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Morphisms. Consider a ring R = (((R,+, 0 , ·, 1))),
and another ring, Γ = (((Γ,+, 0, ·, 1))). A map h:R→Γ
is a ring-homomorphism if:

i: The maps sends the mult-identity in R to the
mult-identity in Γ, i.e h(1 ) = 1.

ii: For each x,y ∈ R we have h(x)+h(y) = h(x+ y).

iii: For each x,y ∈ R we have h(x) · h(y) = h(x · y).

These imply that h(0 ) = 0, that h( x) = h(x), and
for each x with a reciprocal, that h(x 1) = [h(x)] 1.

Our h:R→Γ is a ring-isomorphism if:

h is a bijection, h is a ring-hom, and the
inverse-map h 1 is a ring-hom.1:

It turns out that h being a bijective ring-hom auto-
matically insures that h 1 is a ring-homomorphism, so
this last condition never needs to be checked.

2: Lemma. A cartesian product of rings is a ring.
Proof. Exer.The product-ring will have nt-ZDs. ♦

3: Standing Notation. With L∈Z+ (but the L=1 case is
trivial), let L := [1 .. L]. A tuple ~M = (((M1, . . . ,ML)))
of positive integers is a coprime tuple if

GCD( ~M)
notation
====== GCD(M1, . . . ,ML) = 1 ,3a:

and is pairwise-coprime if

For all indices j < k in L: Mj ⊥Mk.3b:

With U :=
∏L
j=1Mj the prodUct of the moduli, define

the Reduced product

Rk := U/Mk , for each k ∈ L.3c:

As a shorthand, let Ωj mean the ring ZMj , and let

Γ := Ω1 × Ω2 × Ω3 × . . .× ΩL ,3d:

be the cartesian-product ring. Let ~1 = (((1, . . . , 1))) and
~0 = (((0, . . . , 0))) denote the multiplicative and additive
identity-elements in Γ. �

4: Proposition. With notation from (3):
The reduced-product tuple ~R is a coprime tuple

IFF ~M is pairwise-coprime. ♦

Pf of (⇒). FTSOContradiction, suppose there are
indices j<k in L and and a prime p dividing Mj and
Mk. [This forces that L ≥ 2.] Since p •|Mj:

For each i ∈ Lr{j} , our p divides Ri.

Similarly, p •| Ri for each i ∈ Lr{k}. But the union
of Lr{j} with Lr{k} is all of L. This produces the
contradiction that p divides GCD(~R). �

Pf of (⇐). FTSOC, suppose a prime q divides each of
R1, . . . , RL. So q divides R1

note
=== M2 ·M3 · · ·ML [which

forces L ≥ 2]. Consequently ∃k ∈ [2 .. L] such that
q divides Mk. For each i ∈ Lr{k}, then, q cannot
divide Mi. Hence q does not divide the product of
such Mi. But their product is Rk, contradicting that
q divides each reduced-product. �

5: Lemma. [Using (3).] For an arbitrary ~M (i.e, no
coprimeness requirement), the map h:ZU→Γ defined by

h(x) :=
(((
〈x〉M1 , 〈x〉M2 , . . . , 〈x〉ML

)))
is a ring-homomorphism. Moreover, h is the only ring-
homomorphism from ZU to Γ. ♦

Pf. Our h is a ring-hom simply because each Mj •| U .
To show uniqueness, letting italic 1 denote the unit

in ZU , note that h(1 ) must be ~1 ∈ Γ. And each
element n ∈ ZU is the sum of n many copies of 1 ;
hence h(n) = h(1 ) + n. . . + h(1 ). �

6: Lemma. [Using (3).] Suppose ~M is not pair-
wise-coprime. Then [not only do rings ZU and Γ fail to
be ring-isomorphic] the additive groups (((ZU ,+, 0))) and(((
Γ,+, ~0

)))
are not group-isomorphic, because the latter

group is not cyclic. ♦
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Proof. Let ` := LCM( ~M). Pairwise-coprimeness of ~M
is equivalent to ` = U ; hence our ` is a proper divisor
of U . Each element ~α ∈ Γ has that

~α+ ~α+ ~α+ `. . . + ~α = ~0 .

But |Γ| = U
note
> `, so no element of

(((
Γ,+, ~0

)))
can

generate Γ. �

7: Chinese Remainder Thm (CRT). [Using (3).] Product-
ring Γ is ring-isomorphic to ZU IFF ~M is pair-
wise-coprime. In that case, the ring-isomorphism
g: Γ ↪�ZU is unique. It has form

g(~α) ≡U
∑
j∈L

Gjαj , for ~α ∈ Γ.7a:

Here, the “maGic tuple” ~G = (((G1, . . . , GL))) of
integers is unique modulo-U . The inverse ring-iso-
morphism, h := g 1, maps ZU→Γ. It is

h(x) :=
(((
〈x〉M1 , 〈x〉M2 , . . . , 〈x〉ML

)))
.7b: ♦

Proof. Lemmas (5) and (6) have proven most of CRT.
Assuming that ~M is pairwise-coprime, we need but
produce a magic tuple ~G so that (7a) is a ring-iso.

