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Bonjour. As additional notation ♥1 use ≡ to mean ‘iden-
tically equals’; on the probability space, we mean this a.e. Use
r.var or r.v. for ‘random variable’. Use r.walk for ‘random walk’.

Sets & Fields. Use ∈ for “is an element of”. E.g, letting
P be the set of primes, then, 5 ∈ P yet 6 /∈ P. Changing the
emphasis, P 3 5 (“P owns 5”) yet P 63 6.

♥1Phrases: WLOG: ‘Without loss of generality’. TFAE: ‘The
following are equivalent’. ITOf: ‘In Terms Of’. OTForm: ‘of the
form’. FTSOC: ‘For the sake of contradiction’. Use iff: ‘if and
only if’.
IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.
Use w.r.t: ‘with respect to’ and s.t: ‘such that’.
Latin: e.g: exempli gratia, ‘for example’. i.e: id est, ‘that is’.

N.B: Nota bene, ‘Note well’. QED: quod erat demonstrandum,
meaning “end of proof”.
Number Sets: An expression such as k ∈ N (read as “k is

an element of N” or “k in N”) means that k is a natural number;
a natnum.

N = natural numbers = {0, 1, 2, . . . }.
Z = integers = {. . . ,−2,−1, 0, 1, . . . }. For the set
{1, 2, 3, . . . } of positive integers, the posints, use Z+. Use Z−
for the negative integers, the negints.

Q = rational numbers = { p
q
| p ∈ Z and q ∈ Z+}. Use Q+ for

the positive ratnums and Q− for the negative ratnums.
R = reals. The posreals R+ and the negreals R−.
C = complex numbers, also called the complexes.
For ω∈C, let “ω > 5” mean “ω is real and ω > 5”. [Use

the same convention for >, <,6, and also if 5 is replaced by any real
number.]
Mathematical objects: Seq: ‘sequence’. poly(s): ‘polyno-

mial(s)’. irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘vari-
able(s)’ and parm(s): ‘parameter(s)’. Expr.: ‘expression’. Fnc:
‘function’ (so ratfnc: means rational function, a ratio of polyno-
mials). cty: ‘continuity’. cts: ‘continuous’. diff’able: ‘differen-
tiable’. CoV: ‘Change-of-Variable’. CoI: ‘Constant of Integration’.
LoI: ‘Limit(s) of Integration’. RoC: ‘Radius of Convergence’.
Soln: ‘Solution’. Thm: ‘Theorem’. Prop’n: ‘Proposition’.

CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand Side’
of an eqn or inequality. LhS: ‘lefthand side’. Sqrt or Sqroot:
‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt:
‘point’, as in “a fixed-pt of a map”.
FTC: ‘Fund. Thm of Calculus’. IVT: ‘intermediate-Value Thm’.

MVT: ‘Mean-Value Thm’.
The logarithm fnc, defined for x>0, is log(x) :=

∫ x
1

dv
v
. Its

inverse-fnc is exp(). For x>0, then, exp
(
log(x)

)
= x = elog(x).

For real t, naturally, log
(
exp(t)

)
= t = log(et). PolyExp: ‘Poly-

nomial-times-exponential’. E.g, F (t) := [3 + t2]·e4t is a polyExp.

For subsets A and B of the same space, Ω, the inclusion
relation A ⊂ B means:

∀ω ∈ A, necessarily B 3 ω.

And this can be writtenB ⊃ A. UseA $ B for proper inclusion,
i.e, A ⊂ B yet A 6= B.

The difference set BrA is {ω ∈ B | ω /∈ A}. Employ Ac for
the complement Ω r A. Use A 4 B for symmetric differ-
ence [ArB] ∪ [B rA]. Furthermore

Au•B , Sets A &B have at least one point in
common; they intersect.

A uB , The sets have no common point; dis-
joint.

The symbol “Au•B” both asserts intersection and represents
the set A ∩B. For a collection C = {Ej}j of sets in Ω, let the
disjoint union

⊔
j Ej or

⊔
(C) represent the union

⋃
j Ej and

also assert that the sets are pairwise disjoint.
If there is a measure on the space then

A
a.e
uB , means their intersection is a nullset; it

is empty a.e. (i.e almost everywhere)

In contrast, A
a.e
u•B means that the sets intersect in positive

mass.
A measurable space (((X,X))), is a set X together with a field

(a σ-algebra) X of subsets. Suppose we have a collection ~G :=
{Gj}j∈J of subfields. Given a subcollection B ⊂ J, define two
new fields ∧

j∈B
Gj :=

⋂
j∈B

Gj and∨
j∈B

Gj := Fld(
⋃

j∈B
Gj) .

1:

(Field
∨

B
Gj is called the join of the Gj fields.) A natural partial-

order 6 is induced on J by

j 6 k ⇐ Gj ⊂ Gk .

