

A C^∞ function which is not everywhere analytic

Jonathan L.F. King
University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 4 April, 2024 (at 16:31)

The goal of this note is to produce a C^∞ -function $\widehat{\mathbf{F}}: \mathbb{R} \setminus \{0\}$ whose Taylor series (centered at zero) converges to a *different* fnc —namely, to the zero-fnc.

On $\mathcal{U} := \mathbb{R} \setminus \{0\}$, the following fnc $\mathbf{F}()$ is strictly positive; thus it differs from the zero-fnc on all of \mathcal{U} .

$$1a: \quad \mathbf{F}(x) := e^{-1/x^2}; \quad \widehat{\mathbf{F}}(x) := \begin{cases} 0, & \text{if } x = 0 \\ \mathbf{F}(x), & \text{if } x \neq 0 \end{cases}.$$

[We'll soon see that $\widehat{\mathbf{F}}$ is *only flat* at the origin.]

Generalizing, a degree-D poly $P(z) := \sum_{j=0}^D C_j z^j$ [each C_j is a number] defines a function \mathbf{V}_P by

$$1b: \quad \mathbf{V}_P(x) := \begin{cases} 0, & \text{if } x = 0 \\ \mathbf{F}(x) \cdot P\left(\frac{1}{x}\right), & \text{if } x \neq 0 \end{cases}.$$

[So the $\widehat{\mathbf{F}}$ from (1a) is \mathbf{V}_1 .] It may not be evident that \mathbf{V}_P is differentiable at 0. But certainly at *non-zero* x , we can use the **Product rule** to compute as follows:

$$\begin{aligned} [\mathbf{V}_P]'(x) &= \mathbf{F}'\left(\frac{1}{x}\right)P\left(\frac{1}{x}\right) + \mathbf{F}\left(\frac{1}{x}\right) \cdot P'\left(\frac{1}{x}\right) \cdot \frac{-1}{x^2} \\ &= \left[\mathbf{F}\left(\frac{1}{x}\right) \frac{2}{x^3}\right]P\left(\frac{1}{x}\right) - \mathbf{F}\left(\frac{1}{x}\right) \cdot \frac{1}{x^2}P'\left(\frac{1}{x}\right) \\ &= \mathbf{F}\left(\frac{1}{x}\right) \cdot \left[2\left(\frac{1}{x}\right)^3 P\left(\frac{1}{x}\right) - \left(\frac{1}{x}\right)^2 P'\left(\frac{1}{x}\right)\right]. \end{aligned}$$

This suggests defining an operation on polynomials. Given a poly P , define a new poly, \widetilde{P} , by

$$1c: \quad \widetilde{P}(z) := 2z^3 P(z) - z^2 P'(z).$$

The computation above showed, for each $x \neq 0$, that $[\mathbf{V}_P]'(x)$ equals $\mathbf{V}_{\widetilde{P}}(x)$. Now let's finish the job.

2a: **Theorem.** For each polynomial P , the function \mathbf{V}_P from (1b) is everywhere differentiable. Moreover, $[\mathbf{V}_P]' = \mathbf{V}_{\widetilde{P}}$. \diamond

Proof. What is left to show is that $[\mathbf{V}_P]'(0)$ equals 0. Happily, the definition of derivative tells us that

$$\begin{aligned} [\mathbf{V}_P]'(0) &\stackrel{\text{def}}{=} \lim_{x \rightarrow 0} \frac{\mathbf{V}_P(x) - \mathbf{V}_P(0)}{x - 0} \\ &= \lim_{x \rightarrow 0} \frac{\mathbf{F}(x) \cdot P\left(\frac{1}{x}\right)}{x} \\ &= \lim_{x \rightarrow 0} \mathbf{F}(x) \cdot \frac{1}{x} P\left(\frac{1}{x}\right). \end{aligned}$$

By Prop'n 3c [proved further below] this latter equals zero. We'll apply (3c) by defining the $Q()$ of that proposition to be $Q(z) := z \cdot P(z)$. \diamond

