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Polynomial preliminaries. A poly(nomial)
such as f(zr)=8z> -7z +2 can be written as
8ey — Tey + 2eq, where e;(z) == 27. As a linear com-
bination,

2
T: f = Zj:O ;€ ,
where & = (o, a1, 2) = (2,-7,8). The product of f
with a degree-3 polynomial ¢ = Zf,,:o Brer is
5
fg = Zn:O Tn€n ,

where, summing over natnum-pairs (7, k), each

> oy - Bl

(k) : j+k=n

la: Yn =

This 5 = (70....,75) is & @ 3, the convolution of &
with 3. An alternative notation to (f) is

oo
f: o= > e
where a; = 0 when j > 2. Such an & = (ag, a1,...)

is an eventually-zero sequence.

We'll also need the falling-factorial polynomials,

[} N] =

(a product of N many terms), Where N € N. How to write
a poly such as F'(z) == 223 — 3z + 3 in terms of
falling factorials? The coeff of 22 is 2, so we subtract,

F(z) — 2z ]3] =

From this we subtract

-z —1]- [z —2] - [z — [N-1]]

50° — T+ 3.
5[ | 2], producing
2r + 3.

From this we subtract -2z | 1], yielding 3. From 3
we subtract 3-[z | 0], ending with zero. Thus

Fx) =
Letting t,,(z) := [z | n], we have equality

F = 3eg+-3e; +-1les + 2e3
= 3tg +-2t7 + bty + 2t3.

1b:

We have done a change-of-basis computation, from
basis (e;) "~ to the (t,),” basis. O
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3-[[x¢0]] + 2[z L 1] + 5[z 1 2] + 2:[= ] 3].

Chromatic form. Looking ahead, consider a monic
intpoly P() with REN many [not necessarily distinct]
integer-roots 71, Zs, ..., Zp. Writing P(z) in chro-
matic form means writing

lc: P(x) = [Hle [z — Zjﬂ (),

where [either “ f(z)” is absent or] f is a monic intpoly
with no integral roots. Indeed, courtesy the Gauss
Lemma for polynomials, our f has no rational roots.

When P is a chromatic polynomial, its integer-root
part []; [z — Z;] should be written in form

o o1 -2 o K-

often mixed with falling-factorials, e.g
ok [[$¢2]]5'[[3’3¢4]]‘[$_1]7-
See (4d), the Chromatic-polynomial Corollary. O

Graph terminology. Use K, for the complete
graph on n vertices, and K ;, for the complete (j, k)-
bipartite graph. Use C, for the cyclic graph with
n vertices and n edges [C; has a single self-edge; C> has 2
edges between 2 vertices; for n > 3, our C,, is a simple graph].
Use Emp,, for the n-vertex graph with no edges; an
“ Empty graph”.

Coloring. Consider G = (V,E), a finite graph,
[loops, multiple-edges ok| with N = |V|, and L = |E|.
Use ¢(G) for the # of connected components of G.

For k € N, a “k-coloring of G” means to assign a
“color”, an element of [1..k], to each vertex, so that
no two neighbors [the end-vertices of an edge| have the
same color. A k-coloring is full if it uses all k col-
ors. The chromatic number of G, written \(G), is
the minimum number of colors needed. l.e, it is the
unique k so that there is a k-coloring of G, and every
k-coloring of G is full.

For k = 0,1,2,..., let Pg(k) be the number of k-
colorings of G. Note Pgpp, (k) = 1 since the void
graph [no vertices| has exactly one k-coloring. Chro-
matic number x(G) is the smallest natnum k for which
P (k) is positive.”!

“'If G has a loop, then P¢() = 0 and x(G) = oo.

