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Entrance. Let Primes(L) mean the set of primes
that divide L. An arithmetic progression
means a set T 4+ MZ of integers, where the gap (or
modulus) M is a posint and translation (or target) T
an integer. Use comb, also, for “arithmetic progres-
sion”.

A comb C:=T + MZ is coprime if T' L M.

Divisibility Conundra

Here is a soln to LeVeque’s #7763: Fix a coprime
comb € :=T + MZ and posint L. Prove there exists
xeCst.x L L.

Short solution. Let I be the maximum factor of L
such that F' L M. Letting @ := &, then,

1: Primes(Q) C Primes(M).

Since F' L. M, the CRTY! applies to produce an inte-
ger x with

2: r=y T and x =p 1.

So in order to show that x | L, we need show that
x L Q. FTSOC, suppose p is a prime with p ¢ x
and p ¢ Q). This latter forces p o M, by (?7). Now
LhS(?7?) forces T' |o p. This contradicts that 7" 1L M.4

Longer solution. We use nested combs.

3: Lemma. Fix a coprime comb € :=T + MZ. Each
posint L yields a coprime subcomb C C €, where

e = T+M-Z ,
*: —
with M := LCM(M, L).
Proof.  Each integer T € @is LM and defines a

subcomb via (). So ISTProduce a T € € with

¥ T 1L,

“1Chinese Remainder Thm:

with x =m s and x =g t.

Given arb. “targets” s;t € Z, 3x
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for then, automatically, T’ will be LLCM(M, L).
Consider L = plkl . --pKkK, the prime factoriza-
tion. If we find a T € € coprime to p;--- pg then
certainly T 1 L. So WLOG [L is square—free].
We'll now show that, WLOG,

£: [L is coprime to Mj

Letting D := GCD(M, L), necessarily, % 1 M, since
L is square-free. And each T eCis 1D, so we just
need to find one which is coprime to %.

Courtesy (£), we can pick a mod-G reciprocal, call
it 8, of L. I.e, BL=pn 1. Our goal (¥) [we have a yen
for it (...no, 'm not sorry)| is certainly satisfied by a Tee

~

with "=y 1. So we want an integer y with

‘Want
1+ Ny € C,

T =
ie, with 1+ Ny =y T, ie, with Ny =y T —1. It
looks like y := B[T — 1] will do the trick. So we define

T = 14+ NB[T-1].

Remark.  The above proof is entirely constructive.
We actually could avoid the “square-free” step, at the

cost of verbiage. O

4: Very weak Dirichlet ThmY2.  Each coprime comb
C =T + MZ includes an infinite pairwise coprime
subset {T;}22, of (distinct) integers. O

Proof. Let T1 :=T and Ty := M and C; := T + TyHZ.
ISTProduce nested combs

C1 DCyD>C3D... of the form

Gj = T] + [Tj—l"‘Tl'TO]Zy

each a coprime comb.

Ok, at stage j, apply Lemma ?? to C; with N = T}.
It hands us a translation amount 7)1 = T which is
coprime to

LOM(T}, [Tj_1 - - T - Ty)) note Ty Ty .y Ty - Tp.

Looks like a wrap, Folks. ¢

“2A much stronger result, Dirichlet’'s Theorem, asserts that
every coprime comb includes infinitely many prime numbers.
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5: Two Comb Lemma.
intersect IFF

Two combs C; := T; + M;Z
T: GCD(Ml, MQ) OI [Tl - TQ]

Proof. A integer z is in C; N Gy means there exist
integers z; with = 4+ z;M; = T;. Subtracting yields
ZlMl — ZQMQ = T1 — Tz. This has a soln (21,22)
exactly when (). When it does, use either z; to de-
termine x. ¢

Two remarks. Suppose (). The above gives an algo-
rithm to compute an x. I call this fusing two (linear)
congruences into a single congruence. Renaming this
x to V and setting L := LCM (M, My), the algorithm
fuses the pair y =pm; Tj of congruences, into a single
y = V congruence.

The next result, the Pairwise-comb Thm, reminds
me of Helly's theorem on convex sets. O

6: Pairwise-comb Thm. Consider combs Cq,...,Cpn,
where C; = Tj;+ M;Z. Then the combs mutu-
ally intersect IFF each pair intersects. The non-
void intersection (¥ C; has form T + LZ, where L
is LCM(My, ..., My).

Since x € C; means
C] T EM]. Tj .

Then the combs mutually intersect, producing a comb
T + LZ, where L is LCM(Mjy, ..., My).
Indeed, the combs mutually intersect IFF

i For each pair j < k in [1.. N]:
' GCD(M;, My) o [T — Tj].

Reduction. Courtesy (?7?7), condition () is necessary,
so we will just show sufficiency.

It suffices to prove the N=3 case, since a simple
induction on N handles the general case. Considering

a congruence |o: x =g S|, our goal has become:

t If each pair of (C1), (C2) and (o) can fuse,
" then Fuse(C1,C2) can be fused with (o).

Divisibility Conundra
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Pfof ().  Write Fuse(C1,C2) as x =1 V, where
L = LCM(M;j,Mzy). Thus each T; =\, V. Hence
V-8 =m, T,-S. WithM; = GCD(M;,K),
then,

V-5 El\//I\J

E - Sa
since M; § M;. By hyp., (Ci) and () can fuse, i.e

Together, these give [V — 5] o M;. The upshot is
LCM(M,;, M) o [V —5].

The last ingredient is that GCD distributes

over LCM. Here,
GCD(L,K) = LCM(M;, M,).
Thus GCD(L, K) divides [V — 5], as desired. ¢
Proof (unfinished). — ISTProve that the N combs in-
tersect. By induction on NN, ISTEstablish the N=3
case.
Given three pairwise-intersecting combs, translate

all three so that two intersect at the origin. So we
may write these three combs as

7: AZ, BZ, T'+M'Z.

Let D = GCD(T",M/), T = %/ and M := %.
ISTFind a point
: € ABZ N [T +MZ],

since then zD is in each comb of (77).

So now T" 1. M. By hypothesis, jk: Proof
is broken. ¢
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