

Please. Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g., write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$. Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\dots$. Write expressions unambiguously e.g., “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with **negative** signs!)

Abbrevs: **WtSaCi** for “Write the Sentence and Complete it”. **G.E.O** for “Give (an) example of”. **ITOf** for “in terms of”. **st.** for “such that”

Use **nv-** for “non-void”, e.g. “consider a nv-closed set K ”. Use **MS** for “metric space”. Use **RI** for “Riemann Integrable” or “Riemann Integral”.

Use $\bar{\mathbb{R}}$ for $[-\infty, +\infty]$, the “extended reals”.

For each of the limit questions, write “ $+\infty$ ”, “ $-\infty$ ”, a real number, or *–if none of these–* “DNE”. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

D1: Show no work.

a Suppose $h:[3, 5] \rightarrow \mathbb{R}$ is cts. Then h uniformly continuous. AT AF Nei.

If $f:\mathbb{R} \rightarrow \mathbb{R}$ is diff'able, then f' is cts. AT AF Nei.

If $f:\mathbb{R} \rightarrow \mathbb{R}$ is diff'able, then f is cts. AT AF Nei.

b Consider a diff'able $h:\mathbb{R} \rightarrow \mathbb{R}$.
If $|h'| < 22$ then h is unif-cts. AT AF Nei.
If $|h'| > 22$ then h is unif-cts. AT AF Nei.

c $\frac{d}{dx} \int_5^{\sin(x^2)} \log =$

$\frac{d}{dx} \int_x^{x+7} \cos(\cos(t)) dt =$

d $\lim_{x \searrow 0} [1 + 5x]^{2/x} =$

$\lim_{x \searrow 2} \frac{\sin(x) - x}{x^3} =$

g Let $F(x) := \sin(x)e^x$. Its derivative, then, is
 $F'(x) =$

D2: G.E.O a C^∞ fnc on \mathbb{R} which is not analytic at 7:

$$f(x) := \begin{cases} \text{.....} & \text{if } \text{.....} \\ \text{.....} & \text{if } \text{.....} \\ \text{.....} & \text{if } \text{.....} \end{cases}$$

G.E.O a cts fnc on $[-2, 5]$ which is not unif-cts.

For $S \subset \mathbb{R}$, use $\mathbf{1}_S$ for the *indicator fnc* of S :

Graph $f := 4 \cdot \mathbf{1}_{(-\infty, 8)} + 3 \cdot \mathbf{1}_{[5, \infty)}$.

Graph $h(x) := x - \lfloor x \rfloor$.

Essays. On your own sheets of lined paper, give the following definitions or proofs. No “scratch work” accepted, only complete, grammatical, coherent sentences. Write **every 2nd or every 3rd line** for math essays.

D3: State IVT. State MVT. State the Cauchy MVT. State Taylor's thm with Remainder term.

D4: Let $J := [3, 7]$. **WtSaCi:**

A **pointed partition** (pptn) $P = (\vec{x}, \vec{Q})$ on J is.... Given $f: J \rightarrow \mathbb{R}$, its **Riemann Sum** is $\text{RS}_f(P)$ A fnc $h: J \rightarrow \mathbb{R}$ is **Riemann integrable** IFF

D5: Let $g(x) := x^3 - 3x$. Accurately graph its *positive part* g^+ . Accurately graph its *negative part* g^- . Recall that $g^+ + g^- = |g|$.

D6: Let $f(x) := \sin(2x)$. Its fifth *Taylor polynomial* is $\mathbf{T}_5(x) =$

D7: **WtSaCi:** On MS (Ω, \mathbf{m}) , a seq. $\vec{c} \subset \Omega$ is **m-Cauchy** IFF ... [Hint: Be precise with your quantifiers]

State the Nested Intervals Thm. Prove it.

State the Bolzano-Weierstrass Thm. Prove it.

State the Heine-Borel Thm. Prove it.

D8: On a set Ω , a fnc $\mathbf{m}: \Omega \times \Omega \rightarrow [0, \infty)$ is a **metric** if: \$\forall P, Q, R \in \Omega\$: (Write the 3 remaining axioms.)

D9: Fix a compact MS (Ω, \mathbf{m}) . a Prove that each closed subset $E \subset \Omega$ is compact. [Hint: The complement, $\Omega \setminus E$, is Ω -open. Use it, together with a given open-cover of E , to produce an open-cover of Ω . Etc.]

b Prove that Ω is sequentially-compact. [Hint: FTSOC, consider a seq. $\vec{s} \subset \Omega$ with no convergent subseq. Argue, WLOG, that \vec{s} consists of distinct pts. Now argue that $U := \Omega \setminus \{s_n\}_{n=1}^\infty$ is open. Now...]

D10: Define seq \vec{b} by $b_n := \frac{1}{n \cdot [n+1]}$. Get a closed-formula for $\sum_{j=1}^N b_j =$, for N a posint. One way to do this is to view \vec{b} as the discrete deriv of ...

End of Prac-D

Print
name Ord:

HONOR CODE: *"I have neither requested nor received
help on this exam other than from my professor."*

Signature: