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Polynomial preliminaries. A poly(nomial)
such as f(x) = 8x2 − 7x+ 2 can be written as
8e2 − 7e1 + 2e0, where ej(x) := xj . As a linear com-
bination,

f =
∑2

j=0
αjej ,†:

where ~α := (((α0, α1, α2))) = (((2, 7, 8))). The product of f
with a degree-3 polynomial g =

∑3
k=0 βkek is

f · g =
∑5

n=0
γnen ,

where, summing over natnum-pairs (((j, k))), each

γn =
∑

(((j,k))) : j+k=n

[αj · βk] .1a:

This ~γ = (((γ0, . . . , γ5))) is ~α~ ~β, the convolution of ~α
with ~β. An alternative notation to (†) is

f =
∑∞

j=0
αjej ,‡:

where αj = 0 when j > 2. Such an ~α = (((α0, α1, . . .)))
is an eventually-zero sequence.

We’ll also need the falling-factorial polynomials,

Jx ↓ NK := x·
[
x− 1

]
·
[
x− 2

]
· · ·
[
x− [N−1]

]
(a product of N many terms), where N ∈ N. How to write
a poly such as F (x) := 2x3 − x2 − 3x+ 3 in terms of
falling factorials? The coeff of x3 is 2, so we subtract,

F (x) − 2·Jx ↓ 3K = 5x2 − 7x+ 3 .

From this we subtract 5·Jx ↓ 2K, producing

2x + 3 .

From this we subtract 2Jx ↓ 1K, yielding 3. From 3
we subtract 3·Jx ↓ 0K, ending with zero. Thus

F (x) = 3·Jx ↓ 0K + 2·Jx ↓ 1K + 5·Jx ↓ 2K + 2·Jx ↓ 3K .

Letting tn(x) := Jx ↓ nK, we have equality

F = 3e0 + 3e1 + 1e2 + 2e3

= 3t0 + 2t1 + 5t2 + 2t3 .
1b:

We have done a change-of-basis computation, from
basis (((ej)))

∞
j=0 to the (((tn)))

∞
n=0 basis. �

Chromatic form. Looking ahead, consider a monic
intpoly PPP() with R∈N many [not necessarily distinct]
integer-roots Z1, Z2, . . . , ZR. Writing PPP(x) in chro-
matic form means writing

PPP(x) =
[∏R

j=1
[x− Zj ]

]
· f(x) ,1c:

where [either “·f(x)” is absent or] f is a monic intpoly
with no integral roots. Indeed, courtesy the Gauss
Lemma for polynomials, our f has no rational roots.

When PPP is a chromatic polynomial, its integer-root
part

∏
j [x− Zj ] should be written in form

xe0 · [x− 1]e1 · [x− 2]e2 · · · [x− [K−1]]eK−1 ,∗:

often mixed with falling-factorials, e.g

Jx ↓ 2K5 · Jx ↓ 4K · [x− 1]7 .∗∗:

See (4d), the Chromatic-polynomial Corollary. �

Graph terminology. Use Kn for the complete
graph on n vertices, and Kj,k for the complete (((j, k)))-
bipartite graph. Use Cn for the cyclic graph with
n vertices and n edges [C1 has a single self-edge; C2 has 2

edges between 2 vertices; for n ≥ 3, our Cn is a simple graph].
Use Empn for the n-vertex graph with no edges; an
“Empty graph”.

Coloring. Consider G = (((V,E))), a finite graph,
[loops, multiple-edges ok] with N := |V|, and L := |E|.
Use c(G ) for the # of connected components of G .

For k ∈ N, a “k-coloring of G ” means to assign a
“color”, an element of [1 .. k], to each vertex, so that
no two neighbors [the end-vertices of an edge] have the
same color. A k-coloring is full if it uses all k col-
ors. The chromatic number of G , written χ(G ), is
the minimum number of colors needed. I.e, it is the
unique k so that there is a k-coloring of G , and every
k-coloring of G is full.

