

Conditional probability & conditional measures

Jonathan L.F. King

University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu

Webpage <http://squash.1gainesville.com/>
 1 April, 2019 (at 23:52)

ABSTRACT: Abs. cty, Radon-Nikodym thm. Elementary martingale thy. In progress: As of 1Apr2019

Bonjour. As additional notation ^{♥1} use \equiv to mean ‘identically equals’; on the probability space, we mean this a.e. Use r.var or r.v. for ‘random variable’. Use r.walk for ‘random walk’.

Sets & Fields. Use \in for “is an element of”. E.g, letting \mathbb{P} be the set of primes, then, $5 \in \mathbb{P}$ yet $6 \notin \mathbb{P}$. Changing the emphasis, $\mathbb{P} \ni 5$ (“ \mathbb{P} owns 5”) yet $\mathbb{P} \not\ni 6$.

^{♥1}**Phrases:** WLOG: ‘Without loss of generality’. TFAE: ‘The following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the form’. FTSOC: ‘For the sake of contradiction’. Use iff: ‘if and only if’.

IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: *exempli gratia*, ‘for example’. i.e: *id est*, ‘that is’.

N.B: *Nota bene*, ‘Note well’. QED: *quod erat demonstrandum*, meaning “end of proof”.

Number Sets: An expression such as $k \in \mathbb{N}$ (read as “ k is an element of \mathbb{N} ” or “ k in \mathbb{N} ”) means that k is a natural number; a *natnum*.

\mathbb{N} = natural numbers = $\{0, 1, 2, \dots\}$.

\mathbb{Z} = integers = $\{\dots, -2, -1, 0, 1, \dots\}$. For the set $\{1, 2, 3, \dots\}$ of positive integers, the *posints*, use \mathbb{Z}_+ . Use \mathbb{Z}_- for the negative integers, the *negints*.

\mathbb{Q} = rational numbers = $\{\frac{p}{q} \mid p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}_+\}$. Use \mathbb{Q}_+ for the positive *ratnums* and \mathbb{Q}_- for the negative ratnums.

\mathbb{R} = reals. The *posreals* \mathbb{R}_+ and the *negreals* \mathbb{R}_- .

\mathbb{C} = complex numbers, also called the *complexes*.

For $\omega \in \mathbb{C}$, let “ $\omega > 5$ ” mean “ ω is real and $\omega > 5$ ”. [Use the same convention for $\geq, <, \leq$, and also if 5 is replaced by any real number.]

Mathematical objects: Seq: ‘sequence’. poly(s): ‘polynomial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘variable(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’. Fnc: ‘function’ (so ratfnc: means rational function, a ratio of polynomials). cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differentiable’. CoV: ‘Change-of-Variable’. Col: ‘Constant of Integration’. Lol: ‘Limit(s) of Integration’. RoC: ‘Radius of Convergence’.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’. CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand Side’ of an eqn or inequality. LhS: ‘lefthand side’. Sqrt or Sqroot: ‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt: ‘point’, as in “a fixed-pt of a map”.

FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’. MVT: ‘Mean-Value Thm’.

The **logarithm** fnc, defined for $x > 0$, is $\log(x) := \int_1^x \frac{dv}{v}$. Its inverse-fnc is **exp()**. For $x > 0$, then, $\exp(\log(x)) = x = e^{\log(x)}$. For real t , naturally, $\log(\exp(t)) = t = \log(e^t)$. PolyExp: ‘Polynomial-times-exponential’. E.g, $F(t) := [3 + t^2]e^{4t}$ is a polyExp.

For subsets A and B of the same space, Ω , the **inclusion relation** $A \subset B$ means:

$\forall \omega \in A$, necessarily $B \ni \omega$.

And this can be written $B \supset A$. Use $A \subsetneq B$ for *proper inclusion*, i.e, $A \subset B$ yet $A \neq B$.

The **difference set** $B \setminus A$ is $\{\omega \in B \mid \omega \notin A\}$. Employ A^c for the **complement** $\Omega \setminus A$. Use $A \Delta B$ for **symmetric difference** $[A \setminus B] \cup [B \setminus A]$. Furthermore

$A \blacksquare B$, Sets A & B have *at least one* point in common; they intersect.

$A \sqcap B$, The sets have *no* common point; disjoint.

The symbol “ $A \blacksquare B$ ” both asserts intersection and represents the set $A \cap B$. For a collection $\mathcal{C} = \{E_j\}_j$ of sets in Ω , let the **disjoint union** $\bigsqcup_j E_j$ or $\bigsqcup(\mathcal{C})$ represent the union $\bigcup_j E_j$ and also assert that the sets are pairwise disjoint.

If there is a *measure* on the space then

$A \sqcap B$, means their intersection is a nullset; it is empty a.e. (i.e *almost everywhere*)

In contrast, $A \overset{\text{a.e.}}{\blacksquare} B$ means that the sets intersect in positive mass.

A measurable space (X, \mathcal{X}) , is a set X together with a **field** (a σ -algebra) \mathcal{X} of subsets. Suppose we have a collection $\mathcal{G} := \{\mathcal{G}_j\}_{j \in \mathcal{J}}$ of subfields. Given a subcollection $\mathcal{B} \subset \mathcal{J}$, define two new fields

$$\begin{aligned} 1: \quad \bigwedge_{j \in \mathcal{B}} \mathcal{G}_j &:= \bigcap_{j \in \mathcal{B}} \mathcal{G}_j \quad \text{and} \\ &\quad \bigvee_{j \in \mathcal{B}} \mathcal{G}_j := \text{Fld}(\bigcup_{j \in \mathcal{B}} \mathcal{G}_j). \end{aligned}$$

(Field $\bigvee_{\mathcal{B}} \mathcal{G}_j$ is called the **join** of the \mathcal{G}_j fields.) A natural partial-order \leqslant is induced on \mathcal{J} by

$$j \leqslant k \iff \mathcal{G}_j \subset \mathcal{G}_k.$$

Our \mathcal{J} can be extended to be a *complete lattice* by, for each subset $\mathcal{B} \subset \mathcal{J}$, adjoining the two fields $\bigwedge_{\mathcal{B}} \mathcal{G}_j$ and $\bigvee_{\mathcal{B}} \mathcal{G}_j$.

Absolute continuity. Our measurable space is (X, \mathcal{X}) , on which we have two measures μ and ν . Say that ν is **absolutely continuous** w.r.t μ (written $\nu \ll \mu$) if $\forall E \in \mathcal{X}$:

$$E \text{ a } \mu\text{-nullset} \implies E \text{ a } \nu\text{-nullset}.$$

Stronger, say that “ ν is **uniformly** abs-cts w.r.t μ ” if: $\forall \varepsilon, \exists \delta$ such that $\forall E$:

$$\mu(E) \leq \delta \implies \nu(E) \leq \varepsilon.$$

Write this as $\nu \overset{\text{strg}}{\ll} \mu$.

