

Hello. Abbrevs: **WtSaCi** for “Write the Sentence and Complete it”. **G.E.O** for “Give (an) example of”. **ITOf** for “in terms of”. **st.** for “such that”

Use **nv-** for “non-void”, e.g. “consider a nv-closed set K ”. Use **MS** for “metric space”. Use **RI** for “Riemann Integrable” or “Riemann Integral”.

Use $\bar{\mathbb{R}}$ for $[-\infty, +\infty]$, the “extended reals”.

For each of the limit questions, write “ $+\infty$ ”, “ $-\infty$ ”, a real number, or *if none of these* “DNE”. In general Please write **DNE** in a blank *if* the described object does not exist or if the indicated operation cannot be performed.

D1: Show no work.

a Suppose $H: \mathbb{R} \rightarrow \mathbb{R}$ is cts. Then H is *uniformly continuous*. AT AF Nei

If $F: \mathbb{R} \supset$ is diff’able, then F' is cts. AT AF Nei

If $F: \mathbb{R} \supset$ is diff’able, then F is cts. AT AF Nei

b Suppose unif-cts $h: \mathbb{R} \rightarrow \mathbb{R}$ is diff’able. Then $|h'|$ is uniformly-bounded. AT AF Nei

Suppose diff’able $f: [-3, 3] \rightarrow \mathbb{R}$ has $|f'| \leq 22$. Then f' is cts on $[-3, 3]$. AT AF Nei

c $\frac{d}{dx} \int_5^{\sin(x)} \sin(1/t) dt =$

d Let $F(x) := \int_{x+7}^{x^3} \cos(\cos(t)) dt$. Consequently

$\frac{dF}{dx} =$

e $\lim_{x \searrow 0} [2 + 5x]^{1/x} =$

$\lim_{z \searrow 0} \frac{\sin(z) - z}{z^3} =$

f $\int_2^7 x \cdot 3^x dx =$

Note: IBParts. You may use $K := 1/\log(3)$ in your answer. An antideriv of 3^x is $K \cdot 3^x$.

g Let $H(x) := \cos(7x)$. Its fifth *Taylor polynomial* is $\sum_{n=0}^4 B_n x^n$, where $B_0 =$, $B_1 =$, $B_2 =$, $B_3 =$ and $B_4 =$

[N.B You may write $7^2, 7^3$ etc without multiplying out.]

h Define seq \vec{b} by $b_n := \frac{1}{n \cdot [n+1]}$. Get a closed-formula for $\sum_{j=8}^{2006} b_j =$ [Hint: Express

your answer as a difference of rationals. Can you view \vec{b} as the discrete deriv of \dots ?]

D2: α G.E.O a *differentiable* fnc f on \mathbb{R} , with f' **not** cts at 7:

$$f(x) := \begin{cases} \text{.....} & \text{if } x < 7 \\ \text{.....} & \text{if } x = 7 \\ \text{.....} & \text{if } x > 7 \end{cases}.$$

β For $S \subset \mathbb{R}$, use $\mathbf{1}_S$ for the *indicator fnc* of S : Graph $F(x) := 4 \cdot \mathbf{1}_{(-\infty, 7]}(x) + x \cdot \mathbf{1}_{[5, \infty)}(x)$.

Use a *full sheet of paper*, make the graph **LARGE** and **CL**.

Essays. On your own sheets of lined paper, give the following definitions or proofs. No “scratch work” accepted, only complete, grammatical, coherent sentences. Write **every 2nd** or **every 3rd** line.

D3: State the Cauchy Mean Value Theorem.

D4: Let $J := [3, 7]$. **WtSaCi:** A *pointed partition* (ppn) $P = (\vec{x}, \vec{Q})$ on J is....

Its **mesh**, $\text{Mesh}(P)$, is the number....

Given $f: J \rightarrow \mathbb{R}$, its **Riemann Sum** is $\text{RS}_f(P)$

A bnded fnc $h: J \rightarrow \mathbb{R}$ is **Riemann integrable** IFF....

D1: _____ 200pts

D2: _____ 75pts

D3: _____ 65pts

D4: _____ 85pts

Total: _____ 425pts

Print name _____ Ord: _____

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: _____