

Counting spanning-trees

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 9 April, 2018 (at 09:32)

Entrance. Use *spantree* for “spanning-tree”.

Our matrices are over some commutative ring Γ , and lowercase greek $\alpha, \beta, \dots, \omega \in \Gamma$. Use $M_{\nu, \delta; K}$ for the $K \times K$ matrix with each $m_{j,j} := \delta$ [diagonal] and each $m_{i \neq j} := \nu$ [not diagonal]. When the matrix-size K is understood, then I will just write $M_{\nu, \delta}$ for $M_{\nu, \delta; K}$.

1: Lemma. For $\sigma, \omega, J \in \Gamma$ and matrix-size $K \in \mathbb{Z}_+$:

$$\dagger: \quad \text{Det}(M_{-1, \sigma}) = [\sigma+1]^{K-1} \cdot [\sigma+1 - K].$$

$$\ddagger: \quad \text{Det}(M_{-J, \omega - J}) = \omega^{K-1} \cdot [\omega - [JK]]. \quad \diamond$$

Proof of (†). Define β by $\beta + [K-1] := \sigma$. Adding the bottom $K-1$ rows of M to the top row, produces

$$H := \begin{bmatrix} \beta & \beta & \beta & \cdots & \beta \\ -1 & \sigma & -1 & \cdots & -1 \\ -1 & -1 & \sigma & \cdots & -1 \\ -1 & -1 & -1 & \ddots & -1 \\ -1 & -1 & -1 & \cdots & \sigma \end{bmatrix}, \quad \text{with } \text{Det}(H) \text{ equals } \text{Det}(M).$$

If $\beta = 0$, then $[\sigma+1 - K] = 0$ so $\text{RhS}(\dagger) = 0$; and the top row of H is $\mathbf{0}$ so $\text{Det}(H) = 0$. Thus, **WLOG** $\beta \neq 0$.

Multiplying by β , each of the bottom $K-1$ rows of H , builds this matrix

$$H' := \begin{bmatrix} \beta & \beta & \cdots & \beta \\ -\beta & \sigma\beta & -\beta & -\beta \\ -\beta & -\beta & \ddots & -\beta \\ -\beta & -\beta & \cdots & \sigma\beta \end{bmatrix}, \quad \text{where } \text{Det}(H') \text{ equals } \beta^{K-1} \cdot \text{Det}(M).$$

Adding the top row to each of the others produces

$$H'': \begin{bmatrix} \beta & \beta & \cdots & \beta \\ \sigma\beta + \beta & \ddots & & \beta \\ \ddots & & \ddots & \beta \\ & & \sigma\beta + \beta & \end{bmatrix}. \quad \text{And } \text{Det}(H'') \text{ equals } \beta^{K-1} \cdot \text{Det}(M).$$

So $\beta^{K-1} \cdot \text{Det}(M) = [\sigma\beta + \beta]^{K-1} \cdot \beta$. As $\beta \neq 0$, dividing says that $\text{Det}(M)$ equals $[\sigma+1]^{K-1} \cdot \beta \stackrel{\text{note}}{=} \text{RhS}(\dagger)$. \diamond

Proof of (‡). WLOG $J \neq 0$. Dividing each M -row by J , produces

$$G := \begin{bmatrix} \frac{\omega}{J} - 1 & -1 & -1 & -1 \\ -1 & \frac{\omega}{J} - 1 & -1 & -1 \\ -1 & -1 & \ddots & -1 \\ -1 & -1 & \cdots & \frac{\omega}{J} - 1 \end{bmatrix}, \quad \text{where } J^K \cdot \text{Det}(G) \text{ equals } \text{Det}(M).$$

By (†), then, $\text{Det}(G) = [\frac{\omega}{J}]^{K-1} \cdot [\frac{\omega}{J} - K]$. Multiplying by J^K then shows that $\text{Det}(M) = \text{RhS}(\ddagger)$. \diamond

Appl. Fixing $N \in \mathbb{Z}_+$, let's compute the number of spantrees of K_N , the complete graph on N vertices. Its Laplacian matrix is $L := M_{-1, N-1; N}$. Take a **reduced Laplacian** by removing its last row and column, giving $L_0 := M_{-1, N-1; N-1}$. The Matrix-tree thm says that K_N has $\text{Det}(L_0)$ many spantrees.

