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“1 use = to mean ‘iden-

Bonjour. As additional notation
tically equals’; on the probability space, we mean this a.e. Use

r.var or r.v. for ‘random variable’. Use r.walk for ‘random walk’.

Sets & Fields. Use € for “is an element of’. E.g, letting
P be the set of primes, then, 5 € P yet 6 ¢ P. Changing the
emphasis, P 5 5 (“P owns 5”) yet P % 6.

“1Phrases: WLOG: ‘Without loss of generality’. TFAE: ‘ The
following are equivalent’. ITOf: ‘In Terms Of. OTForm: ‘of the
form’. FTSOC: ‘For the sake of contradiction’. Use iff: ‘if and
only if.

IST: ‘It Suffices to’ as in ISTShow, ISTExhibit.

Use w.r.t: ‘with respect to’ and s.t: ‘such that’.

Latin: e.g: exempli gratia, ‘for example'. i.e: id est, ‘that is’.
N.B: Nota bene, ‘Note well. QED: quod erat demonstrandum,
meaning “end of proof”.

Number Sets: An expression such as k € N (read as “k is
an element of N” or “k in N”) means that k is a natural number;
a natnum.

N = natural numbers = {0, 1,2,... }.

7Z = integers = {...,—-2,-1,0,1,...}. For the set
{1,2,3,...} of positive integers, the posints, use Z,. Use Z_
for the negative integers, the negints.

Q = rational numbers = {g |p€Zand g€ Zi}. UseQy for
the positive ratnums and Q_ for the negative ratnums.

R = reals. The posreals R and the negreals R_.

C = complex numbers, also called the complexes.

For weC, let “w > 5” mean “w is real and w > 5”. [Use
the same convention for >, <, <, and also if 5 is replaced by any real
number.]

Mathematical objects: Seq: ‘sequence’. poly(s): ‘polyno-
mial(s). irred: ‘irreducible’. Coeff: ‘coefficient’ and var(s): ‘vari-
able(s)’ and parm(s): ‘parameter(s). Expr.: ‘expression’.  Fnc:
‘function’ (so ratfnc: means rational function, a ratio of polyno-
mials). cty: ‘continuity’. cts: ‘continuous’. diff'able: ‘differen-
tiable’. CoV: ‘Change-of-Variable'. Col: ‘Constant of Integration’.
Lol: ‘Limit(s) of Integration’. RoC: ‘Radius of Convergence'.

Soln: ‘Solution’. Thm: ‘Theorem’. Prop'n: ‘Proposition’.
CEX: ‘Counterexample’. eqn: ‘equation’. RhS: ‘RightHand Side’
of an eqn or inequality. LhS: ‘lefthand side’. Sqrt or Sqroot:
‘square-root’, e.g, “the sqroot of 16 is 4”. Ptn: ‘partition’, but pt:
‘point’, as in “a fixed-pt of a map”.

FTC: ‘Fund. Thm of Calculus’. \VT: ‘intermediate-Value Thm’.
MVT: ‘Mean-Value Thm’.

The logarithm fnc, defined for >0, is log(z) = [," 9%, Its
inverse-fnc is exp(). For >0, then, exp(log(:p)) =g = elos®),
For real ¢, naturally, log (exp(t)) =t = log(e"). PolyExp: ‘Poly-
nomial-times-exponential. E.g, F(t):=[3 + t*]-e is a polyExp.

Webpage http://people.clas.ufl.edu/squash/

For subsets A and B of the same space, 2, the inclusion
relation A C B means:

Yw € A, necessarily B 3 w.

And this can be written B D A. Use A g B for proper inclusion,
i.e, AC B yet A# B.

The difference set BN Ais {w € B|w ¢ A}. Employ A° for
the complement Q. A. Use A A B for symmetric differ-
ence [A N\ B]U [B \ A]. Furthermore

AWB Sets A & B have at least one point in
’ common; they intersect.

ANB. ?Fbe sets have no common point; dis-

joint.
The symbol “A®B” both asserts intersection and represents
the set AN B. For a collection € = {E;}; of sets in Q, let the
disjoint union | |; E; or | J(C) represent the union {J; E; and
also assert that the sets are pairwise disjoint.
If there is a measure on the space then

a.e means their intersection is a nullset; it
ANB, . .
is empty a.e. (i.e almost everywhere)

In contrast, AT B means that the sets intersect in positive
mass.

A measurable space (X, X), is a set X together with a field
(a o-algebra) X of subsets. Suppose we have a collection G =
{9;},es of subfields. Given a subcollection B C J, define two
new fields

/\jEB 95 = m]’EB g; and
\/jGB Ji Fld(UjEB 9i)-

(Field VB G, is called the join of the §; fields.) A natural partial-
order < is induced on J by

<k < G;CG.

Our J can be extended to be a complete lattice by, for each
subset B C J, adjoining the two fields A, §; and \/5 G;.

Absolute continuity. Our measurable space is
(X,X), on which we have two measures p and v.
Say that v is absolutely continuous w.r.t p (written
v<p) if VE € X:

E a pgnullset = FE a v-nullset.

Stronger, say that “v is uniformly abs-cts w.r.t p”
if: Ve, dd such that VE:
wE)<déd = v(F)<e.

. . strg
Write this as v < p.
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Ezample. Let X be a denumerable set {p1,p2,...}.

Define

u({pa}) = 1/2" and v({pa}) = 7.

Then v < p, but not uniformly. (Pt-atoms are not nec-
essary; replace {p,} by the interval (5, 55].)

Looking ahead to the Radon-Nikodym derivative,

note that S—Z(pn) =7-2" O
, strg .

2: Prop'n. v<<pu implies v < p. If v(X) < oo, then

the converse holds. O

strg . . .
Proof. If v < u fails then there is an epsilon, say 7,
and a sequence of sets so that

w(Eyn) — 0, as n—o0, but each v(E,) > 7.

WLOG >, u(Ey) is finite.
1w(G) = 0 where

So by Borel-Cantelli,

o0

G = ﬂ:;l U, with Up=|J  En.

n=~k

Evidently each v(U) > v(Eg) = 7, and Uy D Uy D
.... Since v(U1) < v(X) < oo, we obtain the follow-
ing equality

v(GQ) = leIEOV(Uk) > 7.

Hence v . ¢

3: Lemma. Suppose h: X—R is X-measurable and
VG e X : /hdu — 0.
G

Then h is constant-zero j-a.e. O

Proof. By restricting h to the set {h > 0}, WLOG
h > 0. Let A, be the set of x with h(z) > 1/n.
Integrating shows that
1
0 = h = —-pu(An).
An n
Hence A,, is a nullset. Hence [J7° A, is null. ¢
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Measures A\g, A1 on (X, X) are mutually singular,
written A\g L Aj, if there is a (measurable) partition
X = Ap U A; so that A\o(A1) and A\ (Ap) are each

Zero.

4: Lebesgue-Radon-Nikodym Thm. On (X, X) suppose
we have a signed-measure v and positive measure [,
each o-finite. Then exists a unique pair of o-finite
signed-measures A and p so that:

v =A+p, with\ Ly andp << pu.

Furthermore, there is an p-a.e-unique p-integrable (X-
measurable) fnc h: X—R so that |p= [hdu| The

notation for this h is g—z; the “Radon-Nikodym
derivative of p w.r.t pu”. ¢

Note that each measurable fnc f has unique de-
composition into its positive part f* and negative
part f~ (each as measurable as f), where

ff>0,f >0 and ftr—f = f
Further, f™+f~ = |f].

6: Prop'n. Let Y := F1d(f), where f > 0. Then there
exists a non-decreasing sequence

& fo S

(convergence ptwise)

of Y-meas. step functions f,. We can arrange that
each f, is bounded, and has only finitely-many steps.
Or, allowing co-ly many steps, we can improve (1) to

uniform convergence. O

Proof. For a posint k, set hy(z) == £ - |k - f(z)] and
let fn ‘= hon. (Finitely-many steps: cut off at :tn.) ¢

Conditional Expectation. We work now on a
probability space (€2, F,P), with subfields §,H C F.
An integrable random variable Y has a conditional
expectation, written E(Y | §) or Eg(Y), which is a
r.var itself. It is characterized by:

CEl: E(Y | G) is integrable and G-measurable.

CE2: For each set G€ G: [LE(Y|G) = J,V.