Example. Let X be a denumerable set $\{p_1, p_2, \dots\}$. Define

$$\mu(\{p_n\}) := 1/2^n \text{ and } \nu(\{p_n\}) := 7.$$

Then $\nu \ll \mu$, but not uniformly. (Pt-atoms are not necessary; replace $\{p_n\}$ by the interval $(\frac{1}{2^{n+1}}, \frac{1}{2^n}]$.)

Looking ahead to the Radon-Nikodym derivative, note that $\frac{d\nu}{d\mu}(p_n) = 7 \cdot 2^n$. \square

2: Prop'n. $\nu \stackrel{\text{strg}}{\ll} \mu$ implies $\nu \ll \mu$. If $\nu(X) < \infty$, then the converse holds. \diamond

Proof. If $\nu \stackrel{\text{strg}}{\ll} \mu$ fails then there is an epsilon, say 7, and a sequence of sets so that

$$\mu(E_n) \rightarrow 0, \text{ as } n \rightarrow \infty, \text{ but each } \nu(E_n) \geq 7.$$

WLOG $\sum_n \mu(E_n)$ is finite. So by Borel-Cantelli, $\mu(G) = 0$ where

$$G := \bigcap_{k=1}^{\infty} U_k \quad \text{with} \quad U_k := \bigcup_{n=k}^{\infty} E_n.$$

Evidently each $\nu(U_k) \geq \nu(E_k) \geq 7$, and $U_1 \supset U_2 \supset \dots$. Since $\nu(U_1) \leq \nu(X) < \infty$, we obtain the following equality

$$\nu(G) = \lim_{k \rightarrow \infty} \nu(U_k) \geq 7.$$

Hence $\nu \not\ll \mu$. \spadesuit

3: Lemma. Suppose $h: X \rightarrow \mathbb{R}$ is \mathcal{X} -measurable and

$$\forall G \in \mathcal{X}: \int_G h \, d\mu = 0.$$

Then h is constant-zero μ -a.e. \diamond

Proof. By restricting h to the set $\{h \geq 0\}$, WLOG $h \geq 0$. Let Λ_n be the set of x with $h(x) \geq 1/n$. Integrating shows that

$$0 = \int_{\Lambda_n} h \geq \frac{1}{n} \cdot \mu(\Lambda_n).$$

Hence Λ_n is a nullset. Hence $\bigcup_1^{\infty} \Lambda_n$ is null. \spadesuit

Measures λ_0, λ_1 on (X, \mathcal{X}) are **mutually singular**, written $\lambda_0 \perp \lambda_1$, if there is a (measurable) partition $X = A_0 \sqcup A_1$ so that $\lambda_0(A_1)$ and $\lambda_1(A_0)$ are each zero.

4: Lebesgue-Radon-Nikodym Thm. On (X, \mathcal{X}) suppose we have a signed-measure ν and positive measure μ , each σ -finite. Then exists a unique pair of σ -finite signed-measures λ and ρ so that:

$$\nu = \lambda + \rho, \text{ with } \lambda \perp \mu \text{ and } \rho \ll \mu.$$

Furthermore, there is an μ -a.e-unique μ -integrable (\mathcal{X} -measurable) fnc $h: X \rightarrow \mathbb{R}$ so that $\rho = \int h \, d\mu$. The notation for this h is $\frac{d\rho}{d\mu}$; the “**Radon-Nikodym derivative** of ρ w.r.t μ ”. \diamond

Note that each measurable fnc f has unique decomposition into its **positive part** f^+ and **negative part** f^- (each as measurable as f), where

$$5: \quad f^+ \geq 0, \quad f^- > 0 \quad \text{and} \quad f^+ - f^- = f$$

Further, $f^+ + f^- = |f|$.

6: Prop'n. Let $\mathcal{Y} := \text{Fld}(f)$, where $f \geq 0$. Then there exists a non-decreasing sequence

$$\dagger: \quad f_n \nearrow f \quad (\text{convergence ptwise})$$

of \mathcal{Y} -meas. **step functions** f_n . We can arrange that each f_n is bounded, and has only finitely-many steps. Or, allowing ∞ -ly many steps, we can improve (\dagger) to uniform convergence. \spadesuit

Proof. For a posint k , set $h_k(x) := \frac{1}{k} \cdot \lfloor k \cdot f(x) \rfloor$ and let $f_n := h_{2^n}$. (Finitely-many steps: cut off at $\pm n$.) \spadesuit

Conditional Expectation. We work now on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, with subfields $\mathcal{G}, \mathcal{H} \subset \mathcal{F}$. An integrable random variable Y has a **conditional expectation**, written $E(Y | \mathcal{G})$ or $E_{\mathcal{G}}(Y)$, which is a r.var itself. It is characterized by:

CE_1 : $E(Y | \mathcal{G})$ is integrable and \mathcal{G} -measurable.

CE_2 : For each set $G \in \mathcal{G}$: $\int_G E(Y | \mathcal{G}) = \int_G Y$.

If Y_0, Y_1 are each cond-expectations of Y w.r.t \mathcal{G} , then $Y_0 \stackrel{a.e.}{=} Y_1$. [The \mathcal{G} -measurable difference $Y_0 - Y_1$ has zero-integral against each $G \in \mathcal{G}$. Now apply (3).]

Below, $E(h) = E(E_{\mathcal{G}}(h)) = 0$, so (3) gives:

$$7: \quad [h \stackrel{a.e.}{\geq} 0 \quad \& \quad E_{\mathcal{G}}(h) \stackrel{a.e.}{=} 0] \implies h \stackrel{a.e.}{=} 0.$$

If $E_{\mathcal{G}}(Z^2) \stackrel{a.e.}{=} 0$ then $Z \stackrel{a.e.}{=} 0$.

8: Fact. The conditional expectation operator has these properties:

CE3: Linear: $E_{\mathcal{G}}(3Y + 5Z) = 3E_{\mathcal{G}}(Y) + 5E_{\mathcal{G}}(Z)$.

CE4: Absorbing: For fields $\mathcal{H} \supset \mathcal{G}$,

$$E_{\mathcal{H}}(E_{\mathcal{G}}(Y)) = E_{\mathcal{G}}(Y) = E_{\mathcal{G}}(E_{\mathcal{H}}(Y)).$$

CE5: Positive: If $Y \stackrel{a.e.}{\geq} 0$ then $E_{\mathcal{G}}(Y) \stackrel{a.e.}{\geq} 0$. I.e., Order-preserving: $Y_1 \stackrel{a.e.}{\geq} Y_0 \implies E_{\mathcal{G}}(Y_1) \stackrel{a.e.}{\geq} E_{\mathcal{G}}(Y_0)$. Further, $E_{\mathcal{G}}(|Z|) \stackrel{a.e.}{\geq} |E_{\mathcal{G}}(Z)|$.