Our J can be extended to be a complete lattice by, for each
subset B ⊂ J, adjoining the two fields

∧
B Gj and

∨
B Gj .

Absolute continuity. Our measurable space is
(((X,X))), on which we have two measures µ and ν.
Say that ν is absolutely continuous w.r.t µ (written
ν � µ) if ∀E ∈ X:

E a µ-nullset =⇒ E a ν-nullset .

Stronger, say that “ν is uniformly abs-cts w.r.t µ”
if: ∀ε,∃δ such that ∀E:

µ(E) 6 δ =⇒ ν(E) 6 ε .

Write this as ν
strg
�µ.
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Example. Let X be a denumerable set {p1, p2, . . . }.
Define

µ({pn}) := 1/2n and ν({pn}) := 7 .

Then ν � µ, but not uniformly. (Pt-atoms are not nec-
essary; replace {pn} by the interval ( 1

2n+1 ,
1
2n

].)
Looking ahead to the Radon-Nikodym derivative,

note that dν
dµ(pn) = 7 · 2n. �

2: Prop’n. ν
strg
�µ implies ν � µ. If ν(X) < ∞, then

the converse holds. ♦

Proof. If ν
strg
�µ fails then there is an epsilon, say 7,

and a sequence of sets so that

µ(En)→ 0, as n→∞, but each ν(En) > 7.

WLOG
∑
n µ(En) is finite. So by Borel-Cantelli,

µ(G) = 0 where

G :=
⋂∞
k=1

Uk with Uk :=
⋃∞
n=k

En.

Evidently each ν(Uk) > ν(Ek) > 7, and U1 ⊃ U2 ⊃
. . . . Since ν(U1) 6 ν(X) < ∞, we obtain the follow-
ing equality

ν(G) = lim
k→∞

ν(Uk) > 7 .

Hence ν 6�µ. �

3: Lemma. Suppose h:X→R is X-measurable and

∀G ∈ X :

∫
G
hdµ = 0 .

Then h is constant-zero µ-a.e. ♦

Proof. By restricting h to the set {h > 0}, WLOG
h > 0. Let Λn be the set of x with h(x) > 1/n.
Integrating shows that

0 =

∫
Λn
h >

1

n
· µ(Λn) .

Hence Λn is a nullset. Hence
⋃∞

1 Λn is null. �

Measures λ0, λ1 on (((X,X))) aremutually singular ,
written λ0 ⊥ λ1, if there is a (measurable) partition
X = A0 t A1 so that λ0(A1) and λ1(A0) are each
zero.

4: Lebesgue-Radon-Nikodym Thm. On (((X,X))) suppose
we have a signed-measure ν and positive measure µ,
each σ-finite. Then exists a unique pair of σ-finite
signed-measures λ and ρ so that:

ν = λ+ ρ , with λ ⊥ µ and ρ� µ .

Furthermore, there is an µ-a.e-unique µ-integrable (X-
measurable) fnc h:X→R so that

�� ��ρ =
∫
hdµ . The

notation for this h is dρ
dµ ; the “Radon-Nikodym

derivative of ρ w.r.t µ” . ♦

Note that each measurable fnc f has unique de-
composition into its positive part f+ and negative
part f− (each as measurable as f), where

f+ > 0 , f− > 0 and f+ − f− = f

Further, f+ + f− = |f | .
5:

6: Prop’n. Let Y := Fld(f), where f > 0. Then there
exists a non-decreasing sequence

fn ↗ f (convergence ptwise)†:

of Y-meas. step functions fn. We can arrange that
each fn is bounded, and has only finitely-many steps.
Or, allowing ∞-ly many steps, we can improve (†) to
uniform convergence. ♦

Proof. For a posint k, set hk(x) := 1
k ·
⌊
k · f(x)

⌋
and

let fn := h2n . (Finitely-many steps: cut off at ±n.) �

Conditional Expectation. We work now on a
probability space (((Ω,F,P))), with subfields G,H ⊂ F.
An integrable random variable Y has a conditional
expectation , written E(Y | G) or EG(Y), which is a
r.var itself. It is characterized by:

CE1: E(Y | G) is integrable and G-measurable.

CE2: For each set G ∈ G:
∫
G E(Y | G) =

∫
G Y.

Filename: Problems/Analysis/Measures/cond.meas-prob.latex
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If Y0,Y1 are each cond-expectations of Y w.r.t G, then
Y0

a.e
= Y1. [The G-measurable difference Y0 − Y1 has zero-

integral against each G ∈ G. Now apply (3).]
Below, E(h) = E(EG(h)) = 0, so (3) gives:[

h
a.e
> 0 & EG(h)

a.e
= 0

]
=⇒ h

a.e
= 0 .

If EG(Z2)
a.e
= 0 then Z

a.e
= 0.

