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Morphisms. Counsider a ring R = (R,+,0,-,1),
and another ring, I' = (T, +,0,-,1). A map h: R—T
is a ring-homomorphism if:
iz The maps sends the mult-identity in R to the
mult-identity in I, i.e h(1) = 1.

ii: For each z,y € R we have h(z)+h(y) = h(z + y).
(

/\/—\

iii: For each x,y € R we have h(x) - h(y) =

These imply that h(0) = 0, that h(-z) = (a:) and
for each x with a reciprocal, that h(z™) = [h(x)]™.
Our h: R—T is a ring-isomorphism if:

h is a bijection, h is a ring-hom, and the
inverse-map h™! is a ring-hom.
It turns out that h being a bijective ring-hom auto-
matically insures that A7 is a ring-homomorphism, so
this last condition never needs to be checked.

2: Lemma. A cartesian product of rings is a ring.
Proof. Exer.The product-ring will have nt-ZDs. O

3: Standing Notation. With LEZ, (but the L=1 case is

trivial), let I == [1..L]. A tuple M = (Mj,..., M)
of positive integers is a coprime tuple if
3a:  GOD(M) 22U Gep (A, ..., Mp) = 1,

and is pairwise-coprime if
3b:  For all indices j < k inL: M; L M;.

With U := H _ 1M the prodUct of the moduli, define
the Reduced product

3c: Ry = U/My, foreach k€ L.

As a shorthand, let {2; mean the ring Zyy;, and let
3d: r =

leﬁgxﬁgx...xQL,

be the cartesian-product ring. Let T = (1,...,1) and

0 = (0,...,0) denote the multiplicative and additive
identity-elements in T ]
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4: Proposition. With notation from (3):
The reduced-product tuple R is a coprime tuple
IFF M is pairwise-coprime. O

Pfof (=). FTSOContradiction, suppose there are
indices j<k in L and and a prime p dividing Mj and
M. [This forces that L > 2.] Since p 0| Mj:

For each i € L~{j}, our p divides R;.

Similarly, p ¢ R; for each i € LL~.{k}. But the union
of L~{j} with L~{k} is all of L. This produces the
contradiction that p divides GCD(R). ¢

Pf of («<=). FTSOC, suppose a prime q divides each of
Ri,...,Ryr. So g divides Ry 2 My - Ms - - - My, [which
forces L > 2|. Consequently 3k € [2..L] such that
q divides M. For each i € L~{k}, then, g cannot
divide M;. Hence g does not divide the product of
such M;. But their product is Ry, contradicting that
g divides each reduced-product. ¢

5: Lemma.  [Using (3).] For an arbitrary M (i.e, no

coprimeness requirement), the map h:Zy—T" defined by

h(z) = (<x>A[1, (T) Mys - - - s <37>ML)

is a ring-homomorphism. Moreover, h is the only ring-
homomorphism from Zy to T'. %

Pf. Our h is a ring-hom simply because each M; o U.

To show uniqueness, letting italic 7 denote the unit
in Zy, note that h(1) must be T € T'. And each
element n € Zy is the sum of n many copies of 1;
hence h(n) = h(1) + .7. + h(1). ¢

6: Lemma. |Using (3).] Suppose M is not pair-
wise-coprime. Then |not only do rings Zy and T fail to
be ring-isomorphic| the additive groups (Zy,+,0) and
(T, +, 6) are not group-isomorphic, because the latter
group is not cyclic. O
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Proof. Let £ := LCM(M). Pairwise-coprimeness of M
is equivalent to £ = U; hence our ¢ is a proper divisor
of U. Each element & € I has that

atat+a+.t.+a = 0.

not
But [T'| = U 3¢ ¢, so no element of (I‘,—I—,6) can
generate T ¢

7: Chinese Remainder Thm (CRT). [Using (3).] Product-
ring T' is ring-isomorphic to Zy IFF M is pair-
wise-coprime. In that case, the ring-isomorphism
g: I' = Zy is unique. It has form

Ta: gla) =y Z Gjaj, foraeT.

jeL

Here, the “maGic tuple” G = (Gi1,...,GL) of
integers is unique modulo-U. The inverse ring-iso-
morphism, h = ¢”', maps Zy—T. It is

Tb:  h(x) = (<m>Ml, (T) My« - s <w)ML) . O

Proof. Lemmas (5) and (6) have proven most of CRT.

Assuming that M is pairwise-coprime, we need but

produce a magic tuple G so that (7a) is a ring-iso.
By (4), our R is coprime, so there exists a Bézout

tuple (f1, ..., 1uz) such that
Tc: 1 = ZRJ'“J" Define G; == Rju;.
j€eL
Since M divides each of Rs,..., Ry, reducing (7c)

mod-M; gives

1 =

> Gj

JeEL

EMl G1 .