Filename: Problems/Analysis/Measures/cond.meas-prob.latex
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If Yq, Y1 are each cond-expectations of Y w.r.t G, then
Yo = Y. [The G-measurable difference Yo — Y1 has zero-

integral against each G € §. Now apply (3).]
Below, E(h) = E(Eg(h)) = 0, so (3) gives:

o 0 & Eg(h) 0] = h 0.
IfEg(Z?%) % 0 then Z ¥ 0.
8: Fact.  The conditional expectation operator has

these properties:
CE3: Linear: Eg(3Y + 5Z) = 3Eg(Y) 4 5Eg(Z).
CEy, Absorbing: For fields H D G,

Esc(Es(Y)) = Eg(Y) = Eg(Ex(Y)).

a.e a.e
CF5: Positive: If Y > 0 then Eq(Y) > 0. Le, Order-
preserving: Yq a; Y1 = Eg(Y1) aée Eg(Yq).
Further, Eq(|Z|) = |Eg(Z)|.

CF6: For each p € [0,00]: Eg() is an LP-contraction.
Indeed, its p-norm is 1. O

9: Lemma. Fix a subfield Y of our probability space.
Suppose that Y, Z are integrable random vars, whose
product Y - Z is integrable. IfY is Y-measurable, then

EY-Z|Y) & Y-EZ|Y). O

Proof.  WLOG Y,Z > 0. WLOG Y is a step-fnc,

measurable w.r.t Y. Et.c. ¢

Ezample. Find a seq \?’E)O, with 0 < Y, and
E(Y,) < 17, together with a subfield H so that

No subseq. of X a.e-converges,

where X,, == E(Y,, | 30).

Soln. Let H and V each be copies of (0, 1], and
let Q := H x V equipped with area measure. Let H
be the Borel field of H; now stretch it across 2.

Let (B,),—; be an iid-seq of subsets of H —say, By,
is the set of points in (0,1] whose n'® bit is ‘1’. Let
I, = (0,1/n] C V. Define

Yn = [1Bn X 1]n] Nn.

SMartingales
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So E(Y,) is 1. And
E(Yn | j‘f) = 1Bn X 1y .

Since [n +— 1p,] is iid, no subsequence converges in
the a.e.-sense. U

Probabilistic interpretations

What is the expected time, F, to first get “heads”,
when flipping a p-coin? Letting ¢ := 1—p be the prob-
ability of Tails, we have the recurrence

E = 14+ [p-0+gq-E].

Its non-negative solns are E = %ﬁoo. But E equals
S X1 ¢V IpN, which is finite. So

Independently flipping a p-coin, the ex-
10:  pected number of flips till “heads” is
1/p flips.

SMartingales

We now let J denote an ordered set (J,<). A filtra-
tion G (over ) is an indexed collection of fields s.t

J<k = §G;CG, foralljked.

A J-martingale (Y,G) has integrable r.vars Y
(indexed by J) so that j < k implies

Our indexing set J will usually be [0..00) or [0.. cq].
Whenever J = [0..00) we will automatically define a

field

9oo = FlA(J._, G-

J€d
(We do not need the generality of (1).) However, there may
not exist a reasonable random variable Yo ; the main
goal of this section is studying when lim;_,, Y exists
(in various senses) and when the limit r.var gives us a
martingale in that E(Y | §5) =Y.

We sometimes use Y to abbreviate (Y,S), where
the G fields are known. If they aren’t, then we let

5 = \/,_, F(Y,):

Filename: Problems/Analysis/Measures/co.stoppingtime-.latex
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this is the smallest field making all the preceding ran-
dom variables measurable.

Replacing (11) by Y; < E(Yy|G;) gives a sub-
martingale, and by Y; > E(Y;|G;), a super-
martingale. T'll abbreviate the three notions by
MG, subMG and superMG. We'll use Chung’s term
smartingale (or sMG) for a process Y which is any
one of these three types.

Stopping-times

Henceforth our indexset g is N = [0..00) or N :=
[0..00]. We have a filtration G, and automatically
a G field.

A stopping time T (relative to §) is a past-
measurable fnc 7:Q—N. That is, for each N € N,

12: {T<N} € Gn.