7:

8: Fact. The conditional expectation operator has
these properties:
CE3: Linear: EG(3Y + 5Z) = 3EG(Y) + 5EG(Z).

CE4: Absorbing: For fields H ⊃ G,

EH(EG(Y)) = EG(Y) = EG(EH(Y)) .

CE5: Positive: If Y
a.e
> 0 then EG(Y)

a.e
> 0. I.e, Order-

preserving: Y1

a.e
> Y1 =⇒ EG(Y1)

a.e
> EG(Y1).

Further, EG(|Z|) > |EG(Z)|.
CE6: For each p ∈ [0,∞]: EG() is an Lp-contraction.

Indeed, its p-norm is 1. ♦

9: Lemma. Fix a subfield Y of our probability space.
Suppose that Y,Z are integrable random vars, whose
product Y ·Z is integrable. If Y is Y-measurable, then

E(Y · Z | Y)
a.e
= Y · E(Z | Y) . ♦

Proof. WLOG Y,Z > 0. WLOG Y is a step-fnc,
measurable w.r.t Y. Et.c. �

Example. Find a seq ~Y
a.e−→0, with 0 6 Yn and

E(Yn) 6 17, together with a subfield H so that

No subseq. of ~X a.e-converges,

where Xn := E(Yn | H).

Soln. Let H and V each be copies of (0, 1], and
let Ω := H × V equipped with area measure. Let H

be the Borel field of H; now stretch it across Ω.
Let (((Bn)))

∞
n=1 be an iid-seq of subsets of H –say, Bn

is the set of points in (0, 1] whose nth bit is ‘1’. Let
In := (0, 1/n] ⊂ V . Define

Yn := [1Bn × 1In ] · n .

So E(Yn) is 1
2 . And

E(Yn | H) = 1Bn × 1V .

Since [n 7→ 1Bn ] is iid, no subsequence converges in
the a.e.-sense. �

Probabilistic interpretations
What is the expected time, E, to first get “heads”,
when flipping a p-coin? Letting q := 1−p be the prob-
ability of Tails, we have the recurrence

E = 1 + [p · 0 + q · E] .

Its non-negative solns are E = 1
p , ∞. But E equals∑∞

N=1 q
N−1pN , which is finite. So

Independently flipping a p-coin, the ex-
pected number of flips till “heads” is
1/p flips.

10:

SMartingales

We now let J denote an ordered set (((J,6))). A filtra-
tion ~G (over J) is an indexed collection of fields s.t

j 6 k =⇒ Gj ⊂ Gk , for all j,k ∈ J.

A J-martingale (((~Y, ~G))) has integrable r.vars ~Y
(indexed by J) so that j 6 k implies

Yj = E(Yk | Gj) .11:

Our indexing set J will usually be [0 ..∞) or [0 ..∞].
Whenever J = [0 ..∞) we will automatically define a
field

G∞ := Fld(
⋃

j∈J
Gj) .

(We do not need the generality of (1).) However, there may
not exist a reasonable random variable Y∞; the main
goal of this section is studying when limj→∞ Yj exists
(in various senses) and when the limit r.var gives us a
martingale in that E(Y∞ | Gj) = Yj .

We sometimes use ~Y to abbreviate (((~Y, ~G))), where
the ~G fields are known. If they aren’t, then we let

Gk :=
∨

j:j6k
Fld(Yj) ;

Filename: Problems/Analysis/Measures/co.stoppingtime-.latex



Page 4 of 10 Stopping-times Prof. JLF King

this is the smallest field making all the preceding ran-
dom variables measurable.

Replacing (11) by Yj 6 E(Yk | Gj) gives a sub-
martingale, and by Yj > E(Yk | Gj), a super-
martingale. I’ll abbreviate the three notions by
MG, subMG and superMG. We’ll use Chung’s term
smartingale (or sMG) for a process ~Y which is any
one of these three types.

Stopping-times

Henceforth our indexset J is N = [0 ..∞) or Ṅ :=
[0 ..∞]. We have a filtration ~G, and automatically
a G∞ field.

A stopping time τ (relative to ~G) is a past-
measurable fnc τ :Ω→Ṅ. That is, for each N ∈ Ṅ,

{τ 6 N} ∈ GN .12:

Use ST and STs to abbrev. ‘stopping time(s)’. Con-
dition (12) is equivalent to

{τ = j} ∈ Gj ,12′:

due to the nesting of the fields, since {τ 6 N} equals⋃
j6N {τ = j}.

13: Fact. Take G,H fields, and A ∈ G. Then

H〈A〉 := {D ∈ H | D ∩A ∈ G}

is a subfield of H. ♦

Defn. A filtration ~G and a ST α() give rise to a new
field

Gα :=
{
D ∈ G∞

∣∣ For each N ∈ Ṅ:
D ∩ {α 6 N} ∈ GN

}
.