If G has multiple edges between vertices u, v, then replac-
ing them by a single edge will not change the chromatic
poly/number. Without announcement we will do this; effec-
tively, we compute chromatic polys only of simple graphs.
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Consider an N-vertex G
and edge a € E. Let G~ {a} mean to delete edge «;
no vertices are removed, so G\{a} still has N ver-
tices. In contrast, use G/a to mean the graph with
N—1 vertices, where we have contracted «, so that
its two endpoints¥? become a single vertex, and « is
gone. Delete loops if the contraction creates such. If
contraction creates a multi-graph, it is a matter of
taste whether to delete extra edges.

Deletion-contraction.

2: Deletion-contraction Thm.  On N-vertex loopless
multi-graph G = (V,E), function P¢g() is a degree-N
monic polynomial. For each o € E,

2a: PG($> = PG\{Q}(.%') - PG/Q($),

as polynomials. Also, Pg(x) has no constant term,
except when G is the void graph. O

Pf. The only N=0 graph is void, and Pgmp, () is
constant-1, which is monic and of degree zero. Fix-
ing N>1, we induct on the number, L, of edges. The
L=0 case is trivial, since Py, (2) is z?.

As G{a} has L—1 edges, poly P (q} is monic
of degree-N. As G/« has at-most L—1 (we might have
deleted a loop) and N —1 vertices, our P/, is a degree-
[N—1] poly. Since their difference is a monic degree-N
poly, ISTEstablish the (2a) recurrence. We will show
that
2b: PG(k) + PG/a(k) = PG\{a}(k)a
for each posint k. This implies equality as polynomi-
als, since we will have equal outputs, for N+1 many
values of k.

The endpoints of «, call them u and v. Consider a
coloring of G/a, but split apart the combined vertex
back into separate vertices u and v [and don’t put in
edge o|. This is now a coloring of G~ {a} that gives u
and v the same color. In contrast, each coloring of G
gives distinct colors to u and v; so removing « gives
a coloring of G~{a} with u and v having different
colors. Hence (2b). ¢

“2If u, v have multiple edges, then contracting a u==v edge
creates a loop, hence a graph with P() = 0. This is ok, but
inefficient; typically, first collapse each multi-edge to a single
edge.
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Properties of Pg. Initially, N € N.

Pemp, (z) = zV.

PKN(‘T:) = [z | NJ.

Now, N > 1. The N-vertex path graph, Py, is a
special case of a tree. Below, Ty is an arbitrary tree
on N vertices. Easily,

3a:

3b:  Ppy(x) = Pry(z) = afz—1]V"L
For N > 2,

3c: Pey(x) = [z—11 + 1)V ]z—1].
In particular,

Pc,(z) = z-[z—1]-[2* — 3z + 3]

/.
3 = 2% — 423 + 622 — 3.
Proof of (3c). Note Cy becomes the path Ps, after col-
lapsing the multi-edge, hence has chrom-poly z-[x—1],
which is what (3c) =2 equals; the base case.
Applying (2a) to G := Cy4+1 and an edge «, gives
G~{a} = Pny1 and G/a = Cy. So Pg(z) equals

@z =N = =1 + [V
And this reduces to [z—1]VT' + [Nt z—1]. ¢

From each vertex of Cy, attach an edge to a com-
mon vertex, uyy+i. This wheel graph Wiy, has
N+1 vertices and 2N edges. For N > 2, then,

Pwyoi (@) = x-Pcy(z—1)

3d:
2 gl - 2N + [V - 2]
(Fixing a posint x, there are x choices to color vertex uny1,
hence z—1 colors available for the embedded CN.) E.g, (??/)
gives Pc,(z—1) = [z—1] - [x — 2] - [z = 5z + 7]. So

3d': Pw,(z) = [z ]3] [z* — 52+ 7).

Trivial graphs. Note Pc, =z and Pc, = Pemp, = 1;
neither produced by (3c). The wheel-recurrence

Pw, (z) =2 -Pc,_,(x—1) holds VN>1. O

Exer El: Suppose Pg(x) = x-[z — 1J¥~1. Prove

that G is a tree.
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Cone over a graph. Write this: Wheel graph Wy 1
is the cone over Cy. Double cone. And K-vertex cone gives
clumsy formula involving bell numbers.

