenvecs $\mathbf{u}_1, \dots, \mathbf{u}_5$ have *distinct* evals $\alpha_1, \dots, \alpha_5$. OYOSOP, prove that collection $\mathcal{C} := \{\mathbf{u}_1, \dots, \mathbf{u}_5\}$ is linearly-indep. DNRTP!

D3: Let $B := \begin{bmatrix} 1 & 2 & 1 & 0 & 1 \\ 3 & 6 & 0 & -3 & 0 \end{bmatrix}$. Then $R := RREF(B)$ is [show no work, here]

$$R = \left[\begin{array}{c|c|c|c|c} & & & & \\ \hline & & & & \\ \hline & & & & \end{array} \right].$$

I For subspace $\mathbf{V} := \text{Nul}(B)$, use back-substitution, and *scaling*, to produce an integer basis

$$\mathbf{v}_1 := (\dots, \dots, \dots, \dots, \dots) \quad \mathbf{v}_2 := (\dots, \dots, \dots, \dots, \dots)$$

$$\mathbf{v}_3 := (\dots, \dots, \dots, \dots, \dots). \quad [\text{Show No Work, here!}]$$

[Note: Only use as many as the dimension of \mathbf{V} .]

II

Using sentences and pictures, explain & show the Gram-Schmidt algorithm computing an **orthogonal integer-basis** for \mathbf{V} :

$$\mathbf{b}_1 := (\dots, \dots, \dots, \dots, \dots), \quad \mathbf{b}_2 := (\dots, \dots, \dots, \dots, \dots)$$

$$\mathbf{b}_3 := (\dots, \dots, \dots, \dots, \dots). \quad [\text{Entries are integers}]$$

Arrange that the Gcd of the entries in each vector is 1, and that the first non-zero value is positive. (Do not show computation of inner-products.)

End of Class-D

D1: _____ 90pts

D2: _____ 110pts

D3: _____ 90pts

Total: _____ 290pts

Please PRINT your name and ordinal. Ta:

Ord: _____

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature: _____