It is a field since, from (13), this Gα equals⋂
N∈Ṅ G

〈AN 〉
∞ , where AN is {α 6 N}. Easily

Gα =
{
D ∈ G∞

∣∣ For each N ∈ Ṅ:
D ∩ {α = N} ∈ GN

}
.

Exer.E0. Suppose α() is a constant ST, say, α ≡ 5.
Then Gα indeed is G5. �

14: Fact. For each K ∈ Ṅ: {α 6 K} ∈ Gα.

(I.e, stopping-time α() is Gα-measurable.) ♦

Proof. For N > K note {α 6 K} ∩ {α 6 N} =
{α 6 K} ∈ GK ⊂ GN .

When N < K then {α 6 K} ∩ {α 6 N} =
{α 6 N} ∈ GN . �

15: Lemma. When α 6 β are STs then Gα ⊂ Gβ . ♦

Proof. For each N ∈ Ṅ we have that

{α 6 N} ⊃ {β 6 N} .16:

Fix a set D ∈ Gα. Given N and letting

I := D ∩ {β 6 N} ,

our goal is I ∈ GN . Happily,

I = I ∩ {α 6 N} , by (16),
=
[
D ∩ {α 6 N}

]
∩ {β 6 N} .

This lies in GN ∨ GN
note
=== GN . �

Examples of Martingales. Below we describe sev-
eral MGs in terms of gambling. The probability space
can be thought of as Ω := (0, 1] or as a cantor set.

17: The pre-divorced gambler. The gambler has $1 in
his pocket, enters a casino and –at each stage– bets
all his money on a fair game. He stops the first time
that he is broke –which is the first time that he loses!
His fortune r.v. at time n is

Xn := 2n · 1(0,1/2n] .

Evidently we have almost-sure convergence Xn
a.e−→0

(but not L1 convergence). He comes home to his wife
flat-broke. Moreover, he skulks home –on average–
after two bets! (This, from (10).) �

18: Win or Double-up. This gambler starts with no
money, Y0 ≡ 0; he his going to borrow to bet. He
bets a buck: if wins, quits, else doubles his bet to $2.
If he wins, he quits, else he doubles-up again. Etc.

Filename: Problems/Analysis/Measures/co.stoppingtime-.latex
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Evidently ~Y is a disguised version of ~X; indeed

Yn = 1− Xn .

So ~Y a.e−→1, and ~Y has the same convergence properties
as ~X.

While this looks good for the gambler, we will later
show that, in expectation, he must have infinitely deep
pockets to implement this scheme. �

19: Insanity that never quits. Fix posints Hn ↗∞ so
that each HN > 3 ·

∑N−1
j=1 Hj .

Write the prob-space as Ω := {±1}Z+ ; a cantor set.
This gambler borrows money from The Mob, and he
never quits. At stage j he bets Hj dollars. So his
(cumulative) fortune is

ZN+1(ω) =
∑N

j=1
ωj ·Hj .

For an ω with ωN = 1 infinitely-often, evidently

limsupN ZN (ω) = ∞ .

The liminf is ∞ when ωN = 1 infinitely; evidently
each of these events happens almost-surely (off the end-
points of the cantor set). So this MG diverges almost-
surely, in a spectacular way. (And –when The Mafia comes
to collect its loan– things will spectacular as well.) �

Exer.E1. Create a mean-zero MG ~Z such that X :=
limn Zn exists-a.e. Arrange that 0 6 X < ∞ and
E(X) =∞. �

Convention. When a filtration ~G is known, agree
to allow

�� ��Ej() to abbreviate EGj () .

Doob decomposition of subMG. Some results
about smartingales can be reduced to MGs.

20: Theorem. Consider a subMG (((~S, ~G))). Then there
exists a MG ~Y, adapted to ~G, and an integrable posi-
tive process ~P so that

d1: Sn = Yn + Pn (for n = 0, 1, 2, . . . ).

d2: 0 = P0 6 P1 6 P2 6 P3 6 . . .

d3: Each Pj is measurable w.r.t Gj−1.

The ~Y, ~P pair is unique.
If ~S is L1-bounded, then so are ~Y and ~P . Indeed

E(|~P |) 6 2B, where B := E(|~S|). ♦

Proof. We establish Uniqueness: For j > 1
certainly Ej(Yj − Yj−1) ≡ 0, since ~Y is a MG.
Thus Ej−1(Sj − Sj−1) equals Ej−1(Pj − Pj−1). Cour-
tesy (d3),

Pj − Pj−1 = Ej−1(Sj) − Sj−1 .

Since P0 ≡ 0, summing the telescoping series gives

PN =
∑

j∈[1 .. N ]

[Ej−1(Sj) − Sj−1] .21:

Thus ~P is uniquely determined, hence so is ~Y.