Alternatively, the K-vertex cone over G is the full-product
of G with Emp.

Defn. An alternating polynomial h(z) has form

BN.%'N — BN_l.rN_l + BN_Q.%'N_2 — BN_3:I}N_3
+o A By 2N L+ PN TR Ba®
where N>K are natnums, and each B; > 0. Call

index K “the low-degree of h”, written LD(h). Here
is an easy exercise. For f and g alternating-polys:

Product f - g is alternating,
and LD(f -g) = LD(f) + LD(g).

If Deg(f) = 14+ Deg(g), then f—g is alternat-
ing, with LD(f — g) = Min(LD(f),LD(g)).

4a:

4b:

4c: Chromatic polynomial Theorem.  For a non-void
simple graph G = (V,E), write its chromatic polyno-

mial Pg(x) in form (4). Then

P is a monic alternating intpoly, with
N =|V|, By_1 = |E| and K = ¢(G).

[This c(G) is the number of connected—components,]

Proof. [We have “monic” and “N = |V|” from (2).| First sup-
pose G decomposes into (non-void) disjoint subgraphs
Hi U Hy. Let Nj = |VH].|, Lj = |EH].|, Kj = C(Hj)
and f; :==Pp;. So f; has form

fi(x) = i — Ljp™Ni7t 4 Ot

with C; # 0. Easily, P¢ = fi-f2, hence is alternat-

note

ing, by (4a), with low-degree K7 + Ko = ¢(G). The
penultimate coeff of fi-f2 is -[L1 + Lg|, which indeed
is the number of G-edges. So WLOG, G is connected.

When G is connected. [Recall N > 1 since G is non-
void.] Pick a G-edge, «, whose removal does not dis-
connect G; if there is none such, then G is a tree
[possibly the edgeless tree], where (*) evidently holds.
Hence both G~{a} and G/« are connected, Thus
[ =Ps o) and g == Pg/,. each satisfy (x). So f—g
is alternating, by (4b), and LD(f—g)=Min(1,1)=1,
which is indeed the number of connected-comps of G.

Gluing

Page 3 of 7

Counting edges. Let L :=|E|. Our G~{a} has
L—1 edges, thus f(z) = 2V —[L—1]zV~1+.... And
g is monic, g(x) = 2¥~' — ..., The difference thus
N N-14 ., as desired. ¢

4d: Chromatic-polynomial Corollary.  Polynomial P g
has no negative roots. Setting K := x(G), we can
therefore write Pg(x) in chromatic form as

o0 o= o= o= (K1) S (@),

with each e; € Z.. Moreover, f is |either absent, or| a
monic intpoly, with no negative real**roots, and no
rational roots. O

Proof.  An alternating-poly evaluated at a negative
real, yields a sum of posreals, hence is positive. Fi-
nally, since f is primitive (the GCD of its coeffs is 1)
each rational root must be integral, by the Gauss
Lemma for polynomials.

Exer E3.1415: “The composition of two chromatic-
polys is always a chromatic-poly.” Prove, or CEX.

Gluing
The next result uses

...two graphs Hj, for j = 1,2, with N;
5: many vertices and L; many edges. Let

hs() = Py ).
5a: Gluing lemma.  When G is built from non-void
simple graphs Hy and Hy by. ..
0: disjoint union, then Pg(x) = hi(z) - ha(z).
I: picking a vertex u; in H; and identifying the two
vertices, then Pg(x) = hi(z) - hz(x)/x. This G has

N1+ No—1 many vertices and L1+ Lo many edges.
Call this G a point-gluing of H; and H,.

2: picking an edge o in H; and identifying the two
edges (choose an orientation), then

Pe(z) = hi(@) - ha(a) [alz—1].

This G has N1 + Ny — 2 vertices and Ly + Lo — 1
edges. Call this G an edge-gluing of Hy with Hs.