2b: **Corollary.** Given an arbitrary polynomial P , define a sequence of polys by $P_0 := P$ and $P_{n+1} := \widetilde{P}_n$. Then \mathbf{V}_P is *only* differentiable, and its n^{th} derivative satisfies

$$[\mathbf{V}_P]^{(n)} = \mathbf{V}_{P_n},$$

for each $n = 0, 1, 2, \dots$. In particular,

$$\widehat{\mathbf{F}}^{(n)} = \mathbf{V}_{p_n},$$

where $p_0() := 1$ and $p_{n+1} := \widetilde{p}_n$. \diamond

3a: **Lemma.** For each integer $N \geq 0$, the limit

$$\ell_N := \lim_{u \nearrow \infty} \frac{u^N}{e^{[u^2]}}$$

exists, and equals zero. \diamond

Proof. Certainly ℓ_0 is zero. I now induct on $N \in \mathbb{Z}_+$. By L'Hôpital's rule,

$$\begin{aligned} \ell_N &= \lim_{u \nearrow \infty} \frac{N u^{N-1}}{2u \cdot e^{[u^2]}} \\ &= \frac{N}{2} \left[\lim_{u \nearrow \infty} \frac{1}{u} \right] \left[\lim_{u \nearrow \infty} \frac{u^{N-1}}{e^{[u^2]}} \right], \quad \begin{array}{l} \text{since the limit of a product} \\ \text{is the product of the limits,} \\ \text{if both limits exist in } \mathbb{R}, \end{array} \\ &= \frac{N}{2} \cdot 0 \cdot \ell_{N-1} = \frac{N}{2} \cdot 0 \cdot 0 = 0, \quad \text{by induction.} \end{aligned} \quad \diamond$$

Rem. This lemma implies, by letting $u := 1/x$, that

$$\lim_{x \searrow 0} \exp\left(-\frac{1}{x^2}\right) \cdot \frac{1}{x^N} = \lim_{u \nearrow \infty} e^{-[u^2]} \cdot u^N = 0.$$

Indeed, we conclude that this holds for the two-sided limit,

$$3b: \quad \lim_{x \rightarrow 0} \mathbf{F}(x) \cdot \frac{1}{x^N} = 0,$$

since $|\mathbf{F}(x) \frac{1}{x^N}|$ equals $\mathbf{F}(x) \cdot \frac{1}{|x|^N}$. \square

3c: **Polynomial proposition.** For an arbitrary polynomial Q , necessarily

$$* : \lim_{x \rightarrow 0} \mathbf{F}(x) \cdot Q\left(\frac{1}{x}\right) = 0. \quad \diamond$$

Proof. Write $Q(z) = C_0 + C_1 z + \dots + C_D z^D$. Then

$$\begin{aligned} \lim_{x \rightarrow 0} \mathbf{F}(x) Q\left(\frac{1}{x}\right) &= \sum_{j=0}^D C_j \cdot \left[\lim_{x \rightarrow 0} \mathbf{F}(x) \frac{1}{x^j} \right] \\ &= \sum_{j=0}^D C_j \cdot 0, \quad \text{by (3b).} \end{aligned}$$

And this last sum equals zero, as desired. \spadesuit

For the curious. The n^{th} -derivative of $\widehat{\mathbf{F}}$ is \mathbf{V}_{P_n} , where update rule (1c) gives

n	$P_n(z)$
0	1
1	$2z^3$
2	$4z^6 - 6z^4$
3	$8z^9 - 36z^7 + 24z^5$
4	$16z^{12} - 144z^{10} + 300z^8 - 120z^6$

h diff'able but h' discts. Consider fnc $h: \mathbb{R} \rightarrow \mathbb{R}$ by

$$h(x) := \begin{cases} 0, & \text{if } x = 0 \\ x^2 \cos\left(\frac{1}{x^{100}}\right), & \text{if } x \neq 0 \end{cases} .$$

Is h diff'able at the origin? Claim: $h'(0) = \mathbf{0}$.

Difference-quotient $\frac{h(t) - h(0)}{t - 0}$ note $\frac{h(t)}{t} = t \cdot \cos\left(\frac{1}{t^{100}}\right)$.

Since

$$4: \quad \left| \frac{h(t) - h(0)}{t - 0} - \mathbf{0} \right| \leq |t| \cdot 1 = |t|$$

goes to zero as $t \rightarrow 0$, we've proved $h'(0) = \mathbf{0}$. Since h is \mathbf{C}^∞ off the origin, h is diff'able everywhere. Easily,

$$[\limsup_{t \rightarrow 0} h(t)] = +\infty \quad \text{and} \quad [\liminf_{t \rightarrow 0} h(t)] = -\infty .$$

Our poor h is explosively discontinuous at the origin.

