

D1: (Examples.) Show no work.

a Fnc $h(x) :=$ $\lfloor \frac{x}{2} \rfloor$ is a bounded continuous map $\mathbb{J} \rightarrow \mathbb{R}$ which is *not* uniformly-cts.

b Fnc $g(x) :=$ $\lfloor \frac{x}{2} \rfloor$ is a bounded uniformly-cts map $\mathbb{J} \rightarrow \mathbb{R}$ which is *not* Lipschitz cts.

c P.L fncs f_n converge ptwise, but not uniformly, to $[1+Id]_{\mathbb{P}}$ where the cutpoint and height tuples of f_n are $\lfloor \dots \rfloor$ and $\bar{h} := (3, \lfloor \dots \rfloor, \lfloor \dots \rfloor, 6)$.

d Use α and σ for the arctan & stereogr. metrics. With $b_n :=$ $\lfloor \dots \rfloor$, seq $\bar{b} \subset \mathbb{R}$ is α -Cauchy but not σ -Cauchy. With $c_n :=$ $\lfloor \dots \rfloor$, sequence $\bar{c} \subset \mathbb{R}$ is σ -Cauchy but not α -Cauchy.

e Define $\Omega :=$ $\lfloor \dots \rfloor \subset \mathbb{R}$ st. the Ω -closed ball $C := \Omega\text{-CldBal}_5(0) =$ $\lfloor \dots \rfloor$ satisfies $C \supsetneq \text{Itr}_\Omega(C) =$ $\lfloor \dots \rfloor \supsetneq \Omega\text{-Bal}_5(0) =$ $\lfloor \dots \rfloor$.

f Define $X :=$ $\lfloor \dots \rfloor \subset \mathbb{R}$ st. the X -open ball $B := X\text{-Bal}_3(0) =$ $\lfloor \dots \rfloor$ satisfies $B \subsetneq \text{Cl}_X(B) =$ $\lfloor \dots \rfloor \subsetneq X\text{-CldBal}_3(0) =$ $\lfloor \dots \rfloor$.

g Sets $A :=$ $\lfloor \dots \rfloor$ and $B :=$ $\lfloor \dots \rfloor$ have $\partial_{\mathbb{R}}(A) =$ $\lfloor \dots \rfloor$ and $\partial_{\mathbb{R}}(B) =$ $\lfloor \dots \rfloor$. Moreover, $= \partial_{\mathbb{R}}(A) \cap \partial_{\mathbb{R}}(B) \subsetneq \partial_{\mathbb{R}}(A \cap B) =$ $\lfloor \dots \rfloor$.

h Sets $C :=$ $\lfloor \dots \rfloor$ and $D :=$ $\lfloor \dots \rfloor$ have $\partial_{\mathbb{R}}(C) =$ $\lfloor \dots \rfloor$ and $\partial_{\mathbb{R}}(D) =$ $\lfloor \dots \rfloor$. Further, $= \partial_{\mathbb{R}}(C) \cap \partial_{\mathbb{R}}(D) \subsetneq \partial_{\mathbb{R}}(C \cap D) =$ $\lfloor \dots \rfloor$.

i Let $S := \{q \in \mathbb{Q}_+ \mid 5 \leq q^2 < 9\}$. Then: $\text{Cl}_{\mathbb{R}}(S) =$ $\lfloor \dots \rfloor$. $\text{Itr}_{\mathbb{R}}(S) =$ $\lfloor \dots \rfloor$. $\text{Cl}_{\mathbb{Q}}(S) =$ $\lfloor \dots \rfloor$. $\text{Itr}_{\mathbb{Q}}(S) =$ $\lfloor \dots \rfloor$.

j Let $S := \{q \in \mathbb{Q}_+ \mid 5 \leq q^2 < 9\}$. Then:

$\partial_{\mathbb{R}}(S) =$ $\lfloor \dots \rfloor$. $\partial_{\mathbb{Q}}(S) =$ $\lfloor \dots \rfloor$.

D2: (Computations.) Show no work.

a Let $\mathbf{v} := (3, -3, 2, 1, 1) \in \mathbb{R}^5$; so $\|\mathbf{v}\|_3 =$ $\lfloor \dots \rfloor$.

b Using the stereographic-metric on \mathbb{R} :

$\sigma\text{-Diam}(\text{Primes}) =$ $\lfloor \dots \rfloor$.

c With $\alpha(\cdot, \cdot)$ the arctan metric on \mathbb{R} , the $\alpha\text{-Diam}(\text{PRIMES}) =$ $\lfloor \dots \rfloor$.