Existence. Define PN by (21). Then P0 ≡ 0
and PN > PN−1 since EN−1(SN )− SN−1 > 0. And
RhS(21) is GN−1-measurable, hence (d3).

As a finite sum, PN is integrable; so YN too is inte-
grable, when defined by (d1). To verify MG-ness we
compute

YN − YN−1 = SN − SN−1 − [PN − PN−1]

= same − [EN−1(SN )− SN−1]

= SN − EN−1(SN ) .

Conditioning this on GN−1 indeed gives 0.

L1-boundedness. Observe that

E0(PN ) =
∑

j∈[1 .. N ]

E0(Ej−1(Sj − Sj−1))

=
∑

j
[E0(Sj)− E0(Sj−1)] ,

which equals E0(SN )− S0. And
∫
|PN | =

∫
PN i.e∫

E0(PN ), i.e
[∫

SN
]
−
∫
S0. �

Filename: Problems/Analysis/Measures/co.stoppingtime-.latex
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Sampling. Henceforth, fix a MG (((~Y, ~G))) over in-
dexset J. A ST τ is “J-stopping-time ” if the event
{τ() 6∈ J} is null. More strongly, a ST τ is J-bounded
if there exists N0 ∈ J with τ() 6 N0. (So either J 3 ∞
or else τ is bounded by some integer.) A J-ST τ yields a
random variable Yτ defined, at each ω ∈ Ω, to be
[Yτ(ω)](ω).

22: Lemma. If τ is a J-ST then Yτ ∈ Gτ . ♦

Proof. Take a Borel set S ⊂ R. Fixing an N ∈ J, we
want to show that

{Yτ () ∈ S} ∩ {τ = N}

is in GN . But this intersection equals

{YN ∈ S} ∩ {τ = N}
note
∈ GN ∨ GN . �

23: Integrability. A Yτ could have E(Yτ ) 6= E(Y0): Let
~Y be the std random-walk on Z, and let τ stop at 7.
So E(Yτ ) = 7 6= 0 = E(Y0).

Worse is a r.walk ~Z and ST with E(Zβ) = ∞: Set
Z0 := 0. Let Z1 jump to±n, each with prob=1

2/2
n, for

n = 1, 2, . . . . Depending on the value of n := |Z1|, our
ST β stops at the first visit to position 3n. So E(Zβ)
is
∑∞
n=1 [3/2]n. Even worse, we could modify β so

arrange that Zβ simply fails to have an expectation.
What goes wrong in these examples is that the ST β

is not J-bounded. Fortunately:

Imagine that β is a J-bounded ST for J-
martingale ~Y. Then Yβ is integrable.24:

This is implicit in the next proof, of Doob’s thm, near
the end. �

Generalizing the below: The next thm, as stated,
applies to a MG. However, the proof goes through to
show: If ~Y is a smartingale, then (((Yα,Gα))),(((Yβ,Gβ))) is
a two-term smartingale of the same type. �

25: Doob’s Optional Sampling Theorem. Suppose that
α 6 β are J-bounded STs. Then

E(Yβ | Gα) = Yα .25′: ♦

Proof. Said differently, we need to establish that
(((Yα,Yβ))) is a two-term martingale. We’ll do this in
two steps; by reducing to (((Y0,Yβ))), then to (((Y0,Y17))).

Fix an K ∈ J; ISTShow (25′) when restricted to the
set Ω′ := {α = K}, since Ω′ is in Gα, courtesy (14).
So WLOG α ≡ K. Since YK is integrable, we can
subtract it to define new sequences, for n > K, by

Ỹn−K := Yn − YK and

G̃n−K := Gn .

Renaming (((Ỹk, G̃k))) to (((Yk,Gk))) gives:

WLOG α ≡ 0 and Y0 ≡ 0.

Our goal♥2 is E(Yβ | G0)
a.e
= Y0. (For the sequel, we don’t

need that Y0 ≡ 0, but the reader may find this extra knowledge
helpful in understanding the argument.) Restating, for each
set Γ ∈ G0 we desire∫

Γ
E(Yβ | G0)

?
=

∫
Γ
Y0 .

Conditioning on Γ, then, we need but show that∫
Ω E(Yβ | G0) =

∫
Ω Y0. Consequently∫

Ω
Yβ

?
=

∫
Ω
Y0‡:

is our goal.♥3

It is now time to use that β is J-bounded. WLOG
β() 6 17. In consequence∫

Ω
Yβ =

∑
j617

∫
{β=j}

Yβ =
∑
j617

∫
{β=j}

Yj

=
∑
j617

∫
{β=j}

Y17 ;

this latter, since {β = j} is in Gj . The upshot is that∫
Ω
Yβ =

∫
Ω
Y17 =

∫
Ω
Y0 ,

since –by hypothesis– the pair (((Y0,Y17))) is a two-term
martingale. �

♥2IOWords, we have reduced the problem to showing that
(((Y0,Yβ))) is a two-term martingale.
♥3This used that

∫
E(Yβ | G0) =

∫
Yβ , which goes all the way

back to knowing that, originally, Gβ ⊃ Gα.