Use ST and STs to abbrev. ‘stopping time(s).  Con-

dition (12) is equivalent to
12": {r=j} € Gj,

due to the nesting of the fields, since {7 < N} equals
Ujen {r=7}

13: Fact. Take G,H fields, and A € G. Then
KA = {DeH|DnAeg}
is a subfield of K. O

Defn. A filtration G and a ST a() give rise to a new
field

L For each N € N:
Ja = {DEQC’O’ Dn{a < N} €Sy g

It is a field since, from (13), this G, equals
Nyer Séfm, where Ay is {a < N}. Easily

o For each N € N:
SQ—{DESOOI DnNn{a=N}e€Gn }

Exer. F0. Suppose «() is a constant ST, say, o = 5.
Then G, indeed is Gs. U

14: Fact. For each K € N: {a < K} € G,.

Stopping-times
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(I.e, stopping-time o) is Sa—measurable.) O

Proof. ~ For N > K note {a < K} N{a <N} =
{agK}ESKCSN.

When N < K then {a <K} Nn{a<N} =
{OééN}GgN. ¢

15: Lemma. When o < 8 are Sls then G, C Gg. O

Proof. For each N € N we have that
16: {a <N} D {B<N}.
Fix aset D € G,. Given N and letting
I = Dn{B <N},
our goal is I € Gy. Happily,

I = In{a <N}, by(16),
= [DNn{a < N} N{B<N}.

This lies in 9N\/9NI$9N. ¢

Examples of Martingales. Below we describe sev-
eral MGs in terms of gambling. The probability space

can be thought of as 2 := (0, 1] or as a cantor set.

17: The pre-divorced gambler. The gambler has $1 in
his pocket, enters a casino and —at each stage— bets
all his money on a fair game. He stops the first time
that he is broke —which is the first time that he loses!
His fortune r.v. at time n is

Xn = 2". 1(0’1/2n] .

Evidently we have almost-sure convergence X, -0
(but not L' convergence). He comes home to his wife
flat-broke. Moreover, he skulks home —on average—
after two bets! (This, from (10).) O

18: Win or Double-up. This gambler starts with no
money, Yg = 0; he his going to borrow to bet. He
bets a buck: if wins, quits, else doubles his bet to $2.
If he wins, he quits, else he doubles-up again. Etc.

Filename: Problems/Analysis/Measures/co.stoppingtime-.latex
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Evidently Yisa disguised version of )2; indeed
Yo, = 1-X,.

So Vﬂl, and Y has the same convergence properties
as X.

While this looks good for the gambler, we will later
show that, in expectation, he must have infinitely deep
pockets to implement this scheme. (]

19: Insanity that never quits. Fix posints H, /" 0o so
that each Hy > 3- Z;y:_ll H;.

Write the prob-space as  := {#1}%+; a cantor set.
This gambler borrows money from The Mob, and he
never quits. At stage j he bets H; dollars. So his

(cumulative) fortune is

N

For an w with wy = +1 infinitely-often, evidently
limsupy Zy(w) = +o0.

The liminf is -co when wy = -1 infinitely; evidently
each of these events happens almost-surely (off the end-
points of the cantor set). So this MG diverges almost-
surely, in a spectacular way. (And ~when The Mafia comes

to collect its loan— things will spectacular as Well.) ]

Exer. E1. Create a mean-zero MG Z such that X =
lim, Z,, exists-a.e. Arrange that 0 < X < oo and
E(X) = 0. O

Convention. When a filtration E_’; is known, agree
to allow [Ej() to abbreviate Eg; ()j

Doob decomposition of subMG. Some results
about smartingales can be reduced to MGs.

20: Theorem. Consider a subMG (S, ). Then there
exists a MG Y, adapted to G, and an integrable posi-
tive process P so that

di: S, = Y, + B, (forn=0,1,2,...).

d2: 0 =P < P <P <P < ...

Stopping-times
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d3: Each P; is measurable w.r.t G;_1.

The ?,]3 pair is unique.
If_s is L'-bounded, then so are Y and P. Indeed
E(|P|) < 2B, where B := E(|S]). O

Proof. We establish Uniqueness: For j > 1
certainly E;(Y; —Y;-1) = 0, since Y is a MGC.
Thus E;_1(S; — S;—1) equals E;_1(P; — Pj—1). Cour-
tesy (d3),

Pj—Pi1 = Eja(S) - Sj1-

Since Py = 0, summing the telescoping series gives

21: PN == Z [Ejfl(Sj) - ijl] .

je[l..N]

Thus P is uniquely determined, hence so is Y.