We get the defining property of é, that

oo 1=k
g =G 0 otherwise |
For an = € Zy, note g(h(z)) is mod-U

ZGJ ’ <x>M7 .

JjeL

7d: v,k el:

Bijection.
congruent to
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Reducing this mod-M; says, courtesy (7d), that
g(h(;v)) =M G-z =M; .

Similarly, g(h(x)) =us, z, for each k. IOWords, g o h
is the identity-map on Zy. And since Zy and I' have
the same cardinality —which is finite— the Pigeon-hole
principle says that h is a bijection. Hence g is the
fnc-inverse of a ring-iso, so g itself a ring-iso. ¢

Alternative magic algorithm. The phrase is:
R times |3 mod-M| .. . is Magic!

That is, for each j € L, define

Te: G; = R;- <1/Rj>Mj ;

and, if desired, reduce modulo-U.

We call (7¢)
the “Iterative” algorithm, since we feed the output of
one LBolt into the next LBolt; see my Algorithms in
Number Theory pamphlet. Call (7e) the “Parallel”
algorithm.

Comparing Iterative vs. Parallel.

ITERATIVE does L—1 many LBolts, each using both
multiplier columns. PARALLEL does L many LBolts,
but each uses just one multiplier column.

ITERATIVE runs iteratively (at least, if implemented
naively). PARALLEL can be run in parallel on L many
processors. To compute a particular Gy, our ITER-
ATIVE needs to compute all L—1 many 2-multiplier
LBolts. In contrast, PARALLEL needs but a single
1-multiplier LBolt.

The initial LBolts of ITERATIVE use large num-
bers,Qpl e.g Ry and Ry. PARALLEL does LBolts with
one number large and the other small, e.g R; and Mj.

Both algorithms produce a G satisfying (7d); in
particular, > ;o G is mod-U congruent to 1. But
ITERATIVE arranges that the sum actually equals 1
(if you had some need for that).

“However, we can make the numbers small at the expense of
making ITERATIVE more complicated. E.g, pull out the com-
mon factor Hf:3 M; before computing LBolt(R1, R2).
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8: Corollary. Euler ¢ is a multiplicative function.

Proof. ~ For posints K and N, the units group in
ring Zy X Zy is simply the cartesian product of the
units groups; ®(K) x ®(N). And when K L N,
then Z i x Z is ring-isomorphic to Zx , whose units
group is ®(K N ). Now take cardinalities. ¢

Fusing congruences

For a modulus M >0 and “target” T'€Z, consider the
set of integers x satisfying

z =y T.

Its soln set is 7'+ MZ. This is a (bi-infinite) arith-
metic progression, which I also call a comb. Ab-
breviate the congruence by (M: 7).

Given combs T} + M7 and T, + M7, either they
have empty intersection, or:

Their intersection is a comb 7 + 1., where
(= LCM (M, Ms), and T is some integer.

[Of course, to 7 we can add any multiple of ; without
changing the comb.] The operation of computing a
value for 7, I call

the fusing of congruences (M;;T}) and
(My;T5), producing (j;7).

An 1z satisfies the two congruences IFF Hoq.an
integers st.

T + qul = T1 and
T + asMy = T,. Subtracting,
T: OélMl — OéQMQ = T1 — T2 .

The of linear-combinations of M, M5 are the mul-
tiples of D := GCD(M;, M,). So if D }[Ty — T3]
then there is no soln; else set 1 == [T — T3]/ D.

Fusing congruences
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A Bézout pair (31, -/32) [note the negation] satls—
fies 01 M, — oMy = D. To see that [, : ;

satifies (1), note

LhS(T) = Rp1-M; — RBy" My = R- [51]\/—/1 - 52M2}

— R-D £ RhS(1).

Solving for z in either of the two lines above (),
gives

o =

just like the doctor ordered.

— RAIM, 2 Ty — RByM,,

Fusion algorithm. Given congruences (Mi;T})

and (Ma; Ty), we compute (x) as follows.

F1: Compute D = GCD(M,, M), and store the
quotient-column of LBolt. If D }T) — Ty,

then report “Failure”.

Else, set R := [T} — T»]/D.
F2: [Use the stored quotient-col to] Compute the /3; of
a (1,02 pair that satisfies 1M — oMy = D.
Let 7/ :== Ty — RG1 M, [or Ty — RBoMs).

F3: Reduce 7 = (7'),, where p := LCM(M;, M>).

The fusing congruences pamphlet |on TEACHING
pace| has several worked examples, and our NT
Archive has several more.
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