CE6: For each $p \in [0, \infty]$: $E_{\mathcal{G}}()$ is an \mathbb{L}^p -contraction. Indeed, its p -norm is 1. \diamond

9: Lemma. Fix a subfield \mathcal{Y} of our probability space. Suppose that Y, Z are integrable random vars, whose product $Y \cdot Z$ is integrable. If Y is \mathcal{Y} -measurable, then

$$E(Y \cdot Z | \mathcal{Y}) \stackrel{a.e.}{=} Y \cdot E(Z | \mathcal{Y}). \quad \diamond$$

Proof. WLOG $Y, Z \geq 0$. WLOG Y is a step-fnc, measurable w.r.t \mathcal{Y} . Et.c. \diamond

Example. Find a seq $\vec{Y} \stackrel{a.e.}{\rightarrow} 0$, with $0 \leq Y_n$ and $E(Y_n) \leq 1$, together with a subfield \mathcal{H} so that

No subseq. of \vec{X} a.e-converges,

where $X_n := E(Y_n | \mathcal{H})$.

Soln. Let H and V each be copies of $(0, 1]$, and let $\Omega := H \times V$ equipped with area measure. Let \mathcal{H} be the Borel field of H ; now stretch it across Ω .

Let $(B_n)_{n=1}^{\infty}$ be an iid-seq of subsets of H –say, B_n is the set of points in $(0, 1]$ whose n^{th} bit is ‘1’. Let $I_n := (0, 1/n] \subset V$. Define

$$Y_n := [\mathbf{1}_{B_n} \times \mathbf{1}_{I_n}] \cdot n.$$

So $E(Y_n)$ is $\frac{1}{2}$. And

$$E(Y_n | \mathcal{H}) = \mathbf{1}_{B_n} \times \mathbf{1}_V.$$

Since $[n \mapsto \mathbf{1}_{B_n}]$ is iid, no subsequence converges in the a.e.-sense. \square

Probabilistic interpretations

What is the expected time, E , to first get “heads”, when flipping a p -coin? Letting $q := 1-p$ be the probability of Tails, we have the recurrence

$$E = 1 + [p \cdot 0 + q \cdot E].$$

Its non-negative solns are $E = \frac{1}{p}, +\infty$. But E equals $\sum_{N=1}^{\infty} q^{N-1} pN$, which is finite. So

Independently flipping a p -coin, the ex-
10: pected number of flips till “heads” is $1/p$ flips.

SMartingales

We now let \mathcal{J} denote an ordered set (\mathcal{J}, \leq) . A *filtration* $\vec{\mathcal{G}}$ (over \mathcal{J}) is an indexed collection of fields s.t

$$j \leq k \implies \mathcal{G}_j \subset \mathcal{G}_k, \quad \text{for all } j, k \in \mathcal{J}.$$

A \mathcal{J} -martingale $(\vec{Y}, \vec{\mathcal{G}})$ has integrable r.vars \vec{Y} (indexed by \mathcal{J}) so that $j \leq k$ implies

$$11: \quad Y_j = E(Y_k | \mathcal{G}_j).$$

Our indexing set \mathcal{J} will usually be $[0.. \infty)$ or $[0.. \infty]$. Whenever $\mathcal{J} = [0.. \infty)$ we will automatically define a field

$$\mathcal{G}_{\infty} := \text{Fld}(\bigcup_{j \in \mathcal{J}} \mathcal{G}_j).$$

(We do not need the generality of (1).) However, there may not exist a reasonable random variable Y_{∞} ; the main goal of this section is studying when $\lim_{j \rightarrow \infty} Y_j$ exists (in various senses) and when the limit r.var gives us a martingale in that $E(Y_{\infty} | \mathcal{G}_j) = Y_j$.

We sometimes use \vec{Y} to abbreviate $(\vec{Y}, \vec{\mathcal{G}})$, where the $\vec{\mathcal{G}}$ fields are known. If they aren’t, then we let

$$\mathcal{G}_k := \bigvee_{j: j \leq k} \text{Fld}(Y_j);$$

this is the smallest field making all the preceding random variables measurable.

Replacing (11) by $Y_j \leq E(Y_k | \mathcal{G}_j)$ gives a *submartingale*, and by $Y_j \geq E(Y_k | \mathcal{G}_j)$, a *supermartingale*. I'll abbreviate the three notions by MG, subMG and superMG. We'll use Chung's term *smartingale* (or *sMG*) for a process \vec{Y} which is any one of these three types.

Stopping-times

Henceforth our indexset \mathcal{J} is $\mathbb{N} = [0.. \infty)$ or $\dot{\mathbb{N}} := [0.. \infty]$. We have a filtration $\vec{\mathcal{G}}$, and automatically a \mathcal{G}_∞ field.

A *stopping time* τ (relative to $\vec{\mathcal{G}}$) is a *past-measurable* fnc $\tau: \Omega \rightarrow \dot{\mathbb{N}}$. That is, for each $N \in \dot{\mathbb{N}}$,

$$12: \quad \{\tau \leq N\} \in \mathcal{G}_N.$$

Use *ST* and *STs* to abbrev. '*stopping time(s)*'. Condition (12) is equivalent to

$$12': \quad \{\tau = j\} \in \mathcal{G}_j,$$

due to the nesting of the fields, since $\{\tau \leq N\}$ equals $\bigcup_{j \leq N} \{\tau = j\}$.

13: Fact. Take \mathcal{G}, \mathcal{H} fields, and $A \in \mathcal{G}$. Then

$$\mathcal{H}^{(A)} := \{D \in \mathcal{H} \mid D \cap A \in \mathcal{G}\}$$

is a subfield of \mathcal{H} . \diamond

Defn. A filtration $\vec{\mathcal{G}}$ and a *ST* $\alpha()$ give rise to a *new* field

$$\mathcal{G}_\alpha := \{D \in \mathcal{G}_\infty \mid \text{For each } N \in \dot{\mathbb{N}}: D \cap \{\alpha \leq N\} \in \mathcal{G}_N\}.$$

It *is* a field since, from (13), this \mathcal{G}_α equals $\bigcap_{N \in \dot{\mathbb{N}}} \mathcal{G}_\infty^{(A_N)}$, where A_N is $\{\alpha \leq N\}$. Easily

$$\mathcal{G}_\alpha = \{D \in \mathcal{G}_\infty \mid \text{For each } N \in \dot{\mathbb{N}}: D \cap \{\alpha = N\} \in \mathcal{G}_N\}.$$

Exer. E0. Suppose $\alpha()$ is a constant *ST*, say, $\alpha \equiv 5$. Then \mathcal{G}_α indeed is \mathcal{G}_5 . \square

14: Fact. For each $K \in \dot{\mathbb{N}}$: $\{\alpha \leq K\} \in \mathcal{G}_\alpha$.

