

Completable subspaces

Jonathan L.F. King

University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu

Webpage <http://squash.1gainesville.com/>
 1 February, 2022 (at 19:38)

ABSTRACT: What subsets of a metric space support a complete metric? [From my topology course.]

Intro

For two metrics d_0, d_1 on the same set \mathbf{X} , we use " $d_0 \prec d_1$ " to mean that every d_0 -open set is d_1 -open. Let " $d_0 \asymp d_1$ " mean that two metrics induce the same topology; we have previously proven that this means the two metrics have the same convergent sequences.

On a metric space (Ω, μ) , say that a subset $\mathbf{X} \subset \Omega$ is *completable* if there exists a *complete* metric d on \mathbf{X} , with $d \asymp \mu|_{\mathbf{X}}$. It turns out that the completable subsets can be characterized.

1: Completeness Theorem. (Ω, μ) is a metric space and $\mathbf{X} \subset \Omega$. Then

- a: \mathbf{X} completable $\implies \mathbf{X}$ is a \mathcal{G}_δ -subset of Ω .
- b: If μ is complete then: \mathbf{X} a \mathcal{G}_δ -subset of Ω $\implies \mathbf{X}$ is completable. \diamond

Proof of (a). In Ω , let $\Omega_\varepsilon(\omega)$ denote the μ -ball of radius ε , centered at point ω . In \mathbf{X} , let $B_r(x)$ mean the d -ball about x , with radius- r . We make an *assumption* –to be removed later– that \mathbf{X} is dense in Ω . We will construct a collection of closed sets $\{K_{1/j}\}_{j=1}^\infty$ whose union is $\Omega \setminus \mathbf{X}$.

Defining K . Fix a positive number r . Let K be the set of $\omega \in \Omega$ such that: For all positive ε ,

$$2: \quad d\text{-Diam}(\mathbf{X} \cap \Omega_\varepsilon(\omega)) > 2r.$$

Since $\mu|_{\mathbf{X}} \asymp d$, for each $x \in \mathbf{X}$ there is a sufficiently small ε such that

$$\mathbf{X} \cap \Omega_\varepsilon(x) \subset B_r(x).$$

Thus $d\text{-Diam}(\mathbf{X} \cap \Omega_\varepsilon(x)) \leq r \cdot 2$ and so $x \notin K$. Conclusion: K is disjoint from \mathbf{X} .

K is Ω -closed. For each point ζ in the Ω -closure of K and for every ε , there is a point ω in $K \cap \Omega_\varepsilon(\zeta)$ for which (2). But $\Omega_\varepsilon(\omega) \subset \Omega_{2\varepsilon}(\zeta)$. Thus

$$d\text{-Diam}(\mathbf{X} \cap \Omega_{2\varepsilon}(\zeta)) > r.$$

This holds for all ε and so ζ is in K .

Filling \mathbf{X} complement. Indicate the dependence of K on r by calling it K_r . We have shown that

$$V := \bigcup_{j=1}^{\infty} K_{1/j}$$

is an \mathcal{F}_σ -subset of Ω which is disjoint from \mathbf{X} .

We finish the proof by showing that *each* ω in $\Omega \setminus \mathbf{X}$, is also in V . Since \mathbf{X} is Ω -dense, there are points $x_n \rightarrow \omega$. But d is complete and thus $(x_n)_{n=1}^\infty$ is not d -Cauchy. That is,

$$r := \inf_{N \geq 1} d\text{-Diam}(\{x_n\}_{n=N}^\infty)$$

is positive. Taking an integer j with $1/j < r$, we see that $\omega \in K_{1/j} \subset V$.

Removing the assumption. No longer assume that \mathbf{X} is dense in Ω . Nonetheless, its Ω -closure, $\bar{\mathbf{X}}$, is a metric space and so the above shows that \mathbf{X} is a \mathcal{G}_δ -subset of $\bar{\mathbf{X}}$. This implies (exercise!) that $\mathbf{X} = \bar{\mathbf{X}} \cap G$, for some G , a \mathcal{G}_δ -subset of Ω .

But $\bar{\mathbf{X}}$ is closed in Ω and so it is also a \mathcal{G}_δ -subset of Ω (exercise: use that Ω is a metric space). Consequently $\mathbf{X} \in \mathcal{G}_\delta(\Omega)$. \spadesuit

Proof of (b). WLOG \mathbf{X} is a proper subset of Ω . Thus we can write $\mathbf{X} = \bigcap_{k=1}^{\infty} U_k$, where each U_k is an open proper subset of Ω .

Building a pseudo-metric on an open set. Suppose U is an open proper subset of Ω . We want to “stretch” the metric μ near the boundary of U . Define a function $f: U \rightarrow [0, \infty)$ and pseudo-metric m by

$$f(x) := \frac{1}{\mu(x, \Omega \setminus U)} \quad \text{and} \\ m(x, z) := |f(x), f(z)|. \quad (\text{Here, } |\cdot, \cdot| \text{ is the usual metric on } \mathbb{R}.)$$

This f is cts, so $m \prec \mu|_U$. Moreover, if a sequence $\mathbf{x} := (x_n)_{n=1}^\infty \subset U$ is m -Cauchy then its image $f(\mathbf{x})$ is an m -bounded sequence. Consequently:

3: If a sequence $\mathbf{x} \subset U$ is μ -Cauchy and is m -Cauchy, then its limit $\omega := \mu\text{-lim}(\mathbf{x})$ must be in U .

This, since $\mu(\omega, U^c)$ is necessarily positive.

Building a metric on a \mathcal{G}_δ set. From the above, for each k there is a pseudo-metric \mathbf{m}_k on U_k satisfying (3). Moreover, a homework problem tells us that the ratio $\mathbf{m}_k/[1 + \mathbf{m}_k]$ is a pseudo-metric which is Cauchy equivalent to \mathbf{m}_k . Thus WLOG \mathbf{m}_k is bounded. So WLOG the \mathbf{m}_k -diameter of U_k is less than $1/2^k$.

Define an extended metric \mathbf{d} on \mathbf{X} by

$$4: \quad \mathbf{d} := \mu|_{\mathbf{X}} + \sum_{k=1}^{\infty} \mathbf{m}_k|_{\mathbf{X}}.$$

(Since μ distinguishes points, so does \mathbf{m} .) This sum is everywhere finite, by the summable bound on diameters, and thus \mathbf{d} is a metric. Moreover, each $\mathbf{m}_k \prec \mu|_{\mathbf{X}}$ and so, by the same homework problem, $\mathbf{d} \asymp \mu|_{\mathbf{X}}$.

To see that (\mathbf{X}, \mathbf{d}) is complete, suppose that sequence $\mathbf{x} := (x_n)_{n=1}^{\infty}$ is \mathbf{d} -Cauchy. From (4), then, \mathbf{x} is μ -Cauchy and so $\omega := \mu\text{-lim}(\mathbf{x})$ exists in Ω . But \mathbf{x} is also \mathbf{m}_k -Cauchy and so, by (3), this ω is in U_k . This holds for each k and so $\omega \in \mathbf{X}$. And since $\mathbf{d} \asymp \mu|_{\mathbf{X}}$ we know that $x_n \rightarrow \omega$ holds also in the \mathbf{d} -metric. \spadesuit

Filename: [Problems/Topology/completable.latex](#)
 As of: Tuesday 14Feb2006. Typeset: 1Feb2022 at 19:38.