

The Chinese Remainder Theorem

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 17 April, 2024 (at 11:45)

Morphisms. Consider a ring $R = (R, +, \cdot, 1)$, and another ring, $\Gamma = (\Gamma, +, \cdot, 1)$. A map $h: R \rightarrow \Gamma$ is a **ring-homomorphism** if:

- i: The map sends the mult-identity in R to the mult-identity in Γ , i.e $h(1) = 1$.
- ii: For each $x, y \in R$ we have $h(x) + h(y) = h(x + y)$.
- iii: For each $x, y \in R$ we have $h(x) \cdot h(y) = h(x \cdot y)$.

These imply that $h(0) = 0$, that $h(-x) = -h(x)$, and for each x with a reciprocal, that $h(x^{-1}) = [h(x)]^{-1}$.

Our $h: R \rightarrow \Gamma$ is a **ring-isomorphism** if:

- 1: h is a bijection, h is a ring-hom, and the inverse-map h^{-1} is a ring-hom.

It turns out that h being a bijective ring-hom automatically insures that h^{-1} is a ring-homomorphism, so this last condition never needs to be checked.

2: Lemma. A cartesian product of rings is a ring.

Proof. Exer. The product-ring will have nt-ZDs. \diamond

3: Standing Notation. With $L \in \mathbb{Z}_+$ (but the $L=1$ case is trivial), let $\mathbb{L} := [1..L]$. A tuple $\vec{M} = (M_1, \dots, M_L)$ of positive integers is a **coprime tuple** if

3a: $\text{GCD}(\vec{M}) \stackrel{\text{notation}}{=} \text{GCD}(M_1, \dots, M_L) = 1$,

and is **pairwise-coprime** if

3b: For all indices $j < k$ in \mathbb{L} : $M_j \perp M_k$.

With $U := \prod_{j=1}^L M_j$ the product of the moduli, define the **Reduced product**

3c: $R_k := U/M_k$, for each $k \in \mathbb{L}$.

As a shorthand, let Ω_j mean the ring \mathbb{Z}_{M_j} , and let

3d: $\Gamma := \Omega_1 \times \Omega_2 \times \Omega_3 \times \dots \times \Omega_L$,

be the cartesian-product ring. Let $\vec{1} = (1, \dots, 1)$ and $\vec{0} = (0, \dots, 0)$ denote the multiplicative and additive identity-elements in Γ . \square

4: Proposition. With notation from (3):

The reduced-product tuple \vec{R} is a coprime tuple IFF \vec{M} is pairwise-coprime. \diamond

Pf of (\Rightarrow). FTSOContradiction, suppose there are indices $j < k$ in \mathbb{L} and a prime p dividing M_j and M_k . [This forces that $L \geq 2$.] Since $p \nmid M_j$:

For each $i \in \mathbb{L} \setminus \{j\}$, our p divides R_i .

Similarly, $p \nmid R_i$ for each $i \in \mathbb{L} \setminus \{k\}$. But the union of $\mathbb{L} \setminus \{j\}$ with $\mathbb{L} \setminus \{k\}$ is all of \mathbb{L} . This produces the contradiction that p divides $\text{GCD}(\vec{R})$. \diamond

Pf of (\Leftarrow). FTSOC, suppose a prime q divides each of R_1, \dots, R_L . So q divides $R_1 \stackrel{\text{note}}{=} M_2 \cdot M_3 \cdots M_L$ [which forces $L \geq 2$]. Consequently $\exists k \in [2..L]$ such that q divides M_k . For each $i \in \mathbb{L} \setminus \{k\}$, then, q cannot divide M_i . Hence q does not divide the product of such M_i . But their product is R_k , contradicting that q divides each reduced-product. \diamond

5: Lemma. [Using (3).] For an arbitrary \vec{M} (i.e, no coprimeness requirement), the map $h: \mathbb{Z}_U \rightarrow \Gamma$ defined by

$$h(x) := (\langle x \rangle_{M_1}, \langle x \rangle_{M_2}, \dots, \langle x \rangle_{M_L})$$

is a ring-homomorphism. Moreover, h is the only ring-homomorphism from \mathbb{Z}_U to Γ . \diamond

Pf. Our h is a ring-hom simply because each $M_j \bullet U$.