(I.e, stopping-time $\alpha()$ is \mathcal{G}_α -measurable.) \diamond

Proof. For $N \geq K$ note $\{\alpha \leq K\} \cap \{\alpha \leq N\} = \{\alpha \leq K\} \in \mathcal{G}_K \subset \mathcal{G}_N$.

When $N < K$ then $\{\alpha \leq K\} \cap \{\alpha \leq N\} = \{\alpha \leq N\} \in \mathcal{G}_N$. \spadesuit

15: Lemma. When $\alpha \leq \beta$ are *STs* then $\mathcal{G}_\alpha \subset \mathcal{G}_\beta$. \diamond

Proof. For each $N \in \dot{\mathbb{N}}$ we have that

$$16: \quad \{\alpha \leq N\} \supset \{\beta \leq N\}.$$

Fix a set $D \in \mathcal{G}_\alpha$. Given N and letting

$$I := D \cap \{\beta \leq N\},$$

our goal is $I \in \mathcal{G}_N$. Happily,

$$\begin{aligned} I &= I \cap \{\alpha \leq N\}, \quad \text{by (16),} \\ &= [D \cap \{\alpha \leq N\}] \cap \{\beta \leq N\}. \end{aligned}$$

This lies in $\mathcal{G}_N \vee \mathcal{G}_N \stackrel{\text{note}}{=} \mathcal{G}_N$. \spadesuit

Examples of Martingales. Below we describe several MGs in terms of gambling. The probability space can be thought of as $\Omega := (0, 1]$ or as a cantor set.

17: *The pre-divorced gambler.* The gambler has \$1 in his pocket, enters a casino and –at each stage– bets *all* his money on a fair game. He stops the first time that he is broke –which is the first time that he loses! His fortune r.v. at time n is

$$X_n := 2^n \cdot \mathbf{1}_{(0,1/2^n]}.$$

Evidently we have almost-sure convergence $X_n \xrightarrow{\text{a.e.}} 0$ (but not \mathbb{L}^1 convergence). He comes home to his wife flat-broke. Moreover, he skulks home –on average– after two bets! (This, from (10).) \square

18: *Win or Double-up.* This gambler starts with no money, $Y_0 \equiv 0$; he is going to borrow to bet. He bets a buck: if wins, quits, else doubles his bet to \$2. If he wins, he quits, else he doubles-up again. Etc.

Evidently \vec{Y} is a disguised version of \vec{X} ; indeed

$$Y_n = 1 - X_n.$$

So $\vec{Y} \xrightarrow{\text{a.e.}} 1$, and \vec{Y} has the same convergence properties as \vec{X} .

While this looks good for the gambler, we will later show that, in expectation, he must have infinitely deep pockets to implement this scheme. \square

19: Insanity that never quits. Fix posints $H_n \nearrow \infty$ so that each $H_N \geq 3 \cdot \sum_{j=1}^{N-1} H_j$.

Write the prob-space as $\Omega := \{\pm 1\}^{\mathbb{Z}^+}$; a cantor set. This gambler borrows money from The Mob, and he never quits. At stage j he bets H_j dollars. So his (cumulative) fortune is

$$Z_{N+1}(\omega) = \sum_{j=1}^N \omega_j \cdot H_j.$$

For an ω with $\omega_N = +1$ infinitely-often, evidently

$$\limsup_N Z_N(\omega) = +\infty.$$

The liminf is $-\infty$ when $\omega_N = -1$ infinitely; evidently each of these events happens almost-surely (off the endpoints of the cantor set). So *this* MG diverges almost-surely, in a spectacular way. (And –when The Mafia comes to collect its loan– things will spectacular as well.) \square

Exer. E1. Create a mean-zero MG \vec{Z} such that $X := \lim_n Z_n$ exists-a.e. Arrange that $0 \leq X < \infty$ and $E(X) = \infty$. \square

Convention. When a filtration $\vec{\mathcal{G}}$ is known, agree to allow $E_j()$ to abbreviate $E_{\mathcal{G}_j}()$.

Doob decomposition of subMG. Some results about smartingales can be reduced to MGs.

20: Theorem. Consider a subMG $(\vec{S}, \vec{\mathcal{G}})$. Then there exists a MG \vec{Y} , adapted to $\vec{\mathcal{G}}$, and an integrable positive process \vec{P} so that

$$d1: S_n = Y_n + P_n \quad (\text{for } n = 0, 1, 2, \dots).$$

$$d2: 0 = P_0 \leq P_1 \leq P_2 \leq P_3 \leq \dots$$

d3: Each P_j is measurable w.r.t \mathcal{G}_{j-1} .

The \vec{Y}, \vec{P} pair is unique.

If \vec{S} is \mathbb{L}^1 -bounded, then so are \vec{Y} and \vec{P} . Indeed $E(|\vec{P}|) \leq 2B$, where $B := E(|\vec{S}|)$. \diamond

Proof. We establish Uniqueness: For $j \geq 1$ certainly $E_j(Y_j - Y_{j-1}) \equiv 0$, since \vec{Y} is a MG. Thus $E_{j-1}(S_j - S_{j-1})$ equals $E_{j-1}(P_j - P_{j-1})$. Courtesy (d3),

$$P_j - P_{j-1} = E_{j-1}(S_j) - S_{j-1}.$$

Since $P_0 \equiv 0$, summing the telescoping series gives

$$21: \quad P_N = \sum_{j \in [1..N]} [E_{j-1}(S_j) - S_{j-1}].$$

Thus \vec{P} is uniquely determined, hence so is \vec{Y} .

Existence. Define P_N by (21). Then $P_0 \equiv 0$ and $P_N \geq P_{N-1}$ since $E_{N-1}(S_N) - S_{N-1} \geq 0$. And RhS(21) is \mathcal{G}_{N-1} -measurable, hence (d3).

As a finite sum, P_N is integrable; so Y_N too is integrable, when defined by (d1). To verify MG-ness we compute

$$\begin{aligned} Y_N - Y_{N-1} &= S_N - S_{N-1} - [P_N - P_{N-1}] \\ &= \text{same} - [E_{N-1}(S_N) - S_{N-1}] \\ &= S_N - E_{N-1}(S_N). \end{aligned}$$

Conditioning this on \mathcal{G}_{N-1} indeed gives 0.