Existence. Define Py by (21). Then Py = 0
and Py > Py_j since Ex_1(Sy) —Sny—1 > 0. And
RhS(21) is §n_1-measurable, hence (d3).

As a finite sum, Py is integrable; so Y too is inte-
grable, when defined by (d1). To verify MG-ness we
compute

Yy —Yn_1 = Sy —Sn-1 — [P~N — Pn—1]
= same — [Exy_1(Sny) — Sn—1]
— Sy — En_1(Sn).

Conditioning this on Gy_1 indeed gives 0.

L'-boundedness. Observe that

Eo(Pn) = Z Eo(Ej-1(S; —Sj-1))

jell. N

= > [Eo(Sj) — Eo(Sj-1)],

which equals Eo(SN) —So. And f|PN| = fPN i.e
JEo(Pn), ie [[Sn] — [ So. ¢

Filename: Problems/Analysis/Measures/co.stoppingtime-.latex
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Sampling. Henceforth, fix a MG (Y,G) over in-
dexset J. A ST 7 is “J-stopping-time” if the event
{7() € 3} is null. More strongly, a ST 7 is J-bounded
if there exists Ny € J with 7() < Np. (So either § > 0o
or else 7 is bounded by some integer.) A J-ST 7 yields a
random variable Y, defined, at each w € €2, to be

[Yr @)l (W)
22: Lemma. If 7 is a J-ST then Y, € G,. O

Proof. Take a Borel set S C R. Fixing an N € J, we
want to show that

{Y-(eSpn{r=N}

is in §n. But this intersection equals

note

(YveSIn{r=N}"€ Gy V Sy, ¢

23: Integrability. A Y, could have E(Y;) # E(Yp): Let
Y be the std random-walk on Z, and let T stop at 7.
So E(Y;) =7 # 0= E(Yo).

Worse is a r.walk Z and ST with E(Zg) = +oo: Set
Zo = 0. Let Z1 jump to +n, each with prob:%/Qn, for
n=1,2,.... Depending on the value of n := |Z;|, our
ST 3 stops at the first visit to position 3". So E(Zg)
is >°02 1 [3/2]".  Even worse, we could modify 3 so
arrange that Zg simply fails to have an expectation.

What goes wrong in these examples is that the ST
is not J-bounded. Fortunately:

Imagine that [ is a J-bounded ST for J-
martingale Y. Then Ypg is integrable.

This is implicit in the next proof, of Doob’s thm, near
the end. O

Generalizing the below: The next thm, as stated,
applies to a MG. However, the proof goes through to
show: IfY is a smartingale, then (Ya, Sa), (Y3, Gg) is
a two-term smartingale of the same type. O

25: Doob's Optional Sampling Theorem. Suppose that
a < B are J-bounded STs. Then

25/ E(Ys|5a) = Ya. 0

Stopping-times
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Proof. ~ Said differently, we need to establish that
(Ya,Y3) is a two-term martingale. We’ll do this in
two steps; by reducing to (Yo, Yg), then to (Yo, Y17).
Fix an K € J; ISTShow (25’) when restricted to the
set ' = {a = K}, since ' is in Gq, courtesy (14).
So WLOG a = K. Since Yk is integrable, we can
subtract it to define new sequences, for n > K, by

Yo—x = Y,—Yg and
gn—K = gn

Renaming (Yg, Gi) to (Yx, Gx) gives:
WLOG a=0 and Yy=0.

Our goal®2 is E(Yﬁ | 90) £ Yo. (For the sequel, we don’t
need that Yo = 0, but the reader may find this extra knowledge
helpful in understanding the argument.) Restating, for each
set I' € Gy we desire

/FE(Yﬂ|90) ~ /FYO.

Conditioning on I', then, we need but show that
Jo E(Ys | S0) = [ Yo. Consequently

t: /Qvﬁé/ﬂvo

is our goal.”?
It is now time to use that § is J-bounded. WLOG
B() < 17. In consequence

Yy = / Y = Y,
/ﬂ j%:? (81} j%:? (8=i} ’

=) Yi7;
j<i7 /{B=7}

this latter, since {8 = j} is in §;. The upshot is that

/Y5=/Y17:/Y07
Q Q Q

since —by hypothesis— the pair (Yo, Y17) is a two-term
martingale. ¢

“2I0Words, we have reduced the problem to showing that
(Yo,Y3) is a two-term martingale.