Courtesy (†), our $\text{Det}(L_0)$ equals

$$N^{[N-1]-1} \cdot [N - [N-1]] \stackrel{\text{note}}{=} N^{N-2},$$

as Cayley's thm asserts. \square

2.1: Block-UT-matrix Lemma. For $\mathcal{A}, \mathcal{B} \in \mathbb{N}$, consider an Upper-Triangular partitioned matrix

$$2.2: \quad M = \begin{bmatrix} A_{\mathcal{A} \times \mathcal{A}} & G_{\mathcal{A} \times \mathcal{B}} \\ \mathbf{0}_{\mathcal{B} \times \mathcal{A}} & B_{\mathcal{B} \times \mathcal{B}} \end{bmatrix}$$

Then $\text{Det}(M) = \text{Det}(A) \cdot \text{Det}(B)$. In consequence, the char-poly φ_M factors as

$$2.2': \quad \varphi_M = \varphi_A \cdot \varphi_B. \quad \diamond$$

Proof of $\text{Det}(M) = \text{Det}(A) \cdot \text{Det}(B)$. Since $\text{Det}(M)$ is a sum of products taken over all transversals [generalized diagonals] of M , ISTShow that a transversal straying from the A, B blocks necessarily has product zero.

WLOG this misguided transversal hits G . It therefore misses some row of A hence (since A is square) some column of A . In this column, then, the transversal must hit the $\mathbf{0}_{\mathcal{B} \times \mathcal{A}}$ block.

Exer: Why do the signs of the permutations work out correctly? \diamond

3: Lemma. Define $[J+K] \times [J+K]$ block-diagonal matrix

$$V := \begin{bmatrix} \alpha & \cdots & & -1 \\ \cdots & \alpha & & \\ & & \ddots & \\ -1 & & & \beta & \cdots & \beta \end{bmatrix},$$

where $\alpha, \beta \in \Gamma$ and $J, K \in \mathbb{Z}_+$. Furthermore, $\begin{bmatrix} \alpha & \cdots & & \\ & \ddots & & \\ & & \alpha & \\ -1 & & & \beta & \cdots & \beta \end{bmatrix}$ is $J \times J$, block $\begin{bmatrix} \beta & \cdots & \\ & \ddots & \\ & & \beta \end{bmatrix}$ is $K \times K$, and the $J \times K$, and $K \times J$ rectangles are filled with -1 . Then

$$*: \quad \text{Det}(V) = \alpha^{J-1} \beta^{K-1} \cdot [\alpha\beta - JK]. \quad \diamond$$

Proof. Exercise: Show the result holds if $\alpha = 0 = \beta$.

Suppose that $(\alpha, \beta) \neq (0, 0)$. Since V is symmetric in α, β , WLOG $\alpha \neq 0$.

Multiply by α , each of the bottom K rows of V , producing

$$H := \left[\begin{array}{c|c} \alpha & -1 \\ \hline \alpha & \alpha\beta \\ -\alpha & \alpha\beta \end{array} \right], \text{ where } \text{Det}(H) = \alpha^K \cdot \text{Det}(V).$$

Now add each of the top J rows to each of the bottom K rows. This makes matrix

$$H' := \left[\begin{array}{c|c} \alpha & -1 \\ \hline \alpha & \alpha \\ 0 & M \end{array} \right], \text{ where } M := M_{-J, \alpha\beta-J; K}.$$

By the Block-UT-matrix Lemma, $\text{Det}(H')$ equals

$$\alpha^J \cdot \text{Det}(M) \stackrel{\text{by } (†)}{=} \alpha^J \cdot [\alpha\beta]^{K-1} [\alpha\beta - JK].$$