\mathbb{L}^1 -boundedness. Observe that

$$\begin{aligned} E_0(P_N) &= \sum_{j \in [1..N]} E_0(E_{j-1}(S_j - S_{j-1})) \\ &= \sum_j [E_0(S_j) - E_0(S_{j-1})], \end{aligned}$$

which equals $E_0(S_N) - S_0$. And $\int |P_N| = \int P_N$ i.e $\int E_0(P_N)$, i.e $[\int S_N] - \int S_0$. \diamond

Sampling. Henceforth, fix a MG $(\vec{Y}, \vec{\mathcal{G}})$ over indexset \mathcal{J} . A ST τ is “ \mathcal{J} -stopping-time” if the event $\{\tau() \notin \mathcal{J}\}$ is null. More strongly, a ST τ is \mathcal{J} -bounded if there exists $N_0 \in \mathcal{J}$ with $\tau() \leq N_0$. (So either $\mathcal{J} \ni \infty$ or else τ is bounded by some integer.) A \mathcal{J} -ST τ yields a random variable Y_τ defined, at each $\omega \in \Omega$, to be $[Y_{\tau(\omega)}](\omega)$.

22: Lemma. If τ is a \mathcal{J} -ST then $Y_\tau \in \mathcal{G}_\tau$. ◊

Proof. Take a Borel set $S \subset \mathbb{R}$. Fixing an $N \in \mathcal{J}$, we want to show that

$$\{Y_\tau() \in S\} \cap \{\tau = N\}$$

is in \mathcal{G}_N . But this intersection equals

$$\{Y_N \in S\} \cap \{\tau = N\} \stackrel{\text{note}}{\in} \mathcal{G}_N \vee \mathcal{G}_N. \quad \spadesuit$$

23: *Integrability.* A Y_τ could have $E(Y_\tau) \neq E(Y_0)$: Let \vec{Y} be the std random-walk on \mathbb{Z} , and let τ stop at 7. So $E(Y_\tau) = 7 \neq 0 = E(Y_0)$.

Worse is a r.walk \vec{Z} and ST with $E(Z_\beta) = +\infty$: Set $Z_0 := 0$. Let Z_1 jump to $\pm n$, each with prob $= \frac{1}{2}/2^n$, for $n = 1, 2, \dots$. Depending on the value of $n := |Z_1|$, our ST β stops at the first visit to position 3^n . So $E(Z_\beta)$ is $\sum_{n=1}^{\infty} [3/2]^n$. Even worse, we could modify β so arrange that Z_β simply fails to have an expectation.

What goes wrong in these examples is that the ST β is not \mathcal{J} -bounded. Fortunately:

24: Imagine that β is a \mathcal{J} -bounded ST for \mathcal{J} -martingale \vec{Y} . Then Y_β is integrable.

This is implicit in the next proof, of Doob's thm, near the end. □

Generalizing the below: The next thm, as stated, applies to a MG. However, the proof goes through to show: If \vec{Y} is a smartingale, then $(Y_\alpha, \mathcal{G}_\alpha), (Y_\beta, \mathcal{G}_\beta)$ is a two-term smartingale of the same type. □

25: **Doob's Optional Sampling Theorem.** Suppose that $\alpha \leq \beta$ are \mathcal{J} -bounded STs. Then

25': $E(Y_\beta | \mathcal{G}_\alpha) = Y_\alpha.$ ◊

Proof. Said differently, we need to establish that (Y_α, Y_β) is a two-term martingale. We'll do this in two steps; by reducing to (Y_0, Y_β) , then to (Y_0, Y_{17}) .

Fix an $K \in \mathcal{J}$; ISTShow (25') when restricted to the set $\Omega' := \{\alpha = K\}$, since Ω' is in \mathcal{G}_α , courtesy (14). So WLOG $\alpha \equiv K$. Since Y_K is integrable, we can subtract it to define new sequences, for $n \geq K$, by

$$\begin{aligned} \tilde{Y}_{n-K} &:= Y_n - Y_K \quad \text{and} \\ \tilde{\mathcal{G}}_{n-K} &:= \mathcal{G}_n. \end{aligned}$$

Renaming $(\tilde{Y}_k, \tilde{\mathcal{G}}_k)$ to (Y_k, \mathcal{G}_k) gives:

$$\text{WLOG } \alpha \equiv 0 \text{ and } Y_0 \equiv 0.$$

Our goal ²² is $E(Y_\beta | \mathcal{G}_0) \stackrel{\text{a.e}}{=} Y_0$. (For the sequel, we don't need that $Y_0 \equiv 0$, but the reader may find this extra knowledge helpful in understanding the argument.) Restating, for each set $\Gamma \in \mathcal{G}_0$ we desire

$$\int_{\Gamma} E(Y_\beta | \mathcal{G}_0) \stackrel{?}{=} \int_{\Gamma} Y_0.$$

Conditioning on Γ , then, we need but show that $\int_{\Omega} E(Y_\beta | \mathcal{G}_0) = \int_{\Omega} Y_0$. Consequently

$$\ddagger: \int_{\Omega} Y_\beta \stackrel{?}{=} \int_{\Omega} Y_0$$

is our goal. ²³

It is now time to use that β is \mathcal{J} -bounded. WLOG $\beta() \leq 17$. In consequence

$$\begin{aligned} \int_{\Omega} Y_\beta &= \sum_{j \leq 17} \int_{\{\beta=j\}} Y_\beta = \sum_{j \leq 17} \int_{\{\beta=j\}} Y_j \\ &= \sum_{j \leq 17} \int_{\{\beta=j\}} Y_{17}; \end{aligned}$$

this latter, since $\{\beta = j\}$ is in \mathcal{G}_j . The upshot is that

$$\int_{\Omega} Y_\beta = \int_{\Omega} Y_{17} = \int_{\Omega} Y_0,$$

since –by hypothesis– the pair (Y_0, Y_{17}) is a two-term martingale. ♦

²² IOWords, we have reduced the problem to showing that (Y_0, Y_β) is a two-term martingale.

²³ This used that $\int E(Y_\beta | \mathcal{G}_0) = \int Y_\beta$, which goes all the way back to knowing that, originally, $\mathcal{G}_\beta \supset \mathcal{G}_\alpha$.

26: Corollary. (\vec{Y}, \vec{g}) a \mathcal{J} -subMG, and $N \in \mathcal{J}$. For each posreal b :

$$P(S) \leq \frac{1}{b} \cdot E(|Y_N|),$$

where S is event $\{\sup_{j \leq N} Y_j \geq b\}$. \diamond

Proof. WLOG $b = 7$. Let τ be the $[1..N]$ -infimum of those j with $Y_j \geq 7$. Thus

$$7 \cdot P(S) = \int_S 7 \leq \int_S Y_\tau \leq \int_S Y_N;$$

this latter, since $S \in \mathcal{G}_\tau$ and (Y_τ, Y_N) is a subMG. \spadesuit

27: Application. Suppose MG \vec{Y} has pointwise bound

$$*: \quad \forall n: \quad |Y_{n+1} - Y_n| \leq 7.$$

Suppose β is an integrable ST. Then Y_β is integrable and $E(Y_\beta) = E(Y_0)$. \diamond

Proof. The tool we use is: If \vec{Z} integrable and it \mathbb{L}^1 -converges to a r.v. Z_∞ , then $E(Z_n) \rightarrow E(Z_\infty)$.