“3This used that [E(Ys | Go) = [ Ys, which goes all the way
back to knowing that, originally, G5 O Ga.

Filename: Problems/Analysis/Measures/co.stoppingtime-.latex
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26: Corollary. (\?,§) a J-subMG, and N € J. For

each posreal b:

P(S) < ¢ E(vwD,

where S is event {[sup;<y Y;] = b}. O

Proof. WLOG b = 7. Let 7 be the [1.. N]-infimum of
those j with Y; > 7. Thus

7-P(S):/S7</SYT</SYN;

this latter, since S € G, and (Y,,Yy) is a subMG. ¢

27: Application. Suppose MG Y has pointwise bound

¥ Vo [Ypp1—Ya| < 7.

Suppose 3 is an integrable ST. Then Yy is integrable
and E(Yg) = E(Yo). O

Proof.  The tool we use is: If Z integrable and it
IL'-converges to a r.v. Zso, then E(Z,,) — E(Zs).

Automatically Zy = Yg,n is integrable. For each
k > N, by (%), the difference |Y, — Yn| < 7-[k—N] <
7 - k. Estimating the L'-norm,

IYe—Znll < > Y — YN

KRN EB(=k}
<Y (=71 / 3.
{B>N}

Rk>Nig7 1

This last goes to zero, since E(8) < oo.

So ISTShow that E(Zy) = E(Yo). Here is the only
place that we use the MG property: Doob'’s Optional
Sampling, (25), tells us that the pair (Yo, Ygan) is a
two-term MG, since 0 < 8 A N are bounded stopping-
times. ¢

Exer. A2. Consider an independent random-walk on the inte-
gers, where each step-probability depends on both position and
time.

A 3-spread D() is a mean-zero random variable with sup-
port on J := [-3..+3]. That is,

ZP(DZ]’) = 1 and
JjEJ

E(D) == " j - P(D=j)

jedJ

Il
o

Inequalities
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For each time n € Z4 and position p € Z, we have a 3-spread
D, , and all these random variables are mutually independent.
Define random-walk S by So = 0 (we start at the origin) and

Sn+1 = Sn + -D”n,«l»l,S71 .

Let 7() be the stopping time where the r.walk first hits po-
sition “5”. Prove that E(7) is infinite. O

Soln. For each natnum N let

Snv = \/Fld(D;,).

jE[L..N)
pEZ

So Trivial = G0 C G C ....
Dni1,p L Gn. Restated

E En(Dn+1,p)

The independence implies

= 0.
Measurability: Note So € Go. To show each Sy € Gn,
we will confirm
[S7 € 7] = [Ss € Gs],
the induction step. For each integer p let
By = {w|S7(w) =p}

Each Dsj € Gs, so S7+Dsp € 9s. And B, € §7 C Gs, so the
product [S7 + Dsgp] - 15, is Gs-measurable. As a result,

Z [S7+ Ds ] - 18, 2ot g4

PpEL

is Gg-measurable.

Integrability: Range(Sn) C [-3" ..3"], whence Sy is
bounded, hence integrable.

Martingale-ness. ISTDemonstrate that

I E7(Ss) =S,

Fix p. Because B, € G7, ISTEstablish () on set B,. There,
Sgs = S7 + Ds p; so E7(Sg) = S7 + E7(Ds ). Now (f) completes
the argument. ¢

Inequalities

Below, J always denotes a subinterval of J. A fnc
f:J—=Ris convex (for emphasis, some say “convex—up”) if
the set {(z,y) |z € J & y = f(z)} is a convex subset
of the plane.

Henceforth, let A be the set of linear (well, affine)
fncs L:R—R. Use B = By C A for the subset of
fnes L lying below, i.e, L() < f(). Let Q C A be
the set of linear fncs with rational slope and that pass
through some rational point.

Filename: Problems/Analysis/Measures/co.stoppingtime-.latex



Page 8 of 10

28: Lemma. f:J—R convex, on an open interval .J.
Then, pointwise,

fO = sup L().

