

Staple!

Differential Eqns
MAP2302

D-Class

Prof. JLF King
Touch: 17Oct2017

Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed. **Write expressions unambiguously** e.g., “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with negative signs!)

Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\dots$

Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g., write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$.

For the Laplace transform of f , use $\mathcal{L}(f) = \hat{f}$.

D1: Show no work.

a With $f(x) := x^2$ and $g(x) := e^{3x}$, then
 $[f * g](t) =$.

.....

b Fncs $x(t)$ and $y(t)$ satisfy this system of DEs,

$$\begin{aligned} x' + 8x + 6y &= 0, \\ y' - 9x - 7y &= 0. \end{aligned}$$

It can be written as $\mathbf{Y}' = \mathbf{M} \cdot \mathbf{Y}$,

where $\mathbf{Y} := \begin{bmatrix} x \\ y \end{bmatrix}$ and \mathbf{M} is matrix

.....

Characteristic poly of \mathbf{M} is $\varphi_{\mathbf{M}}(z) =$

.....

A soln has $x(t)$ a linear combination of $e^{\alpha t}$ and $e^{\beta t}$ for numbers $\alpha =$ and $\beta =$.

.....

c Matrices $\mathbf{U}, \mathbf{G}, \mathbf{R}$ are 3×3 , with \mathbf{U} invertible and \mathbf{R} nilpotent. [Use \mathbf{I} for the 3×3 identity matrix.]

Matrix $\mathbf{U}\mathbf{R}\mathbf{U}^{-1}$ is nilpotent: $AT \quad AF \quad Nei$

Each entry of $e^{t\mathbf{R}}$ is a polynomial: $AT \quad AF \quad Nei$

Matrix $e^{\mathbf{R}}$ is nilpotent: $AT \quad AF \quad Nei$

\mathbf{R}^2 is the zero-matrix: $AT \quad AF \quad Nei$

Matrix $e^{[\mathbf{G}+\mathbf{I}]t}$ equals $e^{\mathbf{G}} \cdot e^{\mathbf{G}^2}$: $AT \quad AF \quad Nei$

Matrix $e^{[\mathbf{G}^2]t}$ equals $[e^{\mathbf{G}}]^2$: $AT \quad AF \quad Nei$

d Let $\mathbf{A} := \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$, $\mathbf{M} := \begin{bmatrix} -1 & 2 \\ -1 & 3 \end{bmatrix}$ and $\mathbf{R} := \mathbf{M}\mathbf{A}\mathbf{M}^{-1}$. Then the $(2, 2)$ entry of $e^{\mathbf{R}t}$ is .

.....

Suppose $y(0) = -2$, $y'(0) = 5$, $y''(0) = 2$. Then $\mathcal{L}(y^{(3)} + y^{(2)} + 3y)(s)$ equals $[[B(s) \cdot \hat{y}(s)] + C(s)]$ for **polynomials**

$C(s) =$

.....

and $B(s) =$

.....

OYOP: In grammatical English **sentences**, write your essay on every **third** line (usually), so that I can easily write between the lines.

D2: Give a *careful* argument that $\mathcal{L}(f * g)$ equals $\hat{f} \cdot \hat{g}$.

End of D-Class

D1: _____ 125pts

D2: _____ 70pts

Total: _____ 195pts

Please PRINT your name and ordinal. Ta:

Ord: _____

.....

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor.*

Signature: _____

.....