Automatically $Z_N := Y_{\beta \wedge N}$ is integrable. For each $k > N$, by (*), the difference $|Y_k - Y_N| \leq 7 \cdot [k - N] \leq 7 \cdot k$. Estimating the \mathbb{L}^1 -norm,

$$\begin{aligned} \|Y_k - Z_N\| &\leq \sum_{k:k>N, \{\beta()=k\}} \int |Y_k - Y_N| \\ &\leq \sum_{k:k>N, \{\beta=k\}} \int 7k = 7 \cdot \int \beta. \end{aligned}$$

This last goes to zero, since $E(\beta) < \infty$.

So ISTShow that $E(Z_N) \stackrel{?}{=} E(Y_0)$. Here is the only place that we use the MG property: Doob's Optional Sampling, (25), tells us that the pair $(Y_0, Y_{\beta \wedge N})$ is a two-term MG, since $0 \leq \beta \wedge N$ are bounded stopping-times. \spadesuit

Exer. A2. Consider an independent random-walk on the integers, where each step-probability depends on both position and time.

A **3-spread** $D()$ is a mean-zero random variable with support on $J := [-3..+3]$. That is,

$$\begin{aligned} \sum_{j \in J} P(D=j) &= 1 \quad \text{and} \\ E(D) &\stackrel{\text{note}}{=} \sum_{j \in J} j \cdot P(D=j) = 0. \end{aligned}$$

For each time $n \in \mathbb{Z}_+$ and position $p \in \mathbb{Z}$, we have a 3-spread $D_{n,p}$, and all these random variables are mutually independent. Define random-walk \vec{S} by $S_0 \equiv 0$ (we start at the origin) and

$$S_{n+1} := S_n + D_{n+1, S_n}.$$

Let $\tau()$ be the stopping time where the r.walk first hits position "5". Prove that $E(\tau)$ is infinite. \square

Soln. For each natnum N let

$$\mathcal{G}_N := \bigvee_{\substack{j \in [1..N] \\ p \in \mathbb{Z}}} \text{Fld}(D_{j,p}).$$

So $\text{Trivial} = \mathcal{G}_0 \subset \mathcal{G}_1 \subset \dots$. The independence implies $D_{N+1,p} \perp \mathcal{G}_N$. Restated

$$\dagger: \quad E_N(D_{N+1,p}) \stackrel{\text{a.e.}}{=} 0.$$

Measurability: Note $S_0 \in \mathcal{G}_0$. To show each $S_N \in \mathcal{G}_N$, we will confirm

$$[S_7 \in \mathcal{G}_7] \implies [S_8 \in \mathcal{G}_8],$$

the induction step. For each integer p let

$$B_p := \{\omega \mid S_7(\omega) = p\}$$

Each $D_{8,p} \in \mathcal{G}_8$, so $S_7 + D_{8,p} \in \mathcal{G}_8$. And $B_p \in \mathcal{G}_7 \subset \mathcal{G}_8$, so the product $[S_7 + D_{8,p}] \cdot \mathbf{1}_{B_p}$ is \mathcal{G}_8 -measurable. As a result,

$$\sum_{p \in \mathbb{Z}} [S_7 + D_{8,p}] \cdot \mathbf{1}_{B_p} \stackrel{\text{note}}{=} S_8$$

is \mathcal{G}_8 -measurable.

Integrability: $\text{Range}(S_N) \subset [-3^N..3^N]$, whence S_N is bounded, hence integrable.

Martingale-ness. ISTDemonstrate that

$$\dagger: \quad E_7(S_8) \stackrel{\text{a.e.}}{=} S_7.$$

Fix p . Because $B_p \in \mathcal{G}_7$, ISTEstablish (\dagger) on set B_p . There, $S_8 = S_7 + D_{8,p}$; so $E_7(S_8) = S_7 + E_7(D_{8,p})$. Now (\dagger) completes the argument. \spadesuit

Inequalities

Below, J always denotes a subinterval of J . A fnc $f: J \rightarrow \mathbb{R}$ is **convex** (for emphasis, some say "convex-up") if the set $\{(x, y) \mid x \in J \text{ & } y \geq f(x)\}$ is a convex subset of the plane.

Henceforth, let \mathcal{A} be the set of linear (well, *affine*) fncs $L: \mathbb{R} \rightarrow \mathbb{R}$. Use $\mathcal{B} = \mathcal{B}_f \subset \mathcal{A}$ for the subset of fncs L lying below, i.e., $L() \leq f()$. Let $\mathcal{Q} \subset \mathcal{A}$ be the set of linear fncs with *rational slope* and that pass through some rational point.

28: Lemma. $f:J \rightarrow \mathbb{R}$ convex, on an open interval J . Then, pointwise,

$$f() = \sup_{L \in \mathcal{B}_f} L().$$

Indeed, $f = \sup_{L \in \mathcal{C}} L$ holds for a certain countable subcollection $\mathcal{C} \subset \mathcal{B}$. If $J = \mathbb{R}$ and f is linear, then $\mathcal{C} := \{f\}$. Otherwise, let $\mathcal{C} := \mathcal{Q} \cap \mathcal{B}_f$. \diamond

Proof. Exercise. \diamond

29: Jensen's Inequality (Thm). Take $f:J \rightarrow \mathbb{R}$ convex, on an open interval J . Suppose Y is an integrable r.v. with range in J . Then

$$f(E(Y | \mathcal{G})) \stackrel{\text{a.e.}}{\leq} E(f(Y) | \mathcal{G}),$$

for each field \mathcal{G} on the probability space. \diamond

Proof. Take a set \mathcal{C} of linears with $f = \sup_{L \in \mathcal{C}} L$. Let $E(\cdot)$ denote $E(\cdot | \mathcal{G})$. Fixing a version of $E(Y)$, we can let $L(E(Y))$ be the definition of $E(L(Y))$. Taking sups gives this pointwise equality,

$$\dagger: \quad f(E(Y)) = \sup_{L \in \mathcal{C}} E(L(Y)).$$

For each L we have, since $E(\cdot)$ is a positive operator,

$$E(L(Y)) \stackrel{\text{a.e.}}{\leq} E(f(Y)).$$

While we can choose a version of $E(f(Y))$ making the “a.e.” nullset actually empty, it is unclear how to do make this choice work for *every* $L \in \mathcal{C}$. We'd like to be able to say

$$\ddagger: \quad \sup_{L \in \mathcal{C}} E(L(Y)) \stackrel{\text{a.e.}}{\leq} E(f(Y)).$$

However, if \mathcal{C} is uncountable then we seem to in danger of an uncountable union of nullsets.

