

Congruences in Number Theory

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 4 April, 2021 (at 22:20)

Entrance. Let $\text{Primes}(L)$ mean the set of primes that divide L . An *arithmetic progression* means a set $T + \mathbf{M}\mathbb{Z}$ of integers, where the *gap* (or *modulus*) \mathbf{M} is a posint and *translation* (or *target*) T an integer. Use *comb*, also, for “arithmetic progression”.

A comb $\mathcal{C} := T + \mathbf{M}\mathbb{Z}$ is *coprime* if $T \perp \mathbf{M}$.

Divisibility Conundra

Here is a soln to LeVeque’s #7^P63: Fix a coprime comb $\mathcal{C} := T + \mathbf{M}\mathbb{Z}$ and posint L . Prove there exists $x \in \mathcal{C}$ st. $x \perp L$.

Short solution. Let F be the maximum factor of L such that $F \perp \mathbf{M}$. Letting $Q := \frac{L}{F}$, then,

$$1: \quad \text{Primes}(Q) \subset \text{Primes}(\mathbf{M}).$$

Since $F \perp \mathbf{M}$, the CRT¹ applies to produce an integer x with

$$2: \quad x \equiv_{\mathbf{M}} T \quad \text{and} \quad x \equiv_F 1.$$

So in order to show that $x \perp L$, we need show that $x \perp Q$. FTSOC, suppose p is a prime with $p \bullet x$ and $p \nmid Q$. This latter forces $p \nmid \mathbf{M}$, by (??). Now LhS(??) forces $T \bullet p$. This contradicts that $T \perp \mathbf{M}$. ♦

Longer solution. We use nested combs.

3: Lemma. Fix a coprime comb $\mathcal{C} := T + \mathbf{M}\mathbb{Z}$. Each posint L yields a coprime subcomb $\widehat{\mathcal{C}} \subset \mathcal{C}$, where

$$* \quad \begin{aligned} \widehat{\mathcal{C}} &:= \widehat{T} + \widehat{\mathbf{M}} \cdot \mathbb{Z}, \\ &\text{with } \widehat{\mathbf{M}} := \text{LCM}(\mathbf{M}, L). \end{aligned}$$

Proof. Each integer $\widehat{T} \in \mathcal{C}$ is $\perp \mathbf{M}$ and defines a subcomb via (*). So ISTProduce a $\widehat{T} \in \mathcal{C}$ with

$$\mathbb{Y}: \quad \widehat{T} \perp L,$$

¹Chinese Remainder Thm: Given arb. “targets” $s, t \in \mathbb{Z}$, $\exists x$ with $x \equiv_{\mathbf{M}} s$ and $x \equiv_F t$.

for then, automatically, \widehat{T} will be $\perp \text{LCM}(\mathbf{M}, L)$.

Consider $L = p_1^{k_1} \cdots p_K^{k_K}$, the prime factorization. If we find a $\widehat{T} \in \mathcal{C}$ coprime to $p_1 \cdots p_K$ then certainly $\widehat{T} \perp L$. So WLOG L is square-free.

We’ll now show that, WLOG,

$$\mathbb{L}: \quad L \text{ is coprime to } \mathbf{M}.$$

Letting $D := \text{GCD}(\mathbf{M}, L)$, necessarily, $\frac{L}{D} \perp \mathbf{M}$, since L is square-free. And each $\widehat{T} \in \mathcal{C}$ is $\perp D$, so we just need to find one which is coprime to $\frac{L}{D}$.

Courtesy (\mathbb{L}), we can pick a mod- G reciprocal, call it β , of L . I.e. $\beta L \equiv_{\mathbf{M}} 1$. Our goal (\mathbb{Y}) [we have a *yen* for it (...no, I’m *not* sorry)] is certainly satisfied by a $\widehat{T} \in \mathcal{C}$ with $\widehat{T} \equiv_N 1$. So we want an integer y with

$$\widehat{T} := 1 + Ny \stackrel{\text{Want}}{\in} \mathcal{C},$$

i.e. with $1 + Ny \equiv_{\mathbf{M}} T$, i.e. with $Ny \equiv_{\mathbf{M}} T - 1$. It looks like $y := \beta[T - 1]$ will do the trick. So we *define*

$$\widehat{T} := 1 + N\beta[T - 1].$$

Remark. The above proof is entirely constructive. We actually could avoid the “square-free” step, at the cost of verbiage. □

4: Very weak Dirichlet Thm². Each coprime comb $\mathcal{C} := T + \mathbf{M}\mathbb{Z}$ includes an infinite pairwise coprime subset $\{T_j\}_{j=1}^{\infty}$ of (distinct) integers. ◇

Proof. Let $T_1 := T$ and $T_0 := \mathbf{M}$ and $\mathcal{C}_1 := T_1 + T_0\mathbb{Z}$. ISTProduce nested combs

$$\begin{aligned} \mathcal{C}_1 &\supset \mathcal{C}_2 \supset \mathcal{C}_3 \supset \dots \quad \text{of the form} \\ \mathcal{C}_j &= T_j + [T_{j-1} \cdots T_1 \cdot T_0]\mathbb{Z}, \end{aligned}$$

each a coprime comb.

Ok, at stage j , apply Lemma ?? to \mathcal{C}_j with $N := T_j$. It hands us a translation amount $T_{j+1} := \widehat{T}$ which is coprime to

$$\text{LCM}(T_j, [T_{j-1} \cdots T_1 \cdot T_0]) \stackrel{\text{note}}{=} T_j \cdot T_{j-1} \cdots T_1 \cdot T_0.$$

Looks like a wrap, Folks. ♦

²A much stronger result, Dirichlet’s Theorem, asserts that every coprime comb includes infinitely many prime numbers.