“SHowever, f can have complez roots with negative real-part.
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picking a vertex u; in H; and putting in a (new)
edge between them, then

Po(x) = hi(z) - ha(z) - 2. 0

xT

This G has N1 + Ny many vertices and L1 + Lo+ 1
many edges. This G is a new-edge-attaching of
H; and Hs.

Proof. Exercise. ¢

5b: Gluing on a subgraph. Graph M = (V,E) is
a subgraph of H = (V',|E') if there exist injections
®: V-V’ and ¥:E—E’ so that:
For each o € E with endpoints u,v € V, neces-
sarily, the endpoints of ¥(a) are ®(u) and ®(v).

Henceforth, for both injections we’ll use a common

symbol (usually @) and write (®: M—H).
Consider graphs H; as in (5), as well as a graph M.

Suppose ®1: M—H; and ®o: M<—H5. Define the
gluing of Hy with Hs, over (1, ®2)

as the graph G which is the “union” of H; and Ho,

where for each vertex u and edge o of M:

Vertex ®1(u) is identified with ®3(u) and
edge @1 () is identified with ®o(«).

So G has N; + Ny — |Vertices(M)| many vertices, and
Li + Ly — |Edges(M)| many edges. When we don’t
need the details of the gluing, we will refer to G as

5c:

a gluing of Hy with Hs, over M.

NOTATION: I use symbol U for “disjointunion”, so
let’s use Hq LI Hs for gluing over the void graph. More
generally, use

5d: Hiupm He or H; ng; Hs

for gluing over M; the latter, if the details are needed.
Say that M is gluing-good if, for all graphs H1, Ho
having M as a subgraph, necessarily

sei Po(r) = Puy(a)-Puy(a)/Pulx),
whenever G is a gluing of H; with Hs over M. [l

Exer E2.1: Find an infinite family of connected
graphs which are gluing-good.

Exer E2.2: “Fach connected graph M is gluing-
good”. Find a proof, or CEX.

Gluing
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Bipartite graphs. For natural numbers B and G,
the complete bipartite graph K g has all edges be-
tween B := [1..B] and G = [1..G], the “Boys” and
“Girls”, and no other edges.

For natnums B and ¢, the ¢ Stirling number of the
second kind”, 8(B, ¢), is the number of partitions of
[1..B] into ¢ many non-empty atoms. (Le, S(B,¢) is
the number of equivalence relations on [1 .. B] that have £ many

[non-void| equivalence classes. )
6: Sara’'s Lemma. Let fgq abbreviate Py, . Then

B

6a:  foc(e) = Y 8B, 0 [x4q-[e—4¢. 0

=0

Computing. At B = 0, the RhS is 1-1- [z — 0] which
is 9, which is correct.

Once B > 1 we can start the sum at £ = 1, since
there are no partitions of the empty set into positively
many atoms.

The RhS is 1+ [z L 1] - [z —1]%, i,

z-[z — 1]%, which is what (3b) says, as K; g is a tree.

At B = 2, our RhS(6a) is

S2,1)-[¢d1] [z —1]° loz-[z—1)¢
+ = +
S(2,2) - [¢12] [z—2° 1-zfz—1] - [z —2]°.

So fa(x) equals - [[x —1]% + [z—1] - [z — 2]¢].
Once G > 1, we have that
6b: fog(z) = @ [p=1]- [[o— 197" 4 [z - 2)9].

Plugging in G=2 yields RhS(??’), which is reassuring
seeing as Koo equals Cy.

RhS(6a) is a sum of three terms:

SB,1)-[zl1] [x—1° = 1-2[z—1]9;
83,2 [z12] [z-2° = 3-2[z—1][z—2]“;
S3,3) - [x43] [z—3]¢ = 1-z[z—1][z - 2][z — 3]°.

As soon as G > 1, ratio fg,G(m)/w[:U — 1] equals

6c: [z — 191 4 3z — 2% + [z — 2)[z — 3]°.

