

Notes in the key of \mathbb{C}

Jonathan L.F. King, *Univ. of Florida*
 squash@ufl.edu <http://squash.1gainesville.com/>
 30 May, 2024 (at 11:35)

Whoa! Not figured out, yet.

Frobenius Number. Posint set $\mathbf{S} = \{s_1, s_2, \dots, s_J\}$ is coprime, i.e $\text{GCD}(\mathbf{S}) = 1$. The set of non-negative linear combinations (non-negative *lincombs*) is

$$\text{NNLC}(\mathbf{S}) := \left\{ \sum_{j=1}^J u_j s_j \mid \text{Each } u_j \in \mathbb{N} \right\};$$

the **\mathbf{S} -representable numbers**. The coprimeness of \mathbf{S} easily implies that all large integers are representable. The largest *non*-representable number is $\text{Frob}(\mathbf{S})$, the **Frobenius number** of \mathbf{S} . \square

1.1: Lemma. $\text{Frob}(A, B) = AB - [A+B]$ whenever $A \perp B$ are posints. \diamond

Pf. For $\alpha = 0, 1, \dots, A-1$, sets $F_\alpha := \alpha B + A\mathbb{Z}$ are pairwise disjoint, and $H_\alpha := \alpha B + A\mathbb{N}$ are pairwise disjoint. So $\bigsqcup_\alpha F_\alpha = \mathbb{Z}$ and $\bigsqcup_\alpha H_\alpha = \text{NNLC}(A, B)$.

The most-positive element in $F_\alpha \setminus H_\alpha$ is $[\alpha B] - A$; so the most-positive of those is when $\alpha = A-1$.

FiCA: 10.4 Coin-Exchange Problem

Henceforth:

Posints A, B are a fixed coprime pair.

Problem 10.4 [FiCA P.144] asks: Given natnum “target” τ , compute $\mathcal{N}(\tau)$, the # of (A, B) -representations of τ . I.e, $\mathcal{N}(\tau)$ is the number of natnum-pairs (u, v) with $uA + vB = \tau$.

[For example, we expect $\mathcal{N}(0) = \mathcal{N}(A) = \mathcal{N}(B) = 1$ and $\mathcal{N}(\text{Frob}(A, B)) = 0$.]

Idea. The coeff of z^τ in product $[1 - z^A][1 - z^B]$, i.e in $[1 + z^A + z^{2A} + z^{3A} + \dots] \cdot [1 + z^B + z^{2B} + z^{3B} + \dots]$

is $\mathcal{N}(\tau)$. Defining denominator polynomial

$$1.2: \quad P(z) := [1 - z^A][1 - z^B]z^{\tau+1}, \quad \text{then} \\ \text{Res}_{z=0}(f) = \mathcal{N}(\tau), \quad \text{where } f := 1/P.$$

Residues. With $\alpha := e^{\frac{2\pi i}{A}}$, let $\mathcal{A} := \{\alpha^j\}_{j=1}^{A-1}$; the set of A^{th} -th roots-of-unity, excluding 1. Define β and \mathcal{B} , similarly.

As $A \perp B$, intersection $\mathcal{A} \cap \mathcal{B}$ is empty. Union $\mathcal{A} \cup \mathcal{B}$ comprises the f -simple-poles. Value $\alpha^0 = 1 = \beta^0$ is an order-2 pole. At the origin, the pole has order- $[\tau+1]$.

Below, use $\langle \cdot \rangle_B$ for mod- B residue, e.g, $\langle 3B + 7 \rangle_B$ equals $\langle 7 \rangle_B$.

1.3: Prop. Fix $j \in [1 .. B]$. At $b := \beta^j$,

$$\text{Res}_{z=b}(f) = \frac{-1/B}{[1 - \beta^{\langle jA \rangle_B}] \cdot \beta^{\langle j\tau \rangle_B}}. \quad \diamond$$

Pf. Note first that

$$[1 - z^A] \cdot z^{\tau+1} \Big|_{z=b} = [1 - \beta^{\langle jA \rangle_B}] \cdot \beta^{\langle j\tau + j \rangle_B} \\ = \beta^{\langle j\tau + j \rangle_B} - \beta^{\langle j[A+\tau] + j \rangle_B}$$

By l'Hôpital,

$$\lim_{z \rightarrow b} \frac{z - b}{1 - z^B} = \lim_{z \rightarrow b} \frac{1}{[-B] \cdot z^{B-1}} = \frac{1}{[-B] \cdot \beta^{jB-j}} = \frac{\beta^j}{[-B]}.$$

Consequently, $\text{Res}_{z=b}(f)$ equals

$$\frac{\beta^j}{[-B]} \cdot \frac{1}{[1 - \beta^{\langle jA \rangle_B}] \cdot \beta^{\langle j\tau + j \rangle_B}} \quad \diamond$$

Summing residues. With $\mathbf{C}_r := \text{Sph}_r(0)$, our f is *outlandish* w.r.t $(\mathbf{C}_1, \mathbf{C}_2, \dots)$, since the degree of the denominator is $A + B + \tau + 1 \geq 3$. Hence the sum of all the f -residues is zero.