Courtesy (28), we can use a *countable* \mathcal{C} . Now (\dagger, \ddagger) together give the lemma. \diamond

30: Corollary. $f:J \rightarrow \mathbb{R}$ convex-up on an open interval J , and \vec{Y} is a process with range in J . Then

\vec{Z} is a subMG, where $Z_n := f(Y_n)$,

if either: \vec{Y} is a MG —or— \vec{Y} is a subMG and f is non-decreasing. \diamond

Proof. Fix n and let $E(\cdot)$ mean $E(\cdot | \mathcal{G}_n)$. So

$$\begin{aligned} E(Z_{n+1}) &\stackrel{\text{def}}{=} E(f(Y_{n+1})) \\ &\geq f(E(Y_{n+1})), \quad \text{by Jensen's,} \\ &\stackrel{*}{\geq} f(Y_n) \stackrel{\text{def}}{=} Z_n. \end{aligned}$$

When \vec{Y} a MG then $(*)$ is equality. But for a subMG $E(Y_{n+1}) \geq Y_n$, and here is where we use that f is non-decreasing. \diamond

31: Cauchy-Schwarz Inequality. Suppose Y, Z are square-integrable r.v.s. Then YZ is integrable and

$$\dagger: \quad E_{\mathcal{G}}(YZ)^2 \stackrel{\text{a.e.}}{\leq} E_{\mathcal{G}}(Y^2) \cdot E_{\mathcal{G}}(Z^2). \quad \diamond$$

Proof. (Integrability of YZ follows from truncation.)

If $G := \{E_{\mathcal{G}}(Z^2) = 0\}$ has positive-mass, then condition on it. (Permissible, since $G \in \mathcal{G}$.) By (7), WLOG $Z \equiv 0$. Hence the product $YZ \equiv 0$. So $E_{\mathcal{G}}(YZ) \equiv 0$. Thus (\dagger) .

Let $E(\cdot) := E_{\mathcal{G}}(\cdot)$. WLOG the event $\{S > 0\}$ is all of Ω , where

$$S := E(Z^2) \text{ and } M := E(YZ).$$

(The symbols come from square and mixed product.) Let $h := SY - MZ$. And h^2 is non-negative, so $0 \stackrel{\text{a.e.}}{\leq} E(h^2)$. Courtesy (9) and $S, M \in \mathcal{G}$, our $E(h^2)$ equals

$$\begin{aligned} S^2 \cdot E(Y^2) + M^2 \cdot E(Z^2) - 2SM \cdot E(YZ) \\ \stackrel{\text{note}}{=} [S \cdot E(Y^2) - M^2]S. \end{aligned}$$

Dividing by the positive S gives (\dagger) , in the form $0 \stackrel{\text{a.e.}}{\leq} S \cdot E(Y^2) - M^2$. \diamond

Convergence

Below, convergence of a sequence of reals means convergence in $[-\infty, \infty]$.

A process \vec{Y} is **\mathbb{L}^1 -bounded** if

$$B := \sup_n \int |Y_n| \quad \text{is finite.}$$

Write this bound B as $E(|\vec{Y}|)$.

32: Prop'n. Suppose that an \mathbb{L}^1 -bounded process \vec{Y} a.e-converges (in $[-\infty, +\infty]$) and call the limit X . Then X has the same bound, $E(|X|) \leq E(|\vec{Y}|)$. \diamond

Proof. We get a.e-convergence $|Y_n| \xrightarrow{\text{a.e.}} |X|$ of the absolute values, so Fatou tells us that $E(|X|) \leq \liminf_n E(|Y_n|)$. \spadesuit

Doob's notion of upcrossings. When does a seq. of reals, $\vec{y} = (y_j)_{j=0}^\infty$, converge? Certainly “Yes” if, for each pair of rationals $a < b$, there are only *finitely many* index-pairs $\alpha < \beta$ with $y_\alpha \leq a < b \leq y_\beta$. To count such *upcrossings*, define times

$$33: \quad \alpha_0 \leq \beta_0 \leq \alpha_1 \leq \beta_1 \leq \alpha_2 \leq \beta_2 \leq \dots$$

by artificially letting $\beta_{-1} := 0$. For $j = 0, 1, \dots$ let

$$\begin{aligned} \alpha_j &:= n \text{ be the smallest } n \in [\beta_{j-1} \dots \infty] \text{ with } y_n \leq a; \\ \beta_j &:= n \text{ be the smallest } n \in [\alpha_j \dots \infty] \text{ with } y_n \geq b. \end{aligned}$$

(Here “smallest” means *infimum*; it is ∞ if no such n exists.) We say that \vec{y} “**upcrosses** the $[a, b]$ -band as time goes from α_j to β_j ”.

Given a process \vec{Y} and sample-pt $\omega \in \Omega$, let $U^{a,b}(\omega) \in [0.. \infty]$ count the number of upcrossings of sequence $\vec{Y}(\omega)$. (The count $U^{a,b}(\omega)$ is the number of j having $\beta_j(\omega)$ finite.) For \vec{Y} to a.e-converge, then, we need but show that each $U^{a,b}$ is *a.e-finite*.

So showing each $E(U^{a,b}) < \infty$, will suffice.

34: MCT (Martingale Convergence Thm). For an \mathbb{L}^1 -bnded smartingale \vec{Y} , the almost-everywhere $\lim_n Y_n =: X$ exists. Indeed, $E(|X|) \leq E(|\vec{Y}|)$. \diamond

Reductions. It is enough to show, for a.e ω , that $\lim \vec{Y}(\omega) =: X$ exists in $[-\infty, +\infty]$. For then (32) tells us that X is finite-a.e and $E(|X|)$ has the same bound.

WLOG \vec{Y} is a subMG (replace Y_j by $-Y_j$ to convert a superMG a subMG).

The upcrossing count of \vec{Y} over band- $[a, b]$ is that same as that of process

$$Z_n := [Y_n - a] \cdot \frac{1}{b-a}$$

upcrossing band- $[0, 1]$. Furthermore, \vec{Z} is still a subMG (since $b-a$ is positive) and \vec{Z} is still \mathbb{L}^1 -bounded.