Using colors orange& blue there are 2 colorings of K3 g
[since G>0], so (6¢) at =2 better equal 1. Does it?
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When G = 1, the K3 is a 4-vertex tree, so (6c¢)
with G=1 better darn well be [z—1]*. Ts it?

FWIW, (6¢)g=2 is [#® — 522 + 10x — 7]; irred.

Evaluating, (6¢)g=3 gives

6d: 423 4 gs g 4 i3l
x - [z—1]

This last is irreducible over the rationals. OJ

Graph-Stirling numbers

For a generalization of “bipartite graph”, consider two
graphs H; = (V;,E;) with N; vertices and L; edges.
The full product G := Hi ® Hy is their disjoint
union, augmented by an edge from each Hi-vertex, to
each Hs-vertex. Thus

Hi®H> has Ni+Ns many vertices, and

Ta: L1+ Ly + [N1 N3] many edges.

We'll get a formula for its chrom-poly, in terms of the
following type of polynomial product.

Given two polynomials f and g, we define their
falling product h := f 4 g, as following.

® Write each w.r.t the falling-factorial basis, i.e

J K
f = ijo Ozjtj and g = Zk:oﬁktk’

as shown in (1b).

® Compute v = 62@8 = (70,71, --,7J+K), the

convolution.

J+K
® Define h = Z Yt
n=0

Defn. A Stirling partition of graph G=(V,E),
is a partition of V into non-empty subsets (called the
atoms of the ptn) so that no two adjacent vertices are
in the same atom. [I.e, each atom is an “independent set”.]

For natnum ¢, define the graph-Stirling number

7b: S(G, 0)

to be the number of ¢-atom Stirling partitions of V.

Graph-Stirling numbers
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7c: Graph-Stirling Thm. For an N-vertex¥* graph G,

N
Pox) = .8(G.0)-[xi4]. 0
(=0

Proof. Exercise. ¢

7d: Full-product Thm. Consider a graph G := H; ® H,.
Then

P = Pnu 3Pu,. O

Proof idea. Fix £. The f-atom Stirling partitions of G
are in 1-to-1 correspondence with: Pick natnums with
J1 + jo = £, then take a ji-atom Stirling ptn of Hy,
and a je-atom Stirling ptn of Hs. ¢

Te: Example. Let H be Py U P1. So S(H, 1) =0,
S(H,2) =2 and S(H, 3) = 1. Our (7c) asserts that
Py = Z?:o a;t;, where a = (0,0,2,1). Le,

Pr(z) = 2:[z 12] + [z ]3]
= [zl2][2 + [z —2]] 22 22 [z —1].

This agrees with (3b) and with (5a.0).

Let’s compute G := H® K, where K := K;. Our G
is a K3 with a new edge attached to a vertex. So (5a.3)
says Pg(z) = [z | 3] - [x — 1]. What does (7d) say?

Our K has chr-poly x = [z | 1]. We set B = (0,1),
then compute convolution 5 := & ® 8 = (0,0,0,2, 1).
Thm (7d) asserts that

Pe(x) = 2:[z13] + [z 4]
= [z 1 3][2 + [z —3]] 2 [z} 3][z—1].

This agrees with our derivation via (5a.3). O

7f: Bipartite ex. Graph H := Emp; has S(H, 1) = 1,
S(H,2) =3, 8(H,3) =1, and so & = (0,1,3,1).
Thus
Pu(z) = [o 4 1]+3z 4 2] + [z L 3]
=z [1+[m—1][3+[m—2m
=z -[1+[2*-1] = 2*.

“4We can start the sum at ¢=1 except when G is the void
graph. After all, when N is positive then S(G, 0) is zero.

Filename: Problems/GraphTheory/chromatic-num.latex



Page 6 of 7

This indeed agrees with (3a).
Since K3 3 is the full-product of H with H, we com-
pute ¥ :=a®a = (0,0,1,6,11,6,1). Polynomial

[z 1 2] + 6[z 4 3] + 11[z 4 4] + 6[z 4 5] + [ | 6]
simplifies (thanks, Maple) to
z-[z—1] - [2* — 823 4 2827 — 47z + 31] .