Filename: Problems/Analysis/Measures/co.stoppingtime-.latex
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26: Corollary. (((~Y, ~G))) a J-subMG, and N ∈ J. For
each posreal b:

P(S) 6 1
b · E(|YN |) ,

where S is event
{
[supj6N Yj ] > b

}
. ♦

Proof. WLOG b = 7. Let τ be the [1 .. N ]-infimum of
those j with Yj > 7. Thus

7 · P(S) =

∫
S

7 6
∫
S
Yτ 6

∫
S
YN ;

this latter, since S ∈ Gτ and (((Yτ ,YN))) is a subMG.�

27: Application. Suppose MG ~Y has pointwise bound

∀n : |Yn+1 − Yn| 6 7 .∗:

Suppose β is an integrable ST. Then Yβ is integrable
and E(Yβ) = E(Y0). ♦

Proof. The tool we use is: If ~Z integrable and it
L1-converges to a r.v. Z∞, then E(Zn)→ E(Z∞).

Automatically ZN := Yβ∧N is integrable. For each
k > N , by (∗), the difference |Yk − YN | 6 7·[k−N ] 6
7 · k. Estimating the L1-norm,

‖Yk − ZN‖ 6
∑

k:k>N

∫
{β()=k}

|Yk − YN |

6
∑

k:k>N

∫
{β=k}

7k = 7 ·
∫

{β>N}

β .

This last goes to zero, since E(β) <∞.
So ISTShow that E(ZN )

?
= E(Y0). Here is the only

place that we use the MG property: Doob’s Optional
Sampling, (25), tells us that the pair (((Y0,Yβ∧N))) is a
two-term MG, since 0 6 β ∧N are bounded stopping-
times. �

Exer.A2. Consider an independent random-walk on the inte-
gers, where each step-probability depends on both position and
time.

A 3-spread D() is a mean-zero random variable with sup-
port on J := [ 3 .. 3]. That is,∑

j∈J

P(D=j) = 1 and

E(D)
note
===

∑
j∈J

j · P(D=j) = 0 .

For each time n ∈ Z+ and position p ∈ Z, we have a 3-spread
Dn,p , and all these random variables are mutually independent.
Define random-walk ~S by S0 ≡ 0 (we start at the origin) and

Sn+1 := Sn + Dn+1 , Sn .

Let τ() be the stopping time where the r.walk first hits po-
sition “5”. Prove that E(τ) is infinite. �

Soln. For each natnum N let

GN :=
∨

j∈[1 .. N)
p∈Z

Fld(Dj,p) .

So Trivial = G0 ⊂ G1 ⊂ . . . . The independence implies
DN+1, p ⊥ GN . Restated

EN (DN+1, p)
a.e
= 0 .†:

Measurability: Note S0 ∈ G0. To show each SN ∈ GN ,
we will confirm

[S7 ∈ G7] =⇒ [S8 ∈ G8] ,

the induction step. For each integer p let

Bp := {ω | S7(ω) = p}

Each D8,p ∈ G8, so S7+D8,p ∈ G8. And Bp ∈ G7 ⊂ G8, so the
product [S7 +D8,p] · 1Bp is G8-measurable. As a result,∑

p∈Z

[S7 +D8,p] · 1Bp

note
=== S8

is G8-measurable.

Integrability: Range(SN ) ⊂ [−3N .. 3N ], whence SN is
bounded, hence integrable.

Martingale-ness. ISTDemonstrate that

E7(S8)
a.e
= S7 .‡:

Fix p. Because Bp ∈ G7, ISTEstablish (‡) on set Bp. There,
S8 = S7 +D8,p; so E7(S8) = S7 + E7(D8,p). Now (†) completes
the argument. �

Inequalities

Below, J always denotes a subinterval of J . A fnc
f :J→R is convex (for emphasis, some say “convex-up”) if
the set {(((x, y))) | x ∈ J & y > f(x)} is a convex subset
of the plane.

Henceforth, let A be the set of linear (well, affine)
fncs L:R→R. Use B = Bf ⊂ A for the subset of
fncs L lying below, i.e, L() 6 f(). Let Q ⊂ A be
the set of linear fncs with rational slope and that pass
through some rational point.
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28: Lemma. f :J→R convex, on an open interval J .
Then, pointwise,

f() = sup
L∈Bf

L() .