For k = 0, 1, 2, . . ., let PPPG (k) be the number of k-
colorings of G . Note PPPEmp0

(k) = 1 since the void
graph [no vertices] has exactly one k-coloring. Chro-
matic number χ(G ) is the smallest natnum k for which
PPPG (k) is positive.♥1

♥1If G has a loop, then PPPG () ≡ 0 and χ(G) :=∞.
If G has multiple edges between vertices u,v, then replac-

ing them by a single edge will not change the chromatic
poly/number. Without announcement we will do this; effec-
tively, we compute chromatic polys only of simple graphs.
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Deletion-contraction. Consider an N -vertex G
and edge α ∈ E. Let Gr{α} mean to delete edge α;
no vertices are removed, so Gr{α} still has N ver-
tices. In contrast, use G/α to mean the graph with
N−1 vertices, where we have contracted α, so that
its two endpoints♥2 become a single vertex, and α is
gone. Delete loops if the contraction creates such. If
contraction creates a multi-graph, it is a matter of
taste whether to delete extra edges.

2: Deletion-contraction Thm. On N -vertex loopless
multi-graph G = (((V,E))), function PPPG() is a degree-N
monic polynomial. For each α ∈ E,

PPPG(x) = PPPGr{α}(x) − PPPG/α(x) ,2a:

as polynomials. Also, PPPG(x) has no constant term,
except when G is the void graph. ♦

Pf. The only N=0 graph is void, and PPPEmp0
(x) is

constant-1, which is monic and of degree zero. Fix-
ing N≥1, we induct on the number, L, of edges. The
L=0 case is trivial, since PPPEmpN

(x) is xN .
As Gr{α} has L−1 edges, poly PPPGr{α} is monic

of degree-N . As G/α has at-most L−1 (we might have
deleted a loop) and N−1 vertices, our PPPG/α is a degree-
[N−1] poly. Since their difference is a monic degree-N
poly, ISTEstablish the (2a) recurrence. We will show
that

PPPG (k) + PPPG/α(k) = PPPGr{α}(k) ,2b:

for each posint k. This implies equality as polynomi-
als, since we will have equal outputs, for N+1 many
values of k.

The endpoints of α, call them u and v. Consider a
coloring of G/α, but split apart the combined vertex
back into separate vertices u and v [and don’t put in
edge α]. This is now a coloring of Gr{α} that gives u
and v the same color. In contrast, each coloring of G
gives distinct colors to u and v; so removing α gives
a coloring of Gr{α} with u and v having different
colors. Hence (2b). �

♥2If u,v have multiple edges, then contracting a u v edge
creates a loop, hence a graph with PPP() ≡ 0. This is ok, but
inefficient; typically, first collapse each multi-edge to a single
edge.

Properties of PPPG . Initially, N ∈ N.

PPPEmpN
(x) = xN .

PPPKN
(x) = Jx ↓ NK .

3a:

Now, N ≥ 1. The N -vertex path graph , PN , is a
special case of a tree. Below, TN is an arbitrary tree
on N vertices. Easily,

PPPPN
(x) = PPPTN

(x) = x·[x− 1]N−1.3b:

For N ≥ 2,

PPPCN
(x) = [x−1]N + [ 1]N [x−1] .3c:

In particular,

PPPC4(x) = x · [x−1] · [x2 − 3x+ 3]

= x4 − 4x3 + 6x2 − 3x .
3c′:

Proof of (3c). Note C2 becomes the path P2, after col-
lapsing the multi-edge, hence has chrom-poly x·[x−1],
which is what (3c)N=2 equals; the base case.

Applying (2a) to G := CN+1 and an edge α, gives
Gr{α} = PN+1 and G/α = CN . So PPPG (x) equals[

x·[x− 1]N
]
−
[
[x−1]N + [ 1]N [x−1]

]
.

And this reduces to [x−1]N+1 + [ 1]N+1[x−1]. �

From each vertex of CN , attach an edge to a com-
mon vertex, uN+1. This wheel graph WN+1, has
N+1 vertices and 2N edges. For N ≥ 2, then,

PPPWN+1
(x) = x · PPPCN

(x−1)

note
=== x

[
[x− 2]N + [ 1]N [x− 2]

]
.

3d:

(Fixing a posint x, there are x choices to color vertex uN+1,
hence x−1 colors available for the embedded CN .) E.g, (??′)
gives PPPC4(x−1) = [x−1] · [x− 2] · [x2 − 5x+ 7]. So

PPPW5(x) = Jx ↓ 3K · [x2 − 5x+ 7] .3d′:

Trivial graphs. Note PPPC1 = x and PPPC0 = PPPEmp0
= 1;

neither produced by (3c). The wheel-recurrence
PPPWN

(x) = x · PPPCN−1
(x−1) holds ∀N≥1. �

Exer E1: Suppose PPPG (x) = x·[x− 1]N−1. Prove
that G is a tree.
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Cone over a graph. Write this: Wheel graph WN+1

is the cone over CN . Double cone. And K-vertex cone gives
clumsy formula involving bell numbers.