Happily, this agrees with (6d). O

Spanning subgraphs

Fix a G = (V,E) with N vertices and L edges. Each
subset S C E can be interpreted as (V, S), a spanning
subgraph of G. [Thus G has 2 many spanning subgraphs.]

Let ¢(S) denote the number of connected components
of S.

8: CPSS Thm (Chromatic-Poly Spanning Subgraph). The
chromatic polynomial of G satisfies

Z (-1)IS . e(5) O

S: SCE

*3 Pe(z) =

Exer E4: Prove this. Think Inclusion-Exclusion.

[Hint: See the pamphlet on our TEACHING PAGE.]

Comparison. We can paraphrase Theorems (8) and
(7c) as saying: Spanning subgraphs express Pg w.r.t
the standard basis (ej);io [see (1b)], whereas Graph-
Stirling numbers write Pg w.r.t the falling-factorial.
basis (tn),— - O

8a: Fr. As Kz has 3 edges, it has 23 = 8 spanning
subgraphs. The no-edge graph has 3 CCs [Connected
Components|, hence contributes a [-1]%-2% = 23 term.

The three one-edge spanning subgraphs each have
2 CCs; these contribute 3-[-1]-22 = -322.

The three two-edge spanning subgraphs, each have
1CC, contributing 3-[-1]>2! = 3z. Finally, the
unique three-edge spanning subgraph has 1 CC, hence

contributing a [-1]*-z! = -z term. Adding,

=23 -322+3z—=z

= 2° 3%+ 22 2 [z ] 3]. O

PK3 (J?)

Applications/Extensions
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Applications/Extensions

Here is one:

9a: Orientations. An orientation of G = (V,E) is
putting a direction on each edge, creating a digraph;
so G has 2/Fl many orientations. An orientation of G
is acyclic if it has no directed-cycles. Use A(G) for
the number of acyclic orientations of G.

An orientation of Ky is called an N-tournament;
there are 2(2]) of them. E.g, K4 has 26 — 64 orienta-
tions.  Exer E5: Prove that A(Ky) equals [N!]. O

9b: Acyclic-count Thm (Richard Stanley). On N-vertex

G,

AG) = [N Pg(-1). %

Sketch. The idea is to establish an analog of (2a),

9c: A(G) = A(G~{a}) + A(G/a),

for each edge « of G, as follows. Let M = G~{a}.

e Fach acyclic-orient of M extends to at least one
acyclic-orient of G.

e The number of acyclic-orients of M which give rise
to two acyclic-orients of G, is A(G/a). ¢

10: Generalizing full-product. — Let G be the set of
all graphs. Consider a graph S = (V,E) and a fnc
F:V—@G; we'll often write F(u) as Fy. Use Ny|Ly
for the number of vertices|edges of Fy.

The “full product of F over S”

G = @S(]:)

is S, but where each S-vertex u has been replaced by
a copy of graph Fy. Moreover, for each S-edge v==w:

Each F,-vertex v and each Fy-vertex w’',
are the endpoints of a G-edge.

Thus Og(F) has Y ,cy Nu many vertices. It has

10a: [ Lu] + D[Ny N

ueV

many edges, where the second sum is over all S-edges
v=w. In the case that S is a single edge, P2, we
recover the full-product as defined above (7a).
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Full-product from (7a) is associative, so expressions
such as H1 ® Hy ® ... ® Hs make sense. If we define
F(j) == H;, then

10b: HioH0...0H, = (O, (F),
regarding [1..5] as the vertex-set of Ks. O

Exer: Is there a formula for the chromatic num-
ber/polynomial of Og(F), in terms of corresponding
information about S and function F7 What about

special cases, e.g S = P3? Or S = Cgyen’
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