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The goal of this note is to produce a C∞-function
F̂:R � whose Taylor series (centered at zero) converges
to a different fnc —namely, to the zero-function.

On U := Rr{0}, the following fnc F() is strictly
positive; thus it differs from the zero-fnc on all of U .

F(x) := e 1/x2
; F̂(x) :=

{
0 , if x = 0

F(x) , if x 6= 0

}
.1a:

[We’ll soon see that F̂ is ∞ly Flat at the origin.]
Generalizing, a degree-D poly P (z) :=

∑D
j=0 Cjz

j

[each Cj is a number] defines a function VP by

VP (x) :=

{
0 , if x = 0

F(x) · P ( 1
x) , if x 6= 0

}
.1b:

[So the F̂ from (1a) is V1.] It may not be evident that VP

is differentiable at 0. But certainly at non-zero x, we
can use the Product rule to compute as follows:

[VP ]
′(x) = F′(x)P ( 1

x) + F(x) · P ′( 1
x) ·

−1
x2

=
[
F(x) 2

x3

]
P ( 1

x) − F(x) · 1
x2P

′( 1
x)

= F(x) ·
[
2[ 1

x ]
3P ( 1

x) − [ 1
x ]

2P ′( 1
x)
]
.

This suggests defining an operation on polynomials.
Given a poly P , define a new poly, P̃ , by

P̃ (z) := 2z3P (z) − z2P ′(z) .1c:

The computation above showed, for each x 6= 0,
that [VP ]

′(x) equals Ṽ
P
(x). Now let’s finish the job.

2a: Theorem. For each polynomial P , the func-
tion VP from (1b) is everywhere differentiable. More-
over, [VP ]

′ = Ṽ
P
. ♦

Proof. What is left to show is that [VP ]
′(0) equals 0.

Happily, the definition of derivative tells us that

[VP ]
′(0)

def
== lim

x→0

VP (x)−VP (0)

x− 0

= lim
x→0

F(x)P ( 1
x)

x

= lim
x→0

F(x) · 1
xP ( 1

x) .

By Prop’n 3c [proved further below] this latter equals
zero We’ll apply (3c) by defining the Q() of that
proposition to be Q(z) := z · P (z). �

2b: Corollary. Given an arbitrary polynomial P , define
a sequence of polys by P0 := P and Pn+1 := P̃n. Then
VP is∞ly differentiable, and its nth derivative satisfies

[VP ]
(n) = VPn ,

for each n = 0, 1, 2, . . . . In particular,

F̂(n) = Vpn ,

where p0() := 1 and pn+1 := p̃n. ♦

3a: Lemma. For each integer N ≥ 0, the limit

`N := lim
u↗∞

uN

e[u2]

exists, and equals zero. ♦

Proof. Certainly `0 is zero. I now induct on N∈Z+.
By L’Hôpital’s rule,

`N = lim
u↗∞

NuN−1

2u · e[u2]

= N
2

[
lim
u↗∞

1
u

][
lim
u↗∞

uN−1

e[u
2]

]
,

since the limit of a product
is the product of the limits,
if both limits exist in R,

= N
2 · 0 · `N−1 = N

2 · 0 · 0 = 0 , by induction. �

Rem. This lemma implies, by letting u := 1/x, that

lim
x↘0

exp(− 1
x2 ) · 1

xN = lim
u↗∞

e [u2] · uN = 0 .

Indeed, we conclude that this holds for the two-sided
limit,

lim
x→0

F(x) · 1
xN = 0 ,3b:

since
∣∣F(x) 1

xN

∣∣ equals F(x) · 1
|x|N

. �
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3c: Polynomial proposition. For an arbitrary polyno-
mial Q, necessarily

lim
x→0

F(x)·Q( 1
x) = 0 .∗: ♦

Proof. Write Q(z) = C0 +C1z + · · ·+CDz
D. Then

lim
x→0

F(x)Q( 1
x) =

D∑
j=0

Cj ·
[
lim
x→0

F(x) 1
xj

]

=
D∑

j=0

Cj · 0 , by (3b).

And this last sum equals zero, as desired. �

For the curious. The nth-derivative of F̂ is VPn ,
where update rule (1c) gives

n Pn(z)

0 1

1 2z3

2 4z6 − 6z4

3 8z9 − 36z7 + 24z5

4 16z12 − 144z10 + 300z8 − 120z6
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h diff’able but h′ discts. Consider fnc h:R→R by

h(x) :=

{
0 , if x = 0

x2 cos( 1
x100 ) , if x 6= 0

}
.

Is h diff’able at the origin? Claim: h′(0)=0.
Difference-quotient h(t)−h(0)

t−0
note
=== h(t)

t = t · cos( 1
t100

).
Since ∣∣∣h(t)−h(0)

t − 0 − 0
∣∣∣ ≤ |t| · 1 = |t|4:

goes to zero as t→ 0, we’ve proved
�� ��h′(0)=0 . Since h

is C∞ off the origin, h is diff’able everywhere. Easily,[
limsup
t→0

h(t)
]
= ∞ and

[
liminf
t→0

h(t)
]
= ∞ .

Our poor h is explosively discontinuous at the origin.