LEBf
Indeed, f = supjce L holds for a certain countable
subcollection € C B. If J = R and f is linear, then
C = {f}. Otherwise, let C:= QN By. O

Proof. Exercise. ¢

29: Jensen's Inequality (Thm).  Take f:J—R convex,
on an open interval J. Suppose Y is an integrable r.v.
with range in J. Then

a.e

FEYT9) < E(fM]9),
for each field G on the probability space. O

Proof. Take a set C of linears with f = supyce L. Let
E(-) denote E(- | §). Fixing a version of E(Y), we can
let L(E(Y)) be the definition of E(L(Y)). Taking sups
gives this pointwise equality,

B FE(Y)) = sLlélgE(L(Y))-

For each L we have, since E() is a positive operator,

While we can a choose a version of E(f(Y)) making
the “a.e” nullset actually empty, it is unclear how to
do make this choice work for every L € €. We'd like
to be able to say

a.

I: sup E(L(Y)) < E(f(Y)).
LeC

@

However, if € is uncountable then we seem to in dan-
ger of an uncountable union of nullsets.

Courtesy (28), we can use a countable C. Now (f,])
together give the lemma. ¢

30: Corollary. f: J—R convex-up on an open interval J,
and Y is a process with range in J. Then

Zisa subMG, where Z,, .= f(Y,),

if either: Y is a MG —or— Y is a subMG and fis
non-decreasing. O

Convergence

Prof. JLF King

Proof. Fix n and let E(-) mean E(- | G,,). So

E(Zns1) & E(f(Yns1))
(E(Yat1)).,

f by Jensen's,
F(Yn) &z,

WV WV

When Y a MG then (x) is equality. But for a subMG
E(Yn+1) = Ya, and here is where we use that f is
non-decreasing. ¢

31: Cauchy-Schwarz Inequality. Suppose Y,Z are
square-integrable r.vars. Then Y - Z is integrable and

a.e

f: Es(YZ)? < Eg(Y?) Eq(Z%). O

Proof. (Integrability of YZ follows from truncation.)

If G == {Eg(Z?) = 0} has positive-mass, then con-
dition on it. (Permissible, since G € §.) By (7), WLOG
Z = 0. Hence the product YZ = 0. So Eg(YZ) = 0.
Thus (1).

Let E() = Eg().
of 2, where

WLOG the event {S > 0} is all

S = E(Z*) and M = E(YZ).

(The symbols come from square and mixed product.) Let

= SY — MZ. And h? is non-negative, so 0 age E(h?).
Courtesy (9) and S,M € G, our E(h?) equals

S%.E(Y?) + M?.E(Z%) — 2SM - E(YZ)
Bt IS E(Y?) — M]S.

&
o

Dividing by the positive S gives (}), in the form 0
S-E(Y?) — M2

& /N

Convergence

Below, convergence of a sequence of reals means con-
vergence in [-00, o0].

A process Y is L'-bounded if
is finite.

P

Write this bound B as E(|Y).
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32: Prop'n.  Suppose that an L'-bounded process \%
a.e-converges (in [-oo,+oc]) and call the limit X. Then
X has the same bound, E(|X]) < E(]Y]). O

Proof.  We get a.e-convergence |Y,|=%|X| of the
absolute values, so Fatou tells us that E(|X]) <
liminf,, E(|Y,]). ¢

Doob’s notion of upcrossings. When does a
seq. of reals, ¢ = (yj);?io, converge? Certainly “Yes”
if, for each pair of rationals a < b, there are only
finitely many index-pairs a@ < 8 with yo, < a < b <
yg. To count such upcrossings, define times

330 <P << <a<f <.
by artificially letting 5.1 == 0. For j =0,1,... let

a;j :=n be the smallest n € [;_1 .. c0] with y, < a;

B; = n be the smallest n € [a; .. co] with y, > b.

(Here “smallest” means infimum; it is oo if no such n exists.)
We say that ¢ “upcrosses the [a, b]-band as time goes
from «a; to ;7.

Given a process Y and sample-pt w € €, let
U%(w) € [0..00] count the number of upcrossings
of sequence ?(w) (The count U*®(w) is the number of j
having f;(w) finite.) For Y to a.e-converge, then, we
need but show that each U*? is a.e-finite.

So showing each | E(U%?) < oo |, will suffice.