Vectorspace derivative. The below is stated for real-vectorspaces. For complex VSes, replace \mathbb{R} by \mathbb{C} , and replace 'real-linear' by 'complex-linear'.

Consider map $f: \mathbb{R}^N \rightarrow \mathbb{R}^J$ [with $N, J \in \mathbb{Z}_+$] and point $\mathbf{p} \in \mathbb{R}^N$. For nearby point $\mathbf{p} + \mathbf{v}$, abbreviate the change in f by

$$\Delta f(\mathbf{v}) := f(\mathbf{p} + \mathbf{v}) - f(\mathbf{p}) .$$

Our f is **differentiable** at \mathbf{p} if there is a \mathbb{R} -linear map $L: \mathbb{R}^N \rightarrow \mathbb{R}^J$ with

$$\lim_{v \rightarrow \mathbf{0}} \frac{\|\Delta f(\mathbf{v}) - L(\mathbf{v})\|_J}{\|\mathbf{v}\|_N} = \mathbf{0} .$$

In general, a map $f: (\mathbf{A}, \mathbf{0}_A, \|\cdot\|_A) \rightarrow (\mathbf{B}, \mathbf{0}_B, \|\cdot\|_B)$ between two normed VSes, [mapping *amber* \mathbf{A} to *blue* \mathbf{B}] is diff'able at $\mathbf{p} \in \mathbf{A}$ if

$$\lim_{v \rightarrow \mathbf{0}_A} \frac{\|\Delta f(\mathbf{v}) - L(\mathbf{v})\|_B}{\|\mathbf{v}\|_A} = \mathbf{0}_B ,$$

for some linear $L: \mathbf{A} \rightarrow \mathbf{B}$. □

\mathbb{R} -analyticity is not sealed under uniform limits

We now obtain the preceding fnc $\widehat{\mathbf{F}}$ as a uniform-limit (on \mathbb{R}) of “flatish” functions¹ $\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3, \dots$, where

$$\mathbf{f}_N(x) := \exp\left(\frac{-N}{1+Nx^2}\right).$$

Rewriting $\mathbf{f}_N(x) = 1/\exp(\frac{1}{[1/N]+x^2})$ shows that, pointwise, $\mathbf{f}_1 \geq \mathbf{f}_2 \geq \mathbf{f}_3 \geq \dots \geq 0$. Of course, the completeness of the reals implies that the pointwise limit $[\lim_{n \rightarrow \infty} \mathbf{f}_n]$ exists; evidently, this limit is the $\widehat{\mathbf{F}}$ from (1a). But this even stronger result holds:

5: **Theorem.** *On \mathbb{R} these $\mathbf{f}_n \xrightarrow[n \rightarrow \infty]{\text{uniformly}} \widehat{\mathbf{F}}$.* ◊

Pf. Use $\|\cdot\|$ for the sup-norm on \mathbb{R} . Letting $J=J(N)$ denote the cube-root of posint N , my goal is

$$6: \quad \|\mathbf{f}_N - \widehat{\mathbf{F}}\| \leq \text{Max}\left\{[e^{1/J}] - 1, \frac{1}{e^{J/2}}\right\}.$$

Both terms in $\text{Max}\{\}$ go to zero as $J \nearrow \infty$, so this will establish (5).

Note $\mathbf{f}_N(0) - \widehat{\mathbf{F}}(0) = e^{-N} \leq e^{-J/2}$, which is the righthand term of $\text{Max}\{\}$. So ISTShow for each non-zero x that $\mathbf{f}_N(x) - \widehat{\mathbf{F}}(x) \leq \text{Rhs}(6)$.

