

D1: Show no work. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a Repeating decimal $7.45\overline{123}$ equals $\frac{n}{d}$, where posints $n \perp d$ are $n = \underline{\dots}$ and $d = \underline{\dots}$.

b $\mathcal{P}(\mathcal{P}(\{3, 4, 5, 6\}))$ has $\underline{\dots}$ many elements.

c To the interval $J := (-\frac{\pi}{2}, \frac{\pi}{2})$, define a bijection $g: (5, 6) \leftrightarrow J$ by $g(x) := \underline{\dots}$.

Using this g and a trigonometric fnc, define a bijection $h: (5, 6) \leftrightarrow \mathbb{R}$ by $h(x) := \underline{\dots}$.

d Each three sets Ω, B, C engender a natural bijection, $\Theta: \Omega^{B \times C} \hookrightarrow [\Omega^B]^C$, defined, for each $f \in \Omega^{B \times C}$, by

$\Theta(f) := \left[c \mapsto \left[\underline{\dots} \right] \right].$

Its inverse-map $\Upsilon: [\Omega^B]^C \hookrightarrow \Omega^{B \times C}$ has, for $g \in [\Omega^B]^C$, $\Upsilon(g) := \left[(b, c) \mapsto \left[\underline{\dots} \right] \right].$

e Mod $K := 50$, the recipr. $\langle \frac{1}{21} \rangle_K = \underline{\dots} \in [0..K]$.

[Hint: $\frac{1}{21} = \frac{1}{3} - \frac{1}{7}$] So $x = \underline{\dots} \in [0..K]$ solves $4 - 21x \equiv_K 1$.

f LBolt: $\text{GCD}(45, 63) = \underline{\dots} \cdot 45 + \underline{\dots} \cdot 63$.

So (LBolt again) $G := \text{GCD}(45, 63, 105) = \underline{\dots}$ and $\underline{\dots} \cdot 45 + \underline{\dots} \cdot 63 + \underline{\dots} \cdot 105 = G$.

Essay questions: For each question, carefully write a triple-spaced, grammatical, essay solving the problem.

D2: Let $L(n) := \frac{n}{n+1}$. And let $R(n) := \sum_{k=1}^n \frac{1}{k \cdot [k+1]}$. By induction on n , prove that $\forall n \in \mathbb{N}: L(n) = R(n)$. Explicitly prove the base case. Explicitly state the induction implication, then prove that it holds for each $n \in \mathbb{N}$.

D3: Prove that the map $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{Z}_+$, with $f(k, n) := 2^k \cdot [1 + 2n]$, is injective. Now prove that it is surjective.

D4: Let \mathcal{P}_∞ denote the collection of all infinite subsets of \mathbb{N} . Define a relation $\dot{\equiv}$ on \mathcal{P}_∞ by: $A \dot{\equiv} B$ IFF $A \cap B$ is infinite.

Either prove that $\dot{\equiv}$ is transitive, or else produce three explicit sets $A, B, C \in \mathcal{P}_\infty$ showing that $\dot{\equiv}$ is not transitive.

D5: Suppose \mathbf{J} is a set, and $\{B_i\}_{i \in \mathbf{J}}$ is a set-of-sets, with each $B_i \subset \mathbb{Z}_+$, and $[i \neq k] \Rightarrow B_i \neq B_k$. Each distinct index-pair $i, k \in \mathbf{J}$ has $B_i \cap B_k = \emptyset$. Construct, with proof, an injection $f: \mathbf{J} \hookrightarrow \mathbb{N}$, to conclude that \mathbf{J} is only countable.