5: Two Comb Lemma. Two combs $\mathcal{C}_j := T_j + \mathbf{M}_j \mathbb{Z}$ intersect IFF

$$\dagger: \quad \text{GCD}(\mathbf{M}_1, \mathbf{M}_2) \bullet [T_1 - T_2]$$

Proof. A integer x is in $\mathcal{C}_1 \cap \mathcal{C}_2$ means there exist integers z_i with $x + z_i \mathbf{M}_i = T_i$. Subtracting yields $z_1 \mathbf{M}_1 - z_2 \mathbf{M}_2 = T_1 - T_2$. This has a soln (z_1, z_2) exactly when (\dagger) . When it does, use either z_i to determine x . \spadesuit

Two remarks. Suppose (\dagger) . The above gives an algorithm to compute an x . I call this **fusing** two (linear) congruences into a single congruence. Renaming this x to V and setting $L := \text{LCM}(\mathbf{M}_1, \mathbf{M}_2)$, the algorithm fuses the pair $y \equiv_{\mathbf{M}_j} T_j$ of congruences, into a single $y \equiv_L V$ congruence.

The next result, the Pairwise-comb Thm, reminds me of Helly's theorem on convex sets. \square

6: Pairwise-comb Thm. Consider combs $\mathcal{C}_1, \dots, \mathcal{C}_N$, where $\mathcal{C}_j := T_j + \mathbf{M}_j \mathbb{Z}$. Then the combs mutually intersect IFF each pair intersects. The nonvoid intersection $\bigcap_1^N \mathcal{C}_j$ has form $T + L \mathbb{Z}$, where L is $\text{LCM}(\mathbf{M}_1, \dots, \mathbf{M}_N)$.

Since $x \in \mathcal{C}_j$ means

$$Cj: \quad x \equiv_{\mathbf{M}_j} T_j.$$

Then the combs mutually intersect, producing a comb $T + L \mathbb{Z}$, where L is $\text{LCM}(\mathbf{M}_1, \dots, \mathbf{M}_N)$.

Indeed, the combs mutually intersect IFF

$$\ddagger: \quad \begin{aligned} \text{For each pair } j < k \text{ in } [1..N]: \\ \text{GCD}(\mathbf{M}_j, \mathbf{M}_k) \bullet [T_j - T_k]. \end{aligned}$$

Reduction. Courtesy $(\dagger\dagger)$, condition (\ddagger) is necessary, so we will just show sufficiency.

It suffices to prove the $N=3$ case, since a simple induction on N handles the general case. Considering a congruence $\sigma: x \equiv_K S$, our goal has become:

$$\ddagger\ddagger: \quad \begin{aligned} \text{If each pair of (C1), (C2) and } (\sigma) \text{ can fuse,} \\ \text{then } \text{Fuse}(\text{C1}, \text{C2}) \text{ can be fused with } (\sigma). \end{aligned}$$

Pf of $(\ddagger\ddagger)$. Write $\text{Fuse}(\text{C1}, \text{C2})$ as $x \equiv_L V$, where $L := \text{LCM}(\mathbf{M}_1, \mathbf{M}_2)$. Thus each $T_j \equiv_{\mathbf{M}_j} V$. Hence $V - S \equiv_{\mathbf{M}_j} T_j - S$. With $\widehat{\mathbf{M}}_j := \text{GCD}(\mathbf{M}_j, K)$, then,

$$V - S \equiv_{\widehat{\mathbf{M}}_j} T_i - S,$$

since $\widehat{\mathbf{M}}_i \bullet \mathbf{M}_i$. By hyp., (Ci) and (σ) can fuse, i.e

$$T_i - S \equiv_{\widehat{\mathbf{M}}_i} 0,$$

Together, these give $[V - S] \bullet \widehat{\mathbf{M}}_i$. The upshot is

$$\text{LCM}(\widehat{\mathbf{M}}_1, \widehat{\mathbf{M}}_2) \bullet [V - S].$$

The last ingredient is that GCD distributes over LCM. Here,

$$\text{GCD}(L, K) = \text{LCM}(\widehat{\mathbf{M}}_1, \widehat{\mathbf{M}}_2).$$

Thus $\text{GCD}(L, K)$ divides $[V - S]$, as desired. \spadesuit

Proof (unfinished). ISTProve that the N combs intersect. By induction on N , ISTEstablish the $N=3$ case.

Given three pairwise-intersecting combs, translate all three so that two intersect at the origin. So we may write these three combs as

$$7: \quad A\mathbb{Z}, B\mathbb{Z}, T' + \mathbf{M}'\mathbb{Z}.$$

Let $D := \text{GCD}(T', \mathbf{M}')$, $T := \frac{T'}{D}$ and $\mathbf{M} := \frac{\mathbf{M}'}{D}$. ISTFind a point

$$z \in AB\mathbb{Z} \cap [T + \mathbf{M}\mathbb{Z}],$$

since then zD is in each comb of $(??)$.

So now $T \perp \mathbf{M}$. By hypothesis, **Whoa!** **jk:** Proof is broken. \spadesuit

Filename: Problems/NumberTheory/congruences.latex
As of: Saturday 04Mar2006. Typeset: 4Apr2021 at 22:20.