So ISTShow, for an arbitrary \mathbb{L}^1 -bnded subMG, that $E(U^{0,1})$ is finite. Verifying that

$\dagger: \quad E(U) \stackrel{?}{\leq} E(|\vec{Y}|)$, where U is the upcrossing count of the $[0, 1]$ -band,

would certainly suffice. \square

Proof of MCT. Courtesy Jensen's Inequality, in form (30), we may assume that

$$35: \quad \forall n: \quad Y_n \geq 0,$$

simply by removing the negative part: Replace Y_n with $\text{Max}(0, Y_n)$. And \vec{Y} stays \mathbb{L}^1 -bounded.

Fix N and let U_N count the number of upcrossings of $[0, 1]$ by (Y_1, \dots, Y_N) ; so cut-off the STs of (33) at N by redefining

$$\alpha_j := \text{Min}(\alpha_j, N) \quad \text{and} \quad \beta_j := \text{Min}(\beta_j, N).$$

(For each $j > \frac{N}{2}$, now, our $\alpha_j = \beta_j = N$.) Our noble goal (\dagger) can be transmogrified into

$\dagger\dagger: \quad E(U_N) \stackrel{?}{\leq} E(Y_N).$

Astronomy. Decompose Y_N as a telescoping sum,

$$Y_N = \mathbf{P} + \mathbf{I} + Y_{\alpha_0},$$

where the Positive and Integral–non-negative parts (names to be justified) are

$$\begin{aligned} \mathbf{P} &:= \sum_{j \in [0..N]} [Y_{\beta_j} - Y_{\alpha_j}]; \\ \mathbf{I} &:= \sum_{k \in [0..N]} [Y_{\alpha_{k+1}} - Y_{\beta_k}]. \end{aligned}$$

For arbitrary stopping times $\sigma() \leq \tau() \leq N$ on our subMG, remark that

$$\int [Y_\tau - Y_\sigma] = \int [E(Y_\tau | \mathcal{G}_\sigma) - Y_\sigma] \geq \int 0.$$

It follows that $E(\mathbf{I})$ is non-negative. \heartsuit^4 Also non-negative is $E(Y_{\alpha_0})$, by (35). Thus $E(\mathbf{P}) \leq E(Y_N)$.

\heartsuit^4 The same is true for $E(\mathbf{P})$, but we don't want to discard \mathbf{P} .

So (††) will follow if we can establish this pointwise inequality,

$$\dagger: \quad \forall \omega \in \Omega : \quad U_N(\omega) \stackrel{?}{\leq} \mathbf{P}(\omega).$$

To this heroic end, fix a sample point ω and now interpret $\mathbf{P}, U_N, \mathbf{Y}_n$ as *numbers*, rather than as random variables.

Let K be the smallest index j for which (α_j, β_j) is not an upcrossing. Thus

$$\text{For } j \in [0..K]: \quad \mathbf{Y}_{\beta_j} - \mathbf{Y}_{\alpha_j} \geq 1 - 0 = 1.$$

$$\text{For } j \in (K..N]: \quad \mathbf{Y}_{\beta_j} - \mathbf{Y}_{\alpha_j} = \mathbf{Y}_N - \mathbf{Y}_N = 0.$$

Summing, we see that $\mathbf{P} \geq U_N + [\mathbf{Y}_{\beta_K} - \mathbf{Y}_{\alpha_K}]$.

Our heart's desire now is to corroborate $\mathbf{Y}_{\beta_K} \geq \mathbf{Y}_{\alpha_K}$. We can dispense with the case where α_K is already N since, there, $\alpha_K = \beta_K$.

Thus $\alpha_K < N$ and so $\mathbf{Y}_{\alpha_K} = 0$. Since K did not give an upcrossing, it must be that $\mathbf{Y}_{\beta_K} < 1$ (and $\beta_K = N$). But how could we ever establish that

$$\mathbf{Y}_N \stackrel{?}{\geq} 0,$$

if we didn't have (35) at our disposal? We know that $\mathbf{Y}_N < 1$. But without our Jensen's Inequality step, this \mathbf{Y}_N could be arbitrarily negative. Although (35) was used elsewhere in the proof, it is here where it is *crucially* used. ♦

Downcrossings. How can \mathbf{I} have non-negative integral? After all, it is a sum of differences such as $\mathbf{Y}_{\alpha_7} - \mathbf{Y}_{\beta_6}$; and isn't that always a downcrossing?

Well for some ω , yes, $\mathbf{Y}_{\alpha_7} - \mathbf{Y}_{\beta_6}$ is a downcrossing and hence is ≤ 1 . Other ω have $\beta_6 = N$, so $\mathbf{Y}_{\alpha_7} - \mathbf{Y}_{\beta_6} = \mathbf{Y}_N - \mathbf{Y}_N$ is zero. But some ω start a downcrossing, $\mathbf{Y}_{\beta_6} \geq 1$, but never finish it. So $\alpha_7 = N$ and \mathbf{Y}_{α_7} can be any posreal. *Here* is the case where the difference $\mathbf{Y}_{\alpha_7} - \mathbf{Y}_{\beta_6}$ can be arbitrarily positive—and this allows the integral $\mathbf{E}(\mathbf{I})$ to be positive. □

36: Theorem. Fix a MG $(\vec{\mathbf{Y}}, \vec{\mathcal{G}})_{\mathbb{N}}$ and a r.var \mathbf{Z} .

Suppose $\mathbf{Y}_n \xrightarrow{\text{in } \mathbb{L}^1} \mathbf{Z}$. Then $\mathbf{Z} \in \mathbb{L}^1$ and $\mathbf{E}(\mathbf{Z} | \mathcal{G}_N) = \mathbf{Y}_N$, for each N .

Conversely, recall $\mathcal{G}_{\infty} := \bigvee_{j<\infty} \mathcal{G}_j$ and suppose $\forall n : \mathbf{E}(\mathbf{Z} | \mathcal{G}_n) = \mathbf{Y}_n$. Then $\mathbf{Y}_n \xrightarrow{\text{in } \mathbb{L}^1} \mathbf{Z}'$, where $\mathbf{Z}' := \mathbf{E}(\mathbf{Z} | \mathcal{G}_{\infty})$. ◇

Proof. Take a $B \in \mathcal{G}_N$. For each $k > N$,

$$\begin{aligned} 0 &\leq \left| \int_B \mathbf{Y}_N - \int_B \mathbf{Z} \right| = \left| \int_B \mathbf{Y}_k - \int_B \mathbf{Z} \right| \\ &\leq \int_B |\mathbf{Y}_k - \mathbf{Z}| \end{aligned}$$

Now sending $k \nearrow \infty$ corroborates $\int_B \mathbf{Y}_N = \int_B \mathbf{Z}$. ♦

Filename: Problems/Analysis/Measures/co.martct-.latex
As of: Sunday 05Mar2006. Typeset: 1Apr2019 at 23:52.