

Hello. Write **DNE** if the object does not exist or the operation cannot be performed. NB: $\mathbf{DNE} \neq \{\} \neq 0 \neq \text{Empty-word.}$

Let F and R be the *flip* and *rotation* in the dihedral group \mathbb{D}_N , with $F^2=e$, $R^N=e$ and $RF=FR=e$. Use R^j and R^jF as the standard form of each element in \mathbb{D}_N .

D4: Show no work.

a The φ fnc, $\varphi(N) := \#\{k \in [1..N] \mid k \perp N\}$, is [named] after: Archimedes Euler Fermat Gallian Gauss Klein Lagrange. And $\varphi(363) =$ [.....], AsAPOfPrimePowers.

b [Circle] the one group which is *not* isomorphic to any of the others:

$\mathbb{Z}_2 \times \mathbb{Z}_6$ \mathbb{D}_6 $\mathbf{U}(13)$ $\mathbb{Z}_4 \times \mathbb{Z}_3$ $\mathbb{S}_3 \times \mathbb{Z}_2$.

The remaining four groups can be paired into two isomorphic pairs. Underline the cyclic pair.

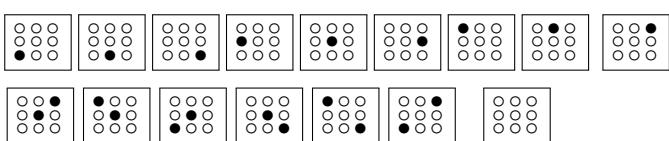
c With \mathbb{B} the $4 \times 4 \times 4$ Qubic board, let Γ be its III- automorphism group, which has 192 elements. Let $c, f \in \mathbb{B}$ be a center and face cell. Then **Orb-Stab** says

$|\text{Stab}_\Gamma(c)| =$ [.....] = [.....] and $|\text{Stab}_\Gamma(f)| =$ [.....] = [.....].

d The map $\psi: U(40) \rightarrow U(40)$ is a homomorphism with $\text{Ker}(\psi) = \{1, 9, 17, 33\}$ and $\psi(11) = 11$. Then $\psi^{-1}(11) = \{$ [.....] $\} \subset U(40) \subset [0..40)$.

e The four conjugacy-classes of \mathbb{D}_5 are: $\{e\}$,
[.....], [.....], [.....].

f This peg configuration [.....] is Klein-equivalent to which [position] in its 3×3 subsquare?:



Total: _____ 410pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor (or his colleague)."*
Name/Signature/Ord

Ord: _____