Indeed, f = supL∈C L holds for a certain countable
subcollection C ⊂ B. If J = R and f is linear, then
C := {f}. Otherwise, let C := Q ∩Bf . ♦

Proof. Exercise. �

29: Jensen’s Inequality (Thm). Take f :J→R convex,
on an open interval J . Suppose Y is an integrable r.v.
with range in J . Then

f
(
E(Y | G)

) a.e
6 E

(
f(Y)

∣∣ G) ,
for each field G on the probability space. ♦

Proof. Take a set C of linears with f = supL∈C L. Let
E(·) denote E(· | G). Fixing a version of E(Y), we can
let L(E(Y)) be the definition of E(L(Y)). Taking sups
gives this pointwise equality,

f(E(Y)) = sup
L∈C

E(L(Y)) .†:

For each L we have, since E() is a positive operator,

E(L(Y))
a.e
6 E(f(Y)) .

While we can a choose a version of E(f(Y)) making
the “a.e” nullset actually empty, it is unclear how to
do make this choice work for every L ∈ C. We’d like
to be able to say

sup
L∈C

E(L(Y))
a.e
6 E(f(Y)) .‡:

However, if C is uncountable then we seem to in dan-
ger of an uncountable union of nullsets.

Courtesy (28), we can use a countable C. Now (†,‡)
together give the lemma. �

30: Corollary. f :J→R convex-up on an open interval J ,
and ~Y is a process with range in J . Then

~Z is a subMG, where Zn := f(Yn),

if either: ~Y is a MG –or– ~Y is a subMG and f is
non-decreasing. ♦

Proof. Fix n and let E(·) mean E(· | Gn). So

E(Zn+1)
def
== E(f(Yn+1))

> f(E(Yn+1)) , by Jensen’s ,
∗
> f(Yn)

def
== Zn .

When ~Y a MG then (∗) is equality. But for a subMG
E(Yn+1) > Yn, and here is where we use that f is
non-decreasing. �

31: Cauchy-Schwarz Inequality. Suppose Y,Z are
square-integrable r.vars. Then Y · Z is integrable and

EG(YZ)2 a.e
6 EG(Y2) · EG(Z2) .†: ♦

Proof. (Integrability of YZ follows from truncation.)
If G := {EG(Z2) = 0} has positive-mass, then con-

dition on it. (Permissible, since G ∈ G.) By (7), WLOG
Z ≡ 0. Hence the product YZ ≡ 0. So EG(YZ) ≡ 0.
Thus (†).

Let E() := EG(). WLOG the event {S > 0} is all
of Ω, where

S := E(Z2) and M := E(YZ) .

(The symbols come from square and mixed product.) Let
h := SY −MZ. And h2 is non-negative, so 0

a.e
6 E(h2).

Courtesy (9) and S,M ∈ G, our E(h2) equals

S2 · E(Y2) + M2 · E(Z2)− 2SM · E(YZ)

note
===

[
S · E(Y2) − M2]S .

Dividing by the positive S gives (†), in the form 0
a.e
6

S · E(Y2) − M2. �

Convergence

Below, convergence of a sequence of reals means con-
vergence in [ ∞,∞].

A process ~Y is L1-bounded if

B := sup
n

∫
|Yn| is finite.

Write this bound B as E(|~Y|).
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32: Prop’n. Suppose that an L1-bounded process ~Y
a.e-converges (in [ ∞, ∞]) and call the limit X. Then
X has the same bound, E(|X|) 6 E(|~Y|). ♦

Proof. We get a.e-convergence |Yn|
a.e−→|X| of the

absolute values, so Fatou tells us that E(|X|) 6
liminfn E(|Yn|). �

Doob’s notion of upcrossings. When does a
seq. of reals, ~y = (((yj)))

∞
j=0, converge? Certainly “Yes”

if, for each pair of rationals a < b, there are only
finitely many index-pairs α < β with yα 6 a < b 6
yβ . To count such upcrossings, define times

α0 6 β0 6 α1 6 β1 6 α2 6 β2 6 . . .33:

by artificially letting β 1 := 0. For j = 0, 1, . . . let

αj := n be the smallest n ∈ [βj−1 ..∞] with yn 6 a;
βj := n be the smallest n ∈ [αj ..∞] with yn > b.

(Here “smallest” means infimum; it is ∞ if no such n exists.)
We say that ~y “upcrosses the [a, b]-band as time goes
from αj to βj ” .

Given a process ~Y and sample-pt ω ∈ Ω, let
Ua,b(ω) ∈ [0 ..∞] count the number of upcrossings
of sequence ~Y(ω). (The count Ua,b(ω) is the number of j
having βj(ω) finite.) For ~Y to a.e-converge, then, we
need but show that each Ua,b is a.e-finite.

So showing each
�� ��E(Ua,b) <∞ , will suffice.