Recall that $\text{Det}(H') = \alpha^K \cdot \text{Det}(V)$. Since $\alpha \neq 0$, we divide to conclude that $\text{Det}(V)$ equals

$$\frac{\alpha^J}{\alpha^K} \cdot [\alpha\beta]^{K-1} \cdot [\alpha\beta - JK] \stackrel{\text{note}}{=} \text{RHS}(*) \quad \diamond$$

4: Spanning trees in complete bipartite. For $G, B \in \mathbb{Z}_+$, the complete bipartite $K_{G,B}$ has

$$4': \# \text{Spanning trees}(K_{G,B}) = G^{B-1} \cdot B^{G-1}$$

many spanning trees. \diamond

Proof. Listing the B many boys before the girls, the Laplacian of $K_{B,G}$ is the $[B+G] \times [B+G]$ block-diagonal matrix

$$L := \left[\begin{array}{c|c} G & -1 \\ \hline G & B \\ -1 & B \end{array} \right].$$

Letting $K := G-1$, remove the last row and column to get reduced Laplacian

$$L_0 := \left[\begin{array}{c|c} G & \overset{G-1 \text{ cols}}{\underbrace{-1}} \\ \hline G & B \\ -1 & B \end{array} \right].$$

We apply Lemma 3 with $\alpha := G$, $J := B$, $\beta := B$ and $K := G-1$. Notice that the $[\alpha\beta - JK]$ from $(*)$ equals

$$GB - B[G-1] \stackrel{\text{note}}{=} B.$$

Thus $\text{Det}(L_0) = G^{B-1} B^{G-1-1} \cdot B \stackrel{\text{note}}{=} \text{RHS}(4')$. \diamond

5: Diminished K_N . For $N \geq 2$, let D_N be the complete graph K_N with one edge removed; so D_N has $\binom{N}{2} - 1$ edges. Then

$$5': \# \text{Spanning trees}(D_N) = [N-2] \cdot N^{[N-3]}. \quad \diamond$$

Pf. For $N=2$, the above correctly asserts “ $0 = 0$ ”, so henceforth $N \geq 3$. Numbering the vertices $1, 2, \dots, N$ and removing the edge between vertices $N-1$ and N , the $N \times N$ Laplacian matrix $L(D_N)$ equals

$$L(D_N) := \begin{bmatrix} N-1 & -1 & -1 & -1 & \cdots & -1 \\ -1 & N-1 & -1 & -1 & \cdots & -1 \\ -1 & -1 & \ddots & -1 & \cdots & -1 \\ -1 & -1 & -1 & N-1 & -1 & -1 \\ -1 & \cdots & -1 & -1 & \textcolor{blue}{N-2} & 0 \\ -1 & \cdots & -1 & -1 & 0 & \textcolor{blue}{N-2} \end{bmatrix}.$$

Removing the last row and column yields reduced-Laplacian

$$L_0(D_N) := \begin{bmatrix} N-1 & -1 & \cdots & -1 & -1 \\ -1 & N-1 & \cdots & -1 & -1 \\ -1 & -1 & \ddots & \cdots & -1 \\ -1 & -1 & -1 & N-1 & -1 \\ -1 & \cdots & -1 & -1 & \textcolor{blue}{N-2} \end{bmatrix}.$$

Replacing the first row by the sum of all the rows gives

$$\begin{bmatrix} 1 & 1 & \cdots & 1 & 0 \\ -1 & N-1 & \cdots & -1 & -1 \\ -1 & -1 & \ddots & \cdots & -1 \\ -1 & -1 & -1 & N-1 & -1 \\ -1 & \cdots & -1 & -1 & \textcolor{blue}{N-2} \end{bmatrix}.$$

Adding the first row to all the others, produces

$$U(D_N) := \begin{bmatrix} 1 & 1 & \cdots & 1 & 0 \\ & N & \cdots & 1 & -1 \\ & & \ddots & 1 & -1 \\ & & & N & -1 \\ & & & & \textcolor{blue}{N-2} \end{bmatrix}.$$

Hence $\text{Det}(L_0) = \text{Det}(U) = \text{RHS}(5')$. \diamond

Filename: Problems/GraphTheory/counting-spanning-trees.latex
As of: Monday 19Mar2018. Typeset: 9Apr2018 at 09:32.