Alternatively, the K-vertex cone over G is the full-product
of G with EmpK .

Defn. An alternating polynomial h(x) has form

BNx
N −BN−1x

N−1 +BN−2x
N−2 −BN−3x

N−3

+ . . .+ [ 1]jBN−jx
N−j + . . .+ [ 1]N−KBKx

K ,
4:

where N≥K are natnums, and each Bj > 0. Call
index K “the low-degree of h” , written LD(h). Here
is an easy exercise. For f and g alternating-polys:

Product f · g is alternating,
and LD(f · g) = LD(f) + LD(g).4a:

If Deg(f) = 1+Deg(g), then f−g is alternat-
ing, with LD(f − g) = Min

(
LD(f),LD(g)

)
.4b: �

4c: Chromatic polynomial Theorem. For a non-void
simple graph G = (((V,E))), write its chromatic polyno-
mial PPPG(x) in form (4). Then

PPPG is a monic alternating intpoly, with
N = |V|, BN−1 = |E| and K = c(G).∗: ♦

[This c(G) is the number of connected-components.]

Proof. [We have “monic” and “N = |V|” from (2).] First sup-
pose G decomposes into (non-void) disjoint subgraphs
H1 t H2. Let Nj := |VHj

|, Lj := |EHj
|, Kj := c(Hj)

and fj := PPPHj
. So fj has form

fj(x) = xNj − LjxNj−1 + . . .+ Cjx
Kj

with Cj 6= 0. Easily, PPPG = f1·f2, hence is alternat-
ing, by (4a), with low-degree K1 +K2

note
=== c(G ). The

penultimate coeff of f1·f2 is [L1 + L2], which indeed
is the number of G -edges. So WLOG, G is connected.

When G is connected. [Recall N ≥ 1 since G is non-
void.] Pick a G -edge, α, whose removal does not dis-
connect G ; if there is none such, then G is a tree
[possibly the edgeless tree], where (∗) evidently holds.

Hence both Gr{α} and G/α are connected, Thus
f := PPPGr{α} and g := PPPG/α. each satisfy (∗). So f−g
is alternating, by (4b), and LD(f−g)=Min

(
1, 1
)
=1,

which is indeed the number of connected-comps of G .

Counting edges. Let L := |E|. Our Gr{α} has
L−1 edges, thus f(x) = xN − [L−1]xN−1 + . . .. And
g is monic, g(x) = xN−1 − . . .. The difference thus
has form PPPG (x) = xN − LxN−1 + . . ., as desired. �

4d: Chromatic-polynomial Corollary. Polynomial PPPG
has no negative roots. Setting K := χ(G), we can
therefore write PPPG(x) in chromatic form as

xe0 · [x− 1]e1 · [x− 2]e2 · · · [x− [K−1]]eK−1 · f(x) ,

with each ej ∈ Z+. Moreover, f is [either absent, or] a
monic intpoly, with no negative real♥3roots, and no
rational roots. ♦

Proof. An alternating-poly evaluated at a negative
real, yields a sum of posreals, hence is positive. Fi-
nally, since f is primitive (the GCD of its coeffs is 1)
each rational root must be integral, by the Gauss
Lemma for polynomials.

Exer E3.1415: “The composition of two chromatic-
polys is always a chromatic-poly.” Prove, or CEX.

Gluing

The next result uses

. . . two graphs Hj , for j = 1,2, with Nj

many vertices and Lj many edges. Let
hj() := PPPHj

().
5:

5a: Gluing lemma. When G is built from non-void
simple graphs H1 and H2 by. . .

0: disjoint union, then PPPG(x) = h1(x) · h2(x).

1: picking a vertex uj in Hj and identifying the two
vertices, then PPPG(x) = h1(x) · h2(x)

/
x. This G has

N1 +N2−1 many vertices and L1 +L2 many edges.
Call this G a point-gluing of H1 and H2.

2: picking an edge αj in Hj and identifying the two
edges (choose an orientation), then

PPPG(x) = h1(x) · h2(x)
/
x[x−1] .

This G has N1 + N2 − 2 vertices and L1 + L2 − 1
edges. Call this G an edge-gluing of H1 with H2.