To show uniqueness, letting italic 1 denote the unit in \mathbb{Z}_U , note that $h(1)$ must be $\vec{1} \in \Gamma$. And each element $n \in \mathbb{Z}_U$ is the sum of n many copies of 1 ; hence $h(n) = h(1) + \dots + h(1)$. \diamond

6: Lemma. [Using (3).] Suppose \vec{M} is not pairwise-coprime. Then [not only do rings \mathbb{Z}_U and Γ fail to be ring-isomorphic] the additive groups $(\mathbb{Z}_U, +, 0)$ and $(\Gamma, +, \vec{0})$ are not group-isomorphic, because the latter group is not cyclic. \diamond

Proof. Let $\ell := \text{LCM}(\vec{M})$. Pairwise-coprimeness of \vec{M} is equivalent to $\ell = U$; hence our ℓ is a *proper* divisor of U . Each element $\vec{\alpha} \in \Gamma$ has that

$$\vec{\alpha} + \vec{\alpha} + \vec{\alpha} + \dots + \vec{\alpha} = \vec{0}.$$

But $|\Gamma| = U \stackrel{\text{note}}{>} \ell$, so no element of $(\Gamma, +, \vec{0})$ can generate Γ . \diamond

7: Chinese Remainder Thm (CRT). [Using (3).] Product-ring Γ is ring-isomorphic to \mathbb{Z}_U IFF \vec{M} is pairwise-coprime. In that case, the ring-isomorphism $g: \Gamma \hookrightarrow \mathbb{Z}_U$ is unique. It has form

$$7a: \quad g(\vec{\alpha}) \equiv_U \sum_{j \in \mathbb{L}} G_j \alpha_j, \quad \text{for } \vec{\alpha} \in \Gamma.$$

Here, the “*magic tuple*” $\vec{G} = (G_1, \dots, G_L)$ of integers is unique modulo- U . The inverse ring-isomorphism, $h := g^{-1}$, maps $\mathbb{Z}_U \rightarrow \Gamma$. It is

$$7b: \quad h(x) := (\langle x \rangle_{M_1}, \langle x \rangle_{M_2}, \dots, \langle x \rangle_{M_L}). \quad \diamond$$

Proof. Lemmas (5) and (6) have proven most of CRT. Assuming that \vec{M} is pairwise-coprime, we need but produce a magic tuple \vec{G} so that (7a) is a ring-iso.

By (4), our \vec{R} is coprime, so there exists a Bézout tuple (μ_1, \dots, μ_L) such that

$$7c: \quad 1 = \sum_{j \in \mathbb{L}} R_j \mu_j. \quad \text{Define } G_j := R_j \mu_j.$$

Since M_1 divides each of R_2, \dots, R_L , reducing (7c) mod- M_1 gives

$$1 = \sum_{j \in \mathbb{L}} G_j \equiv_{M_1} G_1.$$

We get the defining property of \vec{G} , that

$$7d: \quad \forall j, k \in \mathbb{L}: \quad G_j \equiv_{M_k} \begin{cases} 1 & \text{if } j = k \\ 0 & \text{otherwise} \end{cases}.$$

Bijection. For an $x \in \mathbb{Z}_U$, note $g(h(x))$ is mod- U congruent to

$$\sum_{j \in \mathbb{L}} G_j \cdot \langle x \rangle_{M_j}.$$

Reducing this mod- M_1 says, courtesy (7d), that

$$g(h(x)) \equiv_{M_1} G_1 \cdot x \equiv_{M_1} x.$$

Similarly, $g(h(x)) \equiv_{M_k} x$, for each k . IOWords, $g \circ h$ is the identity-map on \mathbb{Z}_U . And since \mathbb{Z}_U and Γ have the same cardinality—which is finite—the Pigeon-hole principle says that h is a bijection. Hence g is the fnc-inverse of a ring-iso, so g itself a ring-iso. \diamond

Alternative magic algorithm. The phrase is:

$$R \text{ times } [\frac{1}{R} \text{ mod-}M] \dots \text{ is Magic!}$$

That is, for each $j \in \mathbb{L}$, define

$$7e: \quad G_j := R_j \cdot \langle 1/R_j \rangle_{M_j},$$

and, if desired, reduce modulo- U .

Comparing Iterative vs. Parallel. We call (7c) the “Iterative” algorithm, since we feed the output of one LBolt into the next LBolt; see my *Algorithms in Number Theory* pamphlet. Call (7e) the “Parallel” algorithm.

ITERATIVE does $L-1$ many LBolts, each using *both* multiplier columns. PARALLEL does L many LBolts, but each uses just *one* multiplier column.

ITERATIVE runs iteratively (at least, if implemented naively). PARALLEL can be run in parallel on L many processors. To compute a *particular* G_k , our ITERATIVE needs to compute all $L-1$ many 2-multiplier LBolts. In contrast, PARALLEL needs but a single 1-multiplier LBolt.

