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Entrance. Use spantree for “spanning-tree”.
Our matrices are over some commutative ring Γ,

and lowercase greek α,β, . . . ,ω ∈ Γ. Use Mν, δ;K for
the K×K matrix with each mj,j := δ [δiagonal] and
each mi 6=j := ν [νot diagonal]. When the matrix-size K
is understood, then I will just write Mν, δ for Mν, δ;K .

1: Lemma. For σ,ω,J ∈ Γ and matrix-size K ∈ Z+:

Det(M 1, σ) = [σ+1]K−1 · [σ+1−K] .†:
Det(M J, ω−J) = ωK−1 ·

[
ω − [JK]

]
.‡: ♦

Proof of (†). Define β by β + [K−1] := σ. Adding the
bottom K−1 rows of M to the top row, produces

H :=


β β β · · · β
1 σ 1 · · · 1
1 1 σ · · · 1

1 1 1
. . . 1

1 1 1 · · · σ

 ,
with Det(H)
equaling Det(M).

If β = 0, then [σ+1−K] = 0 so RhS(†)=0; and the
top row of H is 0 so Det(H)=0. Thus, WLOG β 6= 0.

Multiplying by β, each of the bottom K−1 rows
of H, builds this matrix

H′ :=


β β · · · β
β σβ β β

β β
. . . β

β β · · · σβ

 , where Det(H′) equals
βK−1·Det(M).

Adding the top row to each of the others produces

H′′ :=


β β · · · β

σβ + β
. . .

σβ + β

 . And Det(H′′) equals
βK−1·Det(M).

So βK−1·Det(M) = [σβ + β]K−1·β. As β 6=0, dividing
says that Det(M) equals [σ+1]K−1·β note

==== RhS(†).�

Proof of (‡). WLOG J 6= 0. Dividing each M-row
by J , produces

G :=


ω
J − 1 1 1 1

1 ω
J − 1 1 1

1 1
. . . 1

1 1 · · · ω
J − 1

 , where JK ·Det(G)
equals Det(M).

By (†), then, Det(G) = [ωJ ]K−1 · [ωJ −K]. Multiply-
ing by JK then shows that Det(M) = RhS(‡) �

Appl. Fixing N ∈ Z+, let’s compute the number
of spantrees of KN , the complete graph on N ver-
tices. Its Laplacian matrix is L := M 1, N−1;N . Take
a reduced Laplacian by removing its last row and
column, giving L0 := M 1, N−1;N−1. The Matrix-tree
thm says that KN has Det(L0) many spantrees.

Courtesy (†), our Det(L0) equals

N [N−1]−1 ·
[
N − [N−1]

] note
==== NN−2 ,

as Cayley’s thm asserts. �

2.1: Block-UT-matrix Lemma. For A,B ∈ N, consider
an Upper-Triangular partitioned matrix

M =

[
AA×A GA×B
0B×A BB×B

]
2.2:

Then Det(M) = Det(A) ·Det(B). In consequence, the
char-poly ℘M factors as

℘M = ℘A · ℘B .2.2′: ♦

Proof of Det(M) = Det(A) ·Det(B). Since Det(M) is a
sum of products taken over all transversals [generalized
diagonals] of M, ISTShow that a transversal straying
from the A,B blocks necessarily has product zero.

WLOG this misguided transversal hits G. It there-
fore misses some row of A hence (since A is square) some
column of A. In this column, then, the transversal
must hit the 0B×A block.

Exer: Why do the signs of the permutations work
out correctly? �

3: Lemma. Define [J+K]×[J+K] block-diagonal
matrix

V :=


α . . .

α
1

1 β . . .
β

 ,
where α,β ∈ Γ and J,K ∈ Z+. Furthermore,

[
α . . .

α

]
is J×J , block

[
β . . .

β

]
is K×K, and the J×K, and

K×J rectangles are filled with 1. Then

Det(V) = αJ−1 βK−1 · [αβ − JK] .∗: ♦
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Proof. Exercise: Show the result holds if α = 0 = β.
Suppose that (((α, β))) 6= (((0, 0))). Since V is symmetric

in α, β, WLOG
�� ��α 6= 0 .

Multiply by α, each of the bottom K rows of V,
producing

H :=


α . . .

α
1

α αβ . . .
αβ

 , where
Det(H) = αK ·Det(V).

Now add each of the top J rows to each of the bottom
K rows. This makes matrix

H′ :=

 α . . .
α

1

0 M

 , where
M := M J, αβ−J;K .

By the Block-UT-matrix Lemma, Det(H′) equals

αJ ·Det(M)
by (‡)
===== αJ · [αβ]K−1[αβ − JK] .

Recall that Det(H′) = αK ·Det(V). Since α 6=0, we
divide to conclude that Det(V) equals

αJ

αK
· [αβ]K−1·[αβ − JK]

note
==== RhS(∗) . �

4: Spantrees in complete bipartite. For G,B ∈ Z+, the
complete bipartite KG,B has

#Spantrees(KG,B) = GB−1·BG−14′:

many spanning trees. ♦

Proof. Listing the B many boys before the girls,
the Laplacian of KB,G is the [B+G]×[B+G] block-
diagonal matrix

L :=


G .. .

G
1

1 B .. .
B

 .
Letting K := G−1, remove the last row and column
to get reduced Laplacian

L0 :=


G .. .

G

G−1 cols︷ ︸︸ ︷
1

1 B .. .
B

 .
We apply Lemma 3 with α := G, J := B, β := B
and K := G−1. Notice that the [αβ − JK] from (∗)
equals GB − B[G−1]

note
==== B .

Thus Det(L0) = GB−1BG−1−1 ·B note
==== RhS(4′). �

5: Diminished KN . For N>2, let DN be the complete
graph KN with one edge removed; so DN has

(N
2

)
−1

edges. Then

#Spantrees(DN ) = [N−2] ·N [N−3] .5′: ♦

Pf. For N=2, the above correctly asserts “0 = 0”, so
henceforthN > 3. Numbering the vertices 1, 2, . . . , N
and removing the edge between vertices N−1 and N ,
the N×N Laplacian matrix L(DN ) equals

L(DN ) :=


N−1 1 1 1 · · · 1

1 N−1 1 1 · · · 1
1 1

. . . 1 · · · 1
1 1 1 N−1 1 1
1 · · · 1 1 N−2 0
1 · · · 1 1 0 N−2

 .

Removing the last row and column yields reduced-
Laplacian

L0(DN ) :=


N−1 1 · · · 1 1

1 N−1 · · · 1 1
1 1

. . . · · · 1
1 1 1 N−1 1
1 · · · 1 1 N−2

 .
Replacing the first row by the sum of all the rows gives

1 1 · · · 1 0
1 N−1 · · · 1 1
1 1

. . . · · · 1
1 1 1 N−1 1
1 · · · 1 1 N−2

 .
Adding the first row to all the others, produces

U(DN ) :=


1 1 · · · 1 0

N · · · 1 1
. . . 1 1

N 1
N−2

 .

Hence Det(L0) = Det(U) = RhS(5′). �
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