♥3However, f can have complex roots with negative real-part.
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3: picking a vertex uj in Hj and putting in a (new)
edge between them, then

PPPG(x) = h1(x) · h2(x) · x−1
x . ♦

This G has N1 +N2 many vertices and L1 +L2 + 1
many edges. This G is a new-edge-attaching of
H1 and H2.

Proof. Exercise. �

5b: Gluing on a subgraph. Graph M = (((V,E))) is
a subgraph of H = (((V′,E′))) if there exist injections
Φ:V↪→V′ and Ψ:E↪→E′ so that:

For each α ∈ E with endpoints u,v ∈ V, neces-
sarily, the endpoints of Ψ(α) are Φ(u) and Φ(v).

Henceforth, for both injections we’ll use a common
symbol (usually Φ) and write

�� ��Φ:M↪→H .
Consider graphs Hj as in (5), as well as a graph M.

Suppose Φ1:M↪→H1 and Φ2:M↪→H2. Define the

gluing of H1 with H2, over (((Φ1,Φ2)))

as the graph G which is the “union” of H1 and H2,
where for each vertex u and edge α of M:

Vertex Φ1(u) is identified with Φ2(u) and
edge Φ1(α) is identified with Φ2(α).5c:

So G has N1 +N2− |Vertices(M)| many vertices, and
L1 + L2 − |Edges(M)| many edges. When we don’t
need the details of the gluing, we will refer to G as

a gluing of H1 with H2, over M.

Notation: I use symbol t for “disjointunion”, so
let’s use H1 tH2 for gluing over the void graph. More
generally, use

H1 tM H2 or H1 tΦ1
Φ2

H25d:

for gluing over M; the latter, if the details are needed.
Say that M is gluing-good if, for all graphs H1,H2

having M as a subgraph, necessarily

PPPG (x) = PPPH1(x) · PPPH2(x)
/
PPPM(x) ,5e:

whenever G is a gluing of H1 with H2 over M. �

Exer E2.1: Find an infinite family of connected
graphs which are gluing-good.

Exer E2.2: “Each connected graph M is gluing-
good”. Find a proof, or CEX.

Bipartite graphs. For natural numbers B and G,
the complete bipartite graph KB,G has all edges be-
tween B := [1 ..B] and G := [1 ..G], the “Boys” and
“Girls”, and no other edges.

For natnums B and `, the “Stirling number of the
second kind ” , S(B, `), is the number of partitions of
[1 ..B] into ` many non-empty atoms. (I.e, S(B, `) is
the number of equivalence relations on [1 ..B] that have ` many
[non-void] equivalence classes.)

6: Sara’s Lemma. Let fB,G abbreviate PPPKB,G
. Then

fB,G(x) =
B∑
`=0

S(B, `) · Jx ↓ `K · [x− `]G .6a: ♦

Computing. At B = 0, the RhS is 1 · 1 · [x− 0]G which
is xG, which is correct.

Once B ≥ 1 we can start the sum at ` = 1, since
there are no partitions of the empty set into positively
many atoms.�� ��Case: B = 1. The RhS is 1 · Jx ↓ 1K · [x−1]G, i.e,
x · [x− 1]G, which is what (3b) says, as K1,G is a tree.�� ��Case: B = 2. At B = 2, our RhS(6a) is

S(2, 1) · Jx ↓ 1K · [x− 1]G

+

S(2, 2) · Jx ↓ 2K · [x− 2]G
=

1 · x · [x− 1]G

+

1 · x[x−1] · [x− 2]G .

So f2,G(x) equals x ·
[
[x− 1]G + [x−1] · [x− 2]G

]
.

Once G ≥ 1, we have that

f2,G(x) = x · [x−1] ·
[
[x− 1]G−1 + [x− 2]G

]
.6b:

Plugging in G=2 yields RhS(??′), which is reassuring
seeing as K2,2 equals C4.�� ��Case: B = 3. RhS(6a) is a sum of three terms:

S(3, 1) · Jx ↓ 1K · [x− 1]G = 1 · x[x− 1]G ;

S(3, 2) · Jx ↓ 2K · [x− 2]G = 3 · x[x− 1][x− 2]G ;

S(3, 3) · Jx ↓ 3K · [x− 3]G = 1 · x[x− 1][x− 2][x− 3]G.