Vectorspace dervative. The below is stated for real-
vectorspaces. For complex VSes, replace R by C, and replace
‘real-linear’ by ‘complex-linear’.

Consider map f :RN→RJ [with N,J ∈ Z+] and point
p ∈ RN . For nearby point p+ v, abbreviate the
change in f by

∆f(v) := f(p+ v) − f(p) .

Our f is differentiable at p if there is a R-linear
map L:RN→RJ with

lim
v→0

∥∥∆f(v) − L(v)
∥∥
J

‖v‖N
= 0 .

In general, a map f :
(((
A,0A, ‖·‖A

)))
→
(((
B,0B, ‖·‖B

)))
between two normed VSes, [mapping amber A to blue B]
is diff’able at p ∈ A if

lim
v→0A

∥∥∆f(v) − L(v)
∥∥
B

‖v‖A
= 0B ,

for some linear L:A→B. �

Filename: Problems/cinfinity.latex



Page 4 of 4
A C∞ function on R
with compact support Prof. JLF King

R-analyticity is not sealed under uniform limits

We now obtain the preceding fnc F̂ as a uniform-limit
(on R) of “flatish” functions♥1 f1, f2, f3, . . . , where

fN (x) := exp
( N

1 +Nx2

)
.

Rewriting fN (x) = 1
/
exp

(
1

[1/N ]+x2

)
shows that,

pointwise, f1 ≥ f2 ≥ f3 ≥ · · · ≥ 0. Of course, the com-
pleteness of the reals implies that the pointwise limit
[limn→∞ fn] exists; evidently, this limit is the F̂
from (1a). But this even stronger result holds:

5: Theorem. On R these fn
uniformly−−−−−−→
n→∞

F̂. ♦

Pf. Use ‖·‖ for the sup-norm on R. Letting J=J(N)
denote the cube-root of posint N , my goal is

‖fN − F̂‖ ≤ Max
{[
e1/J ]− 1,

1

eJ/2

}
.6:

Both terms in Max{} go to zero as J↗∞, so this will
establish (5).

Note fN (0)− F̂(0) = e N ≤ e J/2, which is the
righthand term of Max{}. So ISTShow for each non-
zero x that fN (x)− F̂(x) ≤ RhS(6).

The substitution z := x2 note
> 0 reduces our task to

establishing that[
sup
z∈R+

[
e

N
1+Nz − e

1
z
]] ?
≤ Max

{[
e1/J ]− 1, e J/2

}
.6′:

To this end, let s(z) :=
[
e

N
1+Nz − e

1
z
]
. Fix a posi-

tive z and perceive♥2 that

s(z) ≤ e
N

1+Nz =: I(z) .7:

We get an alternate inequality, (8), by factoring,

s(z) = e
1
z ·
[
e

1
z[1+Nz] − 1

]
.

But e
1
z ≤ 1, so s(z) ≤ e

1
z[1+Nz] − 1. Reducing the

denominator z[1 +Nz] to Nz2 gives

s(z) ≤
[
e1/Nz2

]
− 1 =: D(z) .8:

♥1Each fn is real-analytic, but is not complex-plane-analytic.
[Not entire.] The rational fnc rn(x) :=

n
1+nx2 has poles at ±pn,

where pn := i/
√
n . While pn is just a pole of rn, this pn is an

essential singularity of our fn
def
== exp ◦rn. So pn is a trouble-

point of fn. Note limn pn = 0 and, unsurprisingly, zero is the
trouble-point for F̂

note
=== limn fn.

♥2Can “perceive” really be used in the imperative?

Maximizing over two R+-intervals. This D(z)
is a decreasing fnc of z ∈ R+. For each z in inter-
val [ 1

J ,∞), then, D(z) ≤ D( 1
J ). Since N · [ 1

J ]
2 = J ,

s(z) ≤
[
e1/J ] − 1 .8′:

The I(z) from (7) is an increasing fnc of z ∈ R+.
For each z ∈ (0, 1

J ], then, I(z) ≤ I(
1
J ). Thus

s(z) ≤ e
J3

1+J2

≤ e
J3

J2+J2 , since J ≥ 1 because N ≥ 1,

≤ e J/2 .

This, together with (8′), implies (6′). �

A C∞ function on R
with compact support

Taking the F from (1a) and zero-ing it out on the
non-positive real axis, halves the fnc, giving

h(x) :=

{
0 , if x ≤ 0

exp
(
− 1

x2

)
, if x > 0

}
9:

This is a C∞R -function whose nth-derivative is

h(n)(x) :=

{
0 , if x ≤ 0

exp
(
− 1

x2

)
·Rn(

1
x) , if x > 0

}
,

where polynomial Rn is from (2b).
For k = 1, 2, . . ., define a “bump fnc” or “test fnc”

bk(x) := h
(

1
k + x

)
· h
(

1
k − x

)
.

This C∞R -function has two points of non-analyticity;
the points ± 1

k . The support of bk is open interval

Supp(bk) = ( 1
k ,

1
k) ,

which is bounded. Hence one possible definition of
the Dirac-delta is the distributional-limit lim

k→∞
bk.
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