By (4), our ~R is coprime, so there exists a Bézout
tuple (((µ1, . . . , µL))) such that

1 =
∑
j∈L

Rjµj . Define Gj := Rjµj .7c:

Since M1 divides each of R2, . . . , RL, reducing (7c)
mod-M1 gives

1 =
∑
j∈L

Gj ≡M1 G1 .

We get the defining property of ~G, that

∀j,k ∈ L : Gj ≡Mk

{
1 if j = k

0 otherwise

}
.7d:

Bijection. For an x ∈ ZU , note g
(
h(x)

)
is mod-U

congruent to ∑
j∈L

Gj · 〈x〉Mj .

Reducing this mod-M1 says, courtesy (7d), that

g
(
h(x)

)
≡M1 G1 · x ≡M1 x .

Similarly, g
(
h(x)

)
≡Mk

x, for each k. IOWords, g ◦ h
is the identity-map on ZU . And since ZU and Γ have
the same cardinality –which is finite– the Pigeon-hole
principle says that h is a bijection. Hence g is the
fnc-inverse of a ring-iso, so g itself a ring-iso. �

Alternative magic algorithm. The phrase is:

R times [ 1R mod-M ] . . . is Magic!

That is, for each j ∈ L, define

Gj := Rj ·
〈
1/Rj

〉
Mj

,7e:

and, if desired, reduce modulo-U .

Comparing Iterative vs. Parallel. We call (7c)
the “Iterative” algorithm, since we feed the output of
one LBolt into the next LBolt; see my Algorithms in
Number Theory pamphlet. Call (7e) the “Parallel”
algorithm.

Iterative does L−1 many LBolts, each using both
multiplier columns. Parallel does L many LBolts,
but each uses just one multiplier column.

Iterative runs iteratively (at least, if implemented
naively). Parallel can be run in parallel on L many
processors. To compute a particular Gk, our Iter-
ative needs to compute all L−1 many 2-multiplier
LBolts. In contrast, Parallel needs but a single
1-multiplier LBolt.

The initial LBolts of Iterative use large num-
bers,♥1 e.g R1 and R2. Parallel does LBolts with
one number large and the other small, e.g R1 andM1.

Both algorithms produce a ~G satisfying (7d); in
particular,

∑
j∈LGj is mod-U congruent to 1. But

Iterative arranges that the sum actually equals 1
(if you had some need for that).

♥1However, we can make the numbers small at the expense of
making Iterative more complicated. E.g, pull out the com-
mon factor

∏L
i=3 Mi before computing LBolt(R1, R2).
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8: Corollary. Euler ϕ is a multiplicative function. ♦

Proof. For posints K and N , the units group in
ring ZK × ZN is simply the cartesian product of the
units groups; Φ(K)× Φ(N). And when K ⊥ N ,
then ZK×ZN is ring-isomorphic to ZKN , whose units
group is Φ(KN). Now take cardinalities. �

Fusing congruences

For a modulus M>0 and “target” T∈Z, consider the
set of integers x satisfying

x ≡M T .

Its soln set is T + MZ. This is a (bi-infinite) arith-
metic progression, which I also call a comb. Ab-
breviate the congruence by (((M ;T))).

Given combs T1 +M1Z and T2 +M2Z, either they
have empty intersection, or :

Their intersection is a comb τ + µZ, where
µ := LCM(M1,M2), and τ is some integer.

[Of course, to τ we can add any multiple of µ without
changing the comb.] The operation of computing a
value for τ , I call

the fusing of congruences (((M1;T1))) and
(((M2;T2))), producing (((µ; τ))).∗:

An x satisfies the two congruences IFF ∃α1,α2

integers st.
x + α1M1 = T1 and
x + α2M2 = T2 . Subtracting,

α1M1 − α2M2 = T1 − T2 .†:

The of linear-combinations ofM1,M2 are the mul-
tiples of D := GCD(M1,M2). So if D �r| [T1 − T2]
then there is no soln; else set R := [T1 − T2]/D.

A Bézout pair (((β1, β2))) [note the negation] satis-
fies β1M1 − β2M2 = D. To see that

�� ��αj := Rβj
satifies (†), note

LhS(†) = Rβ1·M1 −Rβ2·M2 = R·
[
β1M1 − β2M2

]
= R·D note

=== RhS(†) .

Solving for x in either of the two lines above (†),
gives

x = T1 − Rβ1M1
note
=== T2 − Rβ2M2 ,‡:

just like the doctor ordered.

Fusion algorithm. Given congruences (((M1;T1)))
and (((M2;T2))), we compute (∗) as follows.
F1: Compute D := GCD(M1,M2), and store the

quotient-column of LBolt. If D �r| [T1 − T2],
then report “Failure”.
Else, set R := [T1 − T2]/D.

F2: [Use the stored quotient-col to] Compute the β1 of
a β1,β2 pair that satisfies β1M1−β2M2 = D.
Let τ ′ := T1 −Rβ1M1 [or T2 −Rβ2M2].

F3: Reduce τ := 〈τ ′〉µ, where µ := LCM(M1,M2).

The fusing congruences pamphlet [on Teaching
page] has several worked examples, and our NT
Archive has several more.
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