[Hint: No $\alpha()$ should appear in your ans. But arctan() can.]

d Fnc $\text{arctan} : \mathbb{R} \rightarrow (-\frac{\pi}{2}, \frac{\pi}{2})$ has Lipschitz constant $\frac{1}{\pi}$ $\frac{2}{\pi}$ 1 2 π circle DNE

e Let $f : \mathbb{R} \rightarrow \mathbb{R}$ by $f(x) := [3x - x^3] - 1$. Define restrictions $g := f|_{[-2,1]}$ and $h := f|_{[-3,3]}$. Then the sup-norm $\|g\|_{\text{sup}} =$ $\lfloor \dots \rfloor$ and $\|h\|_{\text{sup}} =$ $\lfloor \dots \rfloor$.

f [!] For $B \in \mathbb{R}_+$, the stereographic-distance $\sigma(B, \frac{1}{B}) =$ $\lfloor \dots \rfloor$.

g [!] Let $X := (-\infty, 2) \cup [5, +\infty)$. As a union of intervals, the punctured-ball $X\text{-PBal}_6(7) =$ $\lfloor \dots \rfloor$.

DA: (All of these True/False questions are new.) [!] We have a fixed MS (X, d) and subsets $B, C \subset X$ that share a common point $p \in B \cap C$.

[a] Suppose each of B and C is compact.

Then $B \cup C$ is compact. $T \quad F$

Then $B \cap C$ is compact. $T \quad F$

[b] Suppose each of B and C is path-connected.

Then $B \cup C$ is path-connected. $T \quad F$

Then $B \cap C$ is path-connected. $T \quad F$

[c] Suppose each of B and C is connected.

Then $B \cup C$ is connected. $T \quad F$

Then $B \cap C$ is connected. $T \quad F$

DB: (All of these are new.) [!]

[a] The map $x \mapsto \pi - x$ from $\mathbb{R}_\circlearrowleft$ is an *isometry*, when \mathbb{R} is equipped with the... Usual metric: $T \quad F$.
Stereographic-metric: $T \quad F$. Arctan-metric: $T \quad F$.

[b] In \mathbb{R}^3 , letting $p := (x, y, z)$:

$$\lim_{p \rightarrow \hat{0}} \frac{xy - z^2}{x^2 + y^2 + z^2} \text{ exists.} \quad T \quad F$$

Essay questions: Fill-in all blanks. For each question, carefully write a triple-spaced essay solving the problem.

D3: Let \mathbf{J} be the interval $(2, 6)$. Suppose functions $H_n \xrightarrow{\text{uniformly}} f$, where $f, H_n: \mathbf{J} \rightarrow \mathbb{R}$. If each H_n is uniformly-cts, prove that f is **uniformly-cts**.

D4: State and prove the Intermediate-value theorem.

D5: We have sequences $\vec{x}, \vec{y} \subset \mathbb{R}$ with $\lim(\vec{x}) = 6$ and $\lim(\vec{y}) = 2$. Letting $p_n := x_n/y_n$, give a rigorous ε -proof that $\lim(\vec{p}) = 3$.

(You may quote, without proof, this result: *If \vec{b} convergent, then \vec{b} is Cauchy. A fortiori, $\text{Diam}(\text{Range}(\vec{b})) < \infty$.*)

D6: In a normed-VS $(\mathbf{W}, \|\cdot\|)$, suppose we have a sequence $\vec{x} \in \mathbf{W}$ and a number $r \in [0, 1)$ such that

$\forall n \in \mathbb{Z}_+: \|x_n - x_{n+1}\| \leq r^n$. Prove that sequence \vec{x} is $\|\cdot\|$ -Cauchy.

D7: [!] Prove that the interval $\mathbf{J} := [3, 7]$ is connected.

D8: [!] State the Heine-Borel thm. State the Bolzano-Weierstrass thm.

D9: [ACT] [!] A MS (X, d) is *countable self-dense (CSD)* if there exists a *countable* subset $D \subset X$ which is X -dense, i.e $\text{Cl}_X(D) = X$. Prove, given a subset $\Omega \subset X$, that (Ω, d) is CSD.

[*Aside:* In general TSes this is false, but is easy in MSes.]