The substitution $z := x^2 > 0$ reduces our task to establishing that

$$6': \quad \left[\sup_{z \in \mathbb{R}_+} [e^{\frac{-N}{1+Nz}} - e^{\frac{-1}{z}}] \right] \stackrel{?}{\leq} \text{Max}\left\{[e^{1/J}] - 1, e^{-J/2}\right\}.$$

To this end, let $\mathbf{s}(z) := [e^{\frac{-N}{1+Nz}} - e^{\frac{-1}{z}}]$. Fix a positive z and perceive² that

$$7: \quad \mathbf{s}(z) \leq e^{\frac{-N}{1+Nz}} =: \mathcal{I}(z).$$

We get an alternate inequality, (8), by factoring,

$$\mathbf{s}(z) = e^{\frac{-1}{z}} \cdot [e^{\frac{1}{z(1+Nz)}} - 1].$$

But $e^{\frac{-1}{z}} \leq 1$, so $\mathbf{s}(z) \leq e^{\frac{1}{z(1+Nz)}} - 1$. Reducing the denominator $z[1+Nz]$ to Nz^2 gives

$$8: \quad \mathbf{s}(z) \leq [e^{1/Nz^2}] - 1 =: \mathcal{D}(z).$$

¹Each \mathbf{f}_n is *real-analytic*, but is *not* complex-plane-analytic. [Not *entire*.] The rational fnc $\mathbf{r}_n(x) := \frac{-n}{1+nx^2}$ has poles at $\pm p_n$, where $p_n := i/\sqrt{n}$. While p_n is just a *pole* of \mathbf{r}_n , this p_n is an *essential singularity* of our $\mathbf{f}_n \stackrel{\text{def}}{=} \exp \circ \mathbf{r}_n$. So p_n is a trouble-point of \mathbf{f}_n . Note $\lim_n p_n = 0$ and, unsurprisingly, *zero* is the trouble-point for $\widehat{\mathbf{F}} \stackrel{\text{note}}{=} \lim_n \mathbf{f}_n$.

²Can “perceive” really be used in the imperative?

Maximizing over two \mathbb{R}_+ -intervals. This $\mathcal{D}(z)$ is a decreasing fnc of $z \in \mathbb{R}_+$. For each z in interval $[\frac{1}{J}, \infty)$, then, $\mathcal{D}(z) \leq \mathcal{D}(\frac{1}{J})$. Since $N \cdot [\frac{1}{J}]^2 = J$,

$$8': \quad \mathbf{s}(z) \leq [e^{1/J}] - 1.$$

The $\mathcal{I}(z)$ from (7) is an increasing fnc of $z \in \mathbb{R}_+$. For each $z \in (0, \frac{1}{J}]$, then, $\mathcal{I}(z) \leq \mathcal{I}(\frac{1}{J})$. Thus

$$\begin{aligned} \mathbf{s}(z) &\leq e^{\frac{-J^3}{1+J^2}} \\ &\leq e^{\frac{-J^3}{J^2+J^2}}, \text{ since } J \geq 1 \text{ because } N \geq 1, \\ &\leq e^{-J/2}. \end{aligned}$$

This, together with (8'), implies (6'). ♦

**A \mathbf{C}^∞ function on \mathbb{R}
with compact support**

Taking the \mathbf{F} from (1a) and zero-ing it out on the non-positive real axis, *halves* the fnc, giving

$$9: \quad \mathbf{h}(x) := \begin{cases} 0, & \text{if } x \leq 0 \\ \exp(-\frac{1}{x^2}), & \text{if } x > 0 \end{cases}$$

This is a $\mathbf{C}_\mathbb{R}^\infty$ -function whose n^{th} -derivative is

$$\mathbf{h}^{(n)}(x) := \begin{cases} 0, & \text{if } x \leq 0 \\ \exp(-\frac{1}{x^2}) \cdot R_n(\frac{1}{x}), & \text{if } x > 0 \end{cases},$$

where polynomial R_n is from (2b).

For $k = 1, 2, \dots$, define a “bump fnc” or “test fnc”

$$\mathbf{b}_k(x) := \mathbf{h}(\frac{1}{k} + x) \cdot \mathbf{h}(\frac{1}{k} - x).$$

This $\mathbf{C}_\mathbb{R}^\infty$ -function has two points of non-analyticity; the points $\pm \frac{1}{k}$. The support of \mathbf{b}_k is open interval

$$\text{Supp}(\mathbf{b}_k) = (-\frac{1}{k}, \frac{1}{k}),$$

which is bounded. Hence one possible definition of the Dirac-delta is the distributional-limit $\lim_{k \rightarrow \infty} \mathbf{b}_k$.