34: MCT (Martingale Convergence Thm). For an L1-bnded
smartingale ~Y, the almost-everywhere limn Yn =: X
exists. Indeed, E(|X|) 6 E(|~Y|). ♦

Reductions. It is enough to show, for a.e ω, that
lim ~Y(ω) =: X exists in [ ∞, ∞]. For then (32) tells
us that X is finite-a.e and E(|X|) has the same bound.

WLOG ~Y is a subMG (replace Yj by Yj to convert a
superMG a subMG).

The upcrossing count of ~Y over band-[a, b] is that
same as that of process

Zn := [Yn − a] · 1
b−a

upcrossing band-[0, 1]. Furthermore, ~Z is still a
subMG (since b−a is positive) and ~Z is still L1-bounded.

So ISTShow, for an arbitrary L1-bnded subMG, that
E(U0,1) is finite. Verifying that

E(U)
?
6E(|~Y|), where U is the upcrossing

count of the [0, 1]-band,
†:

would certainly suffice. �

Proof of MCT. Courtesy Jensen’s Inequality, in
form (30), we may assume that

∀n : Yn > 0 ,35:

simply by removing the negative part: Replace Yn
with Max(0,Yn). And ~Y stays L1-bounded.

Fix N and let UN count the number of upcrossings
of [0, 1] by (((Y1, . . . ,YN))); so cut-off the STs of (33)
at N by redefining

αj := Min(αj , N) and βj := Min(βj , N) .

(For each j > N
2
, now, our αj = βj = N .) Our noble

goal (†) can be transmogrified into

E(UN )
?
6 E(YN ) .††:

Astronomy . Decompose YN as a telescoping sum,

YN = P + I + Yα0 ,

where the Positive and Integral–non-negative parts
(names to be justified) are

P :=
∑

j∈[0 .. N ]

[
Yβj − Yαj

]
;

I :=
∑

k∈[0 .. N)

[
Yαk+1

− Yβk
]
.

For arbitrary stopping times σ() 6 τ() 6 N on our
subMG, remark that∫

[Yτ − Yσ] =

∫ [
E(Yτ | Gσ)− Yσ

]
>
∫

0 .

It follows that E(I) is non-negative.♥4 Also non-
negative is E(Yα0), by (35). Thus E(P) 6 E(YN ).

♥4The same is true for E(P), but we don’t want to discard P.
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So (††) will follow if we can establish this pointwise
inequality,

∀ω ∈ Ω : UN (ω)
?
6 P(ω) .‡:

To this heroic end, fix a sample point ω and now in-
terpret P, UN ,Yn as numbers, rather than as random
variables.

Let K be the smallest index j for which (((αj , βj))) is
not an upcrossing. Thus

For j ∈ [0 ..K): Yβj − Yαj > 1− 0 = 1 .

For j ∈ (K ..N ]: Yβj − Yαj = YN − YN = 0 .

Summing, we see that P > UN + [YβK − YαK ].
Our heart’s desire now is to corroborate

YβK > YαK . We can dispense with the case
where αK is already N since, there, αK = βK .

Thus αK < N and so YαK = 0. Since K did not
give an upcrossing, it must be that YβK < 1 (and
βK = N). But how could we ever establish that

YN
?
> 0 ,

if we didn’t have (35) at our disposal? We know that
YN < 1. But without our Jensen’s Inequality step,
this YN could be arbitrarily negative. Although (35)
was used elsewhere in the proof, it is here where it is
crucially used. �

Downcrossings.How can I have non-negative integral?
After all, it is a sum of differences such as Yα7 − Yβ6 ;
and isn’t that always a downcrossing?

Well for some ω, yes, Yα7 − Yβ6 is a downcrossing
and hence is 61. Other ω have β6=N , so Yα7 − Yβ6 =
YN − YN is zero. But some ω start a downcrossing,
Yβ6 > 1, but never finish it. So α7 = N and Yα7 can
be any posreal. Here is the case where the difference
Yα7 − Yβ6 can be arbitrarily positive —and this allows
the integral E(I) to be positive. �

36: Theorem. Fix a MG (((~Y, ~G)))N and a r.var Z.

Suppose Yn
in L1−→ Z. Then Z ∈ L1 and E(Z | GN ) =

YN , for each N .
Conversely, recall G∞ :=

∨
j<∞ Gj and suppose

∀n : E(Z | Gn) = Yn. Then Yn
in L1−→ Z′, where

Z′ := E(Z | G∞). ♦

Proof. Take a B ∈ GN . For each k > N ,

0 6
∣∣∣∣∫
B
YN −

∫
B
Z

∣∣∣∣ =

∣∣∣∣∫
B
Yk −

∫
B
Z

∣∣∣∣
6
∫
B
|Yk − Z|

Now sending k↗∞ corroborates
∫
B YN =

∫
B Z. �
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