34: MCT (Martingale Convergence Thm). For an L'-bnded
smartingale Y, the almost-everywhere lim, Y, =: X
exists. Indeed, E(|X]) < E(]Y]). O

Reductions. It is enough to show, for a.e w, that
lim Y (w) = X exists in [-00,+00]. For then (32) tells
us that X is finite-a.e and E(|X|) has the same bound.
WLOG Y is a subMG (replace Y; by -Y; to convert a
superMG a subMG).
The upcrossing count of Y over band-[a, b] is that
same as that of process
Z, = [Yp—a] ;=
upcrossing band-[0,1].  Furthermore, Z is still a
subMG (since b—a is positive) and Z is still I'-bounded.

Convergence
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So ISTShow, for an arbitrary L'-bnded subMG, that
E(U%!) is finite. Verifying that

7
E(U) <E(]Y|), where U is the upcrossing

t:

count of the [0, 1]-band,
would certainly suffice. O
Proof of MCT. Courtesy Jensen's Inequality, in

form (30), we may assume that
35: Vn: Y,>=0,

simply by removing the negative part: Replace Y,
with Max(0,Y,). And Y stays L!-bounded.

Fix N and let Uy count the number of upcrossings
of [0,1] by (Y1,...,Yn); so cut-off the STs of (33)
at N by redefining

a; = Min(aj, N) and f; = Min(B;,N).

Our noble

(For each j > %, now, our aj = f; = N.)
goal (T) can be transmogrified into

H E(Ux) < E(Yx).

Astronomy. Decompose Yy as a telescoping sum,
YNy = P+1I+Y,,

where the Positive and Integral-nmon-negative parts
(names to be justiﬁed) are

P = Z [ng — Yaj] :
j€0.. N

I = Z [Yak+1 - Yﬁk] :
ke[0.. N)

For arbitrary stopping times o() < 7() < N on our
subMG, remark that

/[YT—YU] _ /[E(YTyga)—Y(,} > /0.

It follows that E(I) is non-negative.”* Also non-

negative is E(Yq,), by (35). Thus E(P) < E(Yn).

“4The same is true for E(P), but we don’t want to discard P.
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So (1) will follow if we can establish this pointwise
inequality,

I: Yw € Q: Un(w) éP(w).

To this heroic end, fix a sample point w and now in-
terpret P, Uy, Y,, as numbers, rather than as random
variables.

Let K be the smallest index j for which (e, 8;) is
not an upcrossing. Thus

For j € [0.K): Yg —Ya, = 1-0 = 1.
FOI“jE(K..N]: Yﬁj_yaj =Yy—-Yy = 0.

Summing, we see that P > Un + [Yg, — Yo, ).

Our heart’s desire now is to corroborate
Yo = Yag- We can dispense with the case
where aj is already N since, there, ax = fk.

Thus ag < N and so Y,, = 0. Since K did not
give an upcrossing, it must be that Yg, < 1 (and
Bx = N). But how could we ever establish that

?
YN>05

if we didn’t have (35) at our disposal? We know that
Yy < 1. But without our Jensen's Inequality step,
this Y could be arbitrarily negative. Although (35)
was used elsewhere in the proof, it is here where it is
crucially used. ¢

Downcrossings. How can I have non-negative integral?
After all, it is a sum of differences such as Yq, — Yg,;
and isn’t that always a downcrossing?

Well for some w, yes, Yq, — Yg, is a downcrossing
and hence is <1. Other w have 86=N,so Y, — Yg, =
Yy — Y is zero. But some w start a downcrossing,
Y3, = 1, but never finish it. So a7 = N and Y,, can
be any posreal. Here is the case where the difference
Ya; — Ypg can be arbitrarily positive —and this allows

the integral E(I) to be positive. O

36: Theorem. Fix a MG (Y, §)y and a r.var Z.
Suppose Yo "B 7. Then Z € L' and E(Z | Gy) =
Yy, for each N.
Conversely, recall Soo = \/ ;.00 G; and suppose
Vn : E(Z|9,) = Yn. Then Y, inlf Z', where
7' =E(Z| G0)- O

Convergence
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Proof. Take a B € Gy. For each k > N,

o< fel - -

</m—2|
B

Now sending k,"co corroborates [ Yy = [5Z. ¢
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