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Entrance. Let Primes(L) mean the set of primes
that divide L. An arithmetic progression
means a set T + MZ of integers, where the gap (or
modulus) M is a posint and translation (or target) T
an integer. Use comb, also, for “arithmetic progres-
sion”.

A comb C := T +MZ is coprime if T ⊥M.

Divisibility Conundra

Here is a soln to LeVeque’s #7P.63: Fix a coprime
comb C := T +MZ and posint L. Prove there exists
x ∈ C st. x ⊥ L.

Short solution. Let F be the maximum factor of L
such that F ⊥M. Letting Q := L

F , then,

Primes(Q) ⊂ Primes(M) .1:

Since F ⊥M, the CRT♥1 applies to produce an inte-
ger x with

x ≡M T and x ≡F 1 .2:

So in order to show that x ⊥ L, we need show that
x ⊥ Q. FTSOC, suppose p is a prime with p •| x
and p •| Q. This latter forces p •| M, by (??). Now
LhS(??) forces T |• p. This contradicts that T ⊥M.�

Longer solution. We use nested combs.

3: Lemma. Fix a coprime comb C := T +MZ. Each
posint L yields a coprime subcomb Ĉ ⊂ C, where

Ĉ := T̂ + M̂ · Z ,

with M̂ := LCM(M, L).
∗:

Proof. Each integer T̂ ∈ C is ⊥M and defines a
subcomb via (∗). So ISTProduce a T̂ ∈ C with

T̂ ⊥ L ,U:

♥1Chinese Remainder Thm: Given arb. “targets” s,t ∈ Z, ∃x
with x≡M s and x≡F t.

for then, automatically, T̂ will be ⊥LCM(M, L).
Consider L = p1

k1 · · · pK
kK , the prime factoriza-

tion. If we find a T̂ ∈ C coprime to p1 · · · pK then
certainly T̂ ⊥ L. So WLOG

�� ��L is square-free .
We’ll now show that, WLOG,�� ��L is coprime to M.£:

Letting D := GCD(M, L), necessarily, L
D ⊥M, since

L is square-free. And each T̂ ∈ C is ⊥D, so we just
need to find one which is coprime to L

D .
Courtesy (£), we can pick a mod-G reciprocal, call

it β, of L. I.e, βL≡M 1. Our goal (U) [we have a yen
for it (. . . no, I’m not sorry)] is certainly satisfied by a T̂ ∈ C

with T̂ ≡N 1. So we want an integer y with

T̂ := 1 +Ny
Want
∈ C ,

i.e, with 1 +Ny ≡M T , i.e, with Ny ≡M T − 1. It
looks like y := β[T − 1] will do the trick. So we define

T̂ := 1 +Nβ[T − 1] .

Remark. The above proof is entirely constructive.
We actually could avoid the “square-free” step, at the
cost of verbiage. �

4: Very weak Dirichlet Thm♥2. Each coprime comb
C := T +MZ includes an infinite pairwise coprime
subset {Tj}∞j=1 of (distinct) integers. ♦

Proof. Let T1 := T and T0 := M and C1 := T1 + T0Z.
ISTProduce nested combs

C1 ⊃ C2 ⊃ C3 ⊃ . . . of the form
Cj = Tj + [Tj−1 · · ·T1 · T0]Z ,

each a coprime comb.
Ok, at stage j, apply Lemma ?? to Cj with N := Tj .

It hands us a translation amount Tj+1 := T̂ which is
coprime to

LCM(Tj , [Tj−1 · · ·T1 · T0])
note
=== Tj · Tj−1 · · ·T1 · T0 .

Looks like a wrap, Folks. �

♥2A much stronger result, Dirichlet’s Theorem, asserts that
every coprime comb includes infinitely many prime numbers.
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5: Two Comb Lemma. Two combs Cj := Tj +MjZ
intersect IFF

GCD(M1,M2) •| [T1 − T2]†:

Proof. A integer x is in C1 ∩ C2 means there exist
integers zi with x + ziMi = Ti. Subtracting yields
z1M1 − z2M2 = T1 − T2. This has a soln (((z1, z2)))
exactly when (†). When it does, use either zi to de-
termine x. �

Two remarks. Suppose (†). The above gives an algo-
rithm to compute an x. I call this fusing two (linear)
congruences into a single congruence. Renaming this
x to V and setting L := LCM(M1,M2), the algorithm
fuses the pair y ≡Mj Tj of congruences, into a single
y ≡L V congruence.

The next result, the Pairwise-comb Thm, reminds
me of Helly’s theorem on convex sets. �

6: Pairwise-comb Thm. Consider combs C1, . . . ,CN ,
where Cj := Tj +MjZ. Then the combs mutu-
ally intersect IFF each pair intersects. The non-
void intersection

⋂N
1 Cj has form T + LZ, where L

is LCM(M1, . . . ,MN ).
Since x ∈ Cj means

x ≡Mj Tj .Cj:

Then the combs mutually intersect, producing a comb
T + LZ, where L is LCM(M1, . . . ,MN ).

Indeed, the combs mutually intersect IFF

For each pair j < k in [1 .. N ]:
GCD(Mj ,Mk) •| [Tj − Tk].

‡:

Reduction. Courtesy (??†), condition (‡) is necessary,
so we will just show sufficiency.

It suffices to prove the N=3 case, since a simple
induction on N handles the general case. Considering
a congruence

�� ��σ: x ≡K S , our goal has become:

If each pair of (C1), (C2) and (σ) can fuse,
then Fuse(C1,C2) can be fused with (σ).‡‡:

Pf of (‡‡). Write Fuse(C1,C2) as x ≡L V , where
L := LCM(M1,M2). Thus each Tj ≡Mj V . Hence
V − S ≡Mj Tj − S. With M̂j := GCD(Mj ,K),
then,

V − S ≡
M̂j

Ti − S ,

since M̂i •|Mi. By hyp., (Ci) and (σ) can fuse, i.e

Ti − S ≡M̂i
0 ,

Together, these give [V − S] |• M̂i. The upshot is

LCM
(
M̂1, M̂2

)
•| [V − S] .

The last ingredient is that GCD distributes
over LCM. Here,

GCD(L,K) = LCM
(
M̂1, M̂2

)
.

Thus GCD(L,K) divides [V − S], as desired. �

Proof (unfinished). ISTProve that the N combs in-
tersect. By induction on N , ISTEstablish the N=3
case.

Given three pairwise-intersecting combs, translate
all three so that two intersect at the origin. So we
may write these three combs as

AZ, BZ, T ′ +M′Z .7:

Let D := GCD(T ′,M′), T := T ′

D and M := M′

D .
ISTFind a point

z ∈ ABZ ∩ [T +MZ] ,

since then zD is in each comb of (??).
So now T ⊥ M. By hypothesis, Whoa! jk: Proof

is broken. �
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