As soon as G ≥ 1, ratio f3,G(x)
/
x[x− 1] equals

[x− 1]G−1 + 3[x− 2]G + [x− 2][x− 3]G .6c:

Using colors orange&blue there are 2 colorings of K3,G

[since G>0], so (6c) at x=2 better equal 1. Does it?
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When G = 1, the K3,1 is a 4-vertex tree, so (6c)
with G=1 better darn well be [x−1]2. Is it?

FWIW, (6c)G=2 is [x3 − 5x2 + 10x− 7]; irred.

Evaluating, (6c)G=3 gives

f3,3(x)

x · [x−1]
= x4 − 8x3 + 28x2 − 47x+ 31 .6d:

This last is irreducible over the rationals. �

Graph-Stirling numbers

For a generalization of “bipartite graph”, consider two
graphs Hj = (((Vj ,Ej))) with Nj vertices and Lj edges.
The full product G := H1 � H2 is their disjoint
union, augmented by an edge from each H1-vertex, to
each H2-vertex. Thus

H1�H2 has N1+N2 many vertices, and
L1+L2 + [N1N2] many edges.7a:

We’ll get a formula for its chrom-poly, in terms of the
following type of polynomial product.

Given two polynomials f and g, we define their
falling product h := f ` g, as following.

¶ Write each w.r.t the falling-factorial basis, i.e

f =
∑J

j=0
αjtj and g =

∑K

k=0
βktk ,

as shown in (1b).

· Compute ~γ := ~α~ ~β = (((γ0, γ1, . . . , γJ+K))), the
convolution.

¸ Define h :=
J+K∑
n=0

γntn.

Defn. A Stirling partition of graph G=(((V,E))),
is a partition of V into non-empty subsets (called the
atoms of the ptn) so that no two adjacent vertices are
in the same atom. [I.e, each atom is an “independent set”.]

For natnum `, define the graph-Stirling number

S(G , `)7b:

to be the number of `-atom Stirling partitions of V.

7c: Graph-Stirling Thm. For an N -vertex♥4 graph G,

PPPG(x) =
N∑
`=0

S(G, `) · Jx ↓ `K . ♦

Proof. Exercise. �

7d: Full-product Thm. Consider a graph G := H1�H2.
Then

PPPG = PPPH1 `PPPH2 . ♦

Proof idea. Fix `. The `-atom Stirling partitions of G
are in 1-to-1 correspondence with: Pick natnums with
j1 + j2 = `, then take a j1-atom Stirling ptn of H1,
and a j2-atom Stirling ptn of H2. �

7e: Example. Let H be P2 t P1. So S(H, 1) = 0,
S(H, 2) = 2 and S(H, 3) = 1. Our (7c) asserts that
PPPH =

∑3
j=0 αjtj , where ~α = (((0, 0, 2, 1))). I.e,

PPPH(x) = 2·Jx ↓ 2K + Jx ↓ 3K

= Jx ↓ 2K
[
2 + [x− 2]

] note
=== x2 · [x− 1] .

This agrees with (3b) and with (5a.0).
Let’s compute G := H � K, where K := K1. Our G

is a K3 with a new edge attached to a vertex. So (5a.3)
says PPPG (x) = Jx ↓ 3K · [x− 1]. What does (7d) say?

Our K has chr-poly x = Jx ↓ 1K. We set ~β := (((0, 1))),
then compute convolution ~γ := ~α~ ~β = (((0, 0, 0, 2, 1))).
Thm (7d) asserts that

PPPG (x) = 2·Jx ↓ 3K + Jx ↓ 4K

= Jx ↓ 3K
[
2 + [x− 3]

] note
=== Jx ↓ 3K

[
x− 1

]
.

This agrees with our derivation via (5a.3). �

7f: Bipartite ex. Graph H := Emp3 has S(H, 1) = 1,
S(H, 2) = 3, S(H, 3) = 1, and so ~α = (((0, 1, 3, 1))).
Thus

PPPH(x) = Jx ↓ 1K + 3Jx ↓ 2K + Jx ↓ 3K

= x ·
[
1 + [x− 1]

[
3 + [x− 2]

]]
= x ·

[
1 + [x2 − 1]

]
= x3 .

