

D1: Show no work. Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0 \neq$ *Empty-word*.

A perm of cycle-signature $[7^3, 4^2, 1^8]$ has three 7-cycles, two 4-cycles, and eight fixed-pts. Use **CN** for “cycle notation”, and **CCN** for “canonical CN”.

a Perm $\beta \in \mathbb{S}_{15}$ has sig $[5^3]$. It has $\underline{\dots}$ many sqroots with sig $[5^3]$, and $\underline{\dots}$ with sig $[10^1, 5^1]$.

b Perm $\pi := [6, 7, 8, 1, 3, 2, 4, 5]$ has $\text{Sgn}(\pi) = +1 -1$.

c In \mathbb{S}_{13} , the maximum possible order of an element is $\text{MaxOrd}(\mathbb{S}_{13}) = \text{LCM}(\underline{\dots}) = \underline{\dots}$.

End of Class-D

D1: $\underline{\dots}$ 85pts

D2: $\underline{\dots}$ 105pts

D3: $\underline{\dots}$ 75pts

Total: $\underline{\dots}$ 265pts

Please PRINT your **name** and **ordinal**. Ta:

Ord:
 $\underline{\dots}$

OYOP: *In grammatical English sentences, write your essays on every 2nd line (usually), so that I can easily write between the lines.*

D2: **i** For natnums N, K , define $\mathbf{c}(N, K)$, the “*signless Stirling number* of the first kind”.

ii Prove: THM: For posints $N \geq K$, recurrence

$$\mathbf{c}(N, K) = [N-1] \cdot \mathbf{c}(N-1, K) + \mathbf{c}(N-1, K-1)$$

holds.

iii Let $H_N(x) := \prod_{j=0}^{N-1} [x + j]$.

Prove: LEMMA: For each posint N ,

$$\sum_{k=0}^N \mathbf{c}(N, k) \cdot x^k = H_N(x).$$

HONOR CODE: “*I have neither requested nor received help on this exam other than from my professor.*”

Signature:

$\underline{\dots}$