The initial LBolts of ITERATIVE use large numbers,¹ e.g. R_1 and R_2 . PARALLEL does LBolts with one number large and the other small, e.g. R_1 and M_1 .

Both algorithms produce a \vec{G} satisfying (7d); in particular, $\sum_{j \in \mathbb{L}} G_j$ is mod- U *congruent* to 1. But ITERATIVE arranges that the sum actually *equals* 1 (if you had some need for that).

¹ However, we can make the numbers small at the expense of making ITERATIVE more complicated. E.g., pull out the common factor $\prod_{i=3}^L M_i$ before computing LBolt(R_1, R_2).

8: **Corollary.** Euler φ is a multiplicative function. ◇

Proof. For posints K and N , the units group in ring $\mathbb{Z}_K \times \mathbb{Z}_N$ is simply the cartesian product of the units groups; $\Phi(K) \times \Phi(N)$. And when $K \perp N$, then $\mathbb{Z}_K \times \mathbb{Z}_N$ is ring-isomorphic to \mathbb{Z}_{KN} , whose units group is $\Phi(KN)$. Now take cardinalities. ♦

Fusing congruences

For a modulus $M > 0$ and “target” $T \in \mathbb{Z}$, consider the set of integers x satisfying

$$x \equiv_M T.$$

Its soln set is $T + M\mathbb{Z}$. This is a (*bi-infinite*) **arithmetic progression**, which I also call a **comb**. Abbreviate the congruence by $(M; T)$.

Given combs $T_1 + M_1\mathbb{Z}$ and $T_2 + M_2\mathbb{Z}$, either they have empty intersection, or:

Their intersection is a comb $\tau + \mu\mathbb{Z}$, where $\mu := \text{LCM}(M_1, M_2)$, and τ is some integer.

[Of course, to τ we can add any multiple of μ without changing the comb.] The operation of computing a value for τ , I call

*: the **fusing** of congruences $(M_1; T_1)$ and $(M_2; T_2)$, producing $(\mu; \tau)$.

An x satisfies the two congruences IFF $\exists \alpha_1, \alpha_2$ integers st.

$$\begin{aligned} x + \alpha_1 M_1 &= T_1 \quad \text{and} \\ x + \alpha_2 M_2 &= T_2. \quad \text{Subtracting,} \end{aligned}$$

$$\dagger: \quad \alpha_1 M_1 - \alpha_2 M_2 = T_1 - T_2.$$

The of linear-combinations of M_1, M_2 are the multiples of $D := \text{GCD}(M_1, M_2)$. So if $D \nmid [T_1 - T_2]$ then there is *no soln*; else set $R := [T_1 - T_2]/D$.

A Bézout pair $(\beta_1, -\beta_2)$ [note the negation] satisfies $\beta_1 M_1 - \beta_2 M_2 = D$. To see that $\alpha_j := R\beta_j$ satisfies (\dagger) , note

$$\begin{aligned} \text{LhS}(\dagger) &= R\beta_1 \cdot M_1 - R\beta_2 \cdot M_2 = R \cdot [\beta_1 M_1 - \beta_2 M_2] \\ &= R \cdot D \stackrel{\text{note}}{=} \text{RhS}(\dagger). \end{aligned}$$

Solving for x in either of the two lines above (\dagger) , gives

$$\ddagger: \quad x = T_1 - R\beta_1 M_1 \stackrel{\text{note}}{=} T_2 - R\beta_2 M_2,$$

just like the doctor ordered.

Fusion algorithm. Given congruences $(M_1; T_1)$ and $(M_2; T_2)$, we compute (\ast) as follows.

F1: Compute $D := \text{GCD}(M_1, M_2)$, and store the quotient-column of LBolt. If $D \nmid [T_1 - T_2]$, then report “Failure”.

Else, set $R := [T_1 - T_2]/D$.

F2: [Use the stored quotient-col to] Compute the β_1 of a β_1, β_2 pair that satisfies $\beta_1 M_1 - \beta_2 M_2 = D$. Let $\tau' := T_1 - R\beta_1 M_1$ [or $T_2 - R\beta_2 M_2$].

F3: Reduce $\tau := \langle \tau' \rangle_\mu$, where $\mu := \text{LCM}(M_1, M_2)$.

The **fusing congruences** pamphlet [on TEACHING PAGE] has several worked examples, and our NT Archive has several more.

Filename: Problems/NumberTheory/chinese-rem-thm.latex
As of: Wednesday 06Feb2013. Typeset: 17Apr2024 at 11:45.