♥4We can start the sum at `=1 except when G is the void
graph. After all, when N is positive then S(G , 0) is zero.
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This indeed agrees with (3a).
Since K3,3 is the full-product of H with H, we com-

pute ~γ := ~α~ ~α = (((0, 0, 1, 6, 11, 6, 1))). Polynomial

Jx ↓ 2K + 6Jx ↓ 3K + 11Jx ↓ 4K + 6Jx ↓ 5K + Jx ↓ 6K

simplifies (thanks, Maple) to

x · [x−1] ·
[
x4 − 8x3 + 28x2 − 47x+ 31

]
.

Happily, this agrees with (6d). �

Spanning subgraphs

Fix a G = (((V,E))) with N vertices and L edges. Each
subset S ⊂ E can be interpreted as (((V, S))), a spanning
subgraph of G . [Thus G has 2L many spanning subgraphs.]
Let c(S) denote the number of connected components
of S .

8: CPSS Thm (Chromatic-Poly Spanning Subgraph). The
chromatic polynomial of G satisfies

PPPG(x) =
∑

S : S⊂E
( 1)|S| · xc(S) .∗: ♦

Exer E4: Prove this. Think Inclusion-Exclusion.
[Hint: See the pamphlet on our Teaching Page.]

Comparison. We can paraphrase Theorems (8) and
(7c) as saying: Spanning subgraphs express PPPG w.r.t
the standard basis (((ej)))

∞
j=0 [see (1b)], whereas Graph-

Stirling numbers write PPPG w.r.t the falling-factorial.
basis (((tn)))

∞
n=0. �

8a: Ex. As K3 has 3 edges, it has 23 = 8 spanning
subgraphs. The no-edge graph has 3CCs [Connected
Components], hence contributes a [ 1]0·x3 = x3 term.

The three one-edge spanning subgraphs each have
2CCs; these contribute 3·[ 1]1·x2 = 3x2.

The three two-edge spanning subgraphs, each have
1CC, contributing 3·[ 1]2·x1 = 3x. Finally, the
unique three-edge spanning subgraph has 1CC, hence
contributing a [ 1]3·x1 = x term. Adding,

PPPK3(x) = x3 − 3x2 + 3x− x

= x3 − 3x2 + 2x
note
=== Jx ↓ 3K . �

Applications/Extensions

Here is one:

9a: Orientations. An orientation of G = (((V,E))) is
putting a direction on each edge, creating a digraph;
so G has 2|E| many orientations. An orientation of G
is acyclic if it has no directed-cycles. Use A(G ) for
the number of acyclic orientations of G .

An orientation of KN is called an N-tournament ;
there are 2(N2 ) of them. E.g, K4 has 26 = 64 orienta-
tions. Exer E5: Prove that A(KN ) equals [N !] . �

9b: Acyclic-count Thm (Richard Stanley). On N -vertex
G,

A(G) = [ 1]N · PPPG( 1) . ♦

Sketch. The idea is to establish an analog of (2a),

A(G ) = A(Gr{α}) + A(G/α) ,9c:

for each edge α of G , as follows. Let M := Gr{α}.

• Each acyclic-orient of M extends to at least one
acyclic-orient of G .

• The number of acyclic-orients of M which give rise
to two acyclic-orients of G , is A(G/α). �

10: Generalizing full-product. Let GGG be the set of
all graphs. Consider a graph S = (((V,E))) and a fnc
F :V→GGG; we’ll often write F(u) as Fu. Use Nu|Lu

for the number of vertices|edges of Fu.
The “full product of F over S ”

G :=
⊙

S
(F)

is S , but where each S-vertex u has been replaced by
a copy of graph Fu. Moreover, for each S-edge v w:

Each Fv-vertex v′ and each Fw-vertex w′,
are the endpoints of a G-edge.

Thus
⊙

S(F) has
∑

u∈VNu many vertices. It has[∑
u∈V

Lu

]
+
∑
v,w

[Nv ·Nw]10a:

many edges, where the second sum is over all S-edges
v w. In the case that S is a single edge, P2, we
recover the full-product as defined above (7a).
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Full-product from (7a) is associative, so expressions
such as H1 � H2 � . . . � H5 make sense. If we define
F(j) := Hj , then

H1 � H2 � . . .� H5 =
⊙

K5
(F) ,10b:

regarding [1 .. 5] as the vertex-set of K5. �

Exer: Is there a formula for the chromatic num-
ber/polynomial of

⊙
S(F), in terms of corresponding

information about S and function F? What about
special cases, e.g S = P3? Or S = CEven?
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