

Cayley Hamilton theorem: LinearAlg

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 8 November, 2023 (at 20:43)

Ques. Q1. Suppose two \mathbb{F} -matrices are conjugate over the algebraic closure of \mathbb{F} . Are they conjugate over \mathbb{F} ? \square

Notation. Use $\wp_M(x) := \text{Det}(M - xI)$ for the **characteristic poly** of M . I'll use symbol “ \approx ” with the following meaning: Suppose \wp is the characteristic polynomial of an $N \times N$ matrix M , or of a trn $T: \mathbb{F}^N \rightarrow \mathbb{F}^N$, and h is a polynomial. I'll write $\wp \approx h$ to mean that

$$[-1]^N \cdot \wp = h.$$

Use a similar convention for an alteration of the word “monic”: The phrase

“Consider a degree- K **monic** polynomial $g \dots$ ”

means that the high-order term of $g(x)$ is $[-1]^K x^K$.

Let boldface $\mathbf{0}$ denote the zero-matrix or trn. Use $\vec{0}$ for the zero vector.

1: Cayley-Hamilton Theorem. Over field \mathbb{F} , consider an $N \times N$ -matrix M . With $\wp := \wp_M$, then,

$$\wp(M) = \mathbf{0}_{N \times N}.$$

So M is a “root” of its own char-poly. \diamond

Proof when M is upper-triangular. In matrix M , let $\alpha_1, \alpha_2, \dots, \alpha_N \in \mathbb{F}$ be the diagonal entries; these are the eigenvalues of M . Using the std basis, let $U_j := \text{Span}(\{e_1, \dots, e_j\})$; so $U_0 = \{\mathbf{0}\}$. Since M is upper-triangular, the difference vector

$$2: \quad \mathbf{d}_{j-1} := M\mathbf{e}_j - \alpha_j \mathbf{e}_j \\ \text{is in } U_{j-1},$$

for each $j \in [1..N]$. We want to show that each such \mathbf{e}_j is annihilated by $\wp(M)$.

For $j \in [0..N]$, factor the characteristic polynomial as $\wp \approx L_j \cdot R_j$, where the left&right are

$$L_j(x) := [x - \alpha_N] \cdot [x - \alpha_{N-1}] \cdot \dots \cdot [x - \alpha_{j+1}]; \\ R_j(x) := [x - \alpha_j] \cdot [x - \alpha_{j-1}] \cdot \dots \cdot [x - \alpha_2] \cdot [x - \alpha_1].$$

[So $L_0() \approx \wp()$ and $R_0() = 1$.] All powers of M mutually commute, thus

$$\wp(M) \approx L_j(M) \cdot R_j(M).$$

Hence ISTShow that

$$Q[j]: \quad R_j(M) \text{ annihilates } U_j.$$

Since all transformations annihilate U_0 , we need to prove $Q[j-1] \Rightarrow Q[j]$, for each $j = 1, 2, \dots, N$.

Induction. Fix a $j \in [1..N]$ such that $Q[j-1]$.

Firstly, $R_j(M)$ annihilates $\mathbf{e}_1, \dots, \mathbf{e}_{j-1}$, since $R_{j-1}(M)$ does, and $R_j(M) = [M - \alpha_j I] \cdot R_{j-1}(M)$. Secondly, to kill off \mathbf{e}_j note that

$$\begin{aligned} R_j(M) \cdot \mathbf{e}_j &= R_{j-1}(M) \cdot [M - \alpha_j I] \cdot \mathbf{e}_j \\ &= R_{j-1}(M) \cdot \mathbf{d}_{j-1}. \end{aligned}$$

This last product is $\mathbf{0}$, courtesy (2) and $Q[j-1]$. \diamond

Proof of C-H using JCF. We now handle a general M by means of **JCF**, the Jordan Canonical Form thm. Let \mathbb{G} denote the algebraic closure of \mathbb{F} . Viewing M as acting on $\mathbb{G}^{N \times N}$, our M is conjugate (i.e similar) to its Jordan Canonical Form. Since the JCF is upper-triangular, the previous proof finishes the argument in the general case. \diamond

Elementary proof using a cyclic subspace. The preceding argument used two non-trivial theorems: JCFThm, as well as the result that a field has an algebraic closure.

Here is an elementary proof of C-H thm, never leaving field \mathbb{F} . Consider a trn T on a finite-dim' al \mathbb{F} -vectorspace and let \wp be its characteristic poly.

Fixing a vector $\mathbf{v}_0 \neq \mathbf{0}$, our goal is to show that

$$3: \quad [\wp(\mathbf{T})](\mathbf{v}_0) \text{ equals } \mathbf{0}.$$

Exer: Why does this suffice?

Iteratively define $\mathbf{v}_{j+1} := \mathbf{T}(\mathbf{v}_j)$ and stop at the first natnum N where $\mathbf{T}(\mathbf{v}_N)$ is in the vectorspace

$$\mathbf{W} := \text{Span}(\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_N).$$

Exer: Why must there be such an N ?

Define coeffs α_j by

$$4: \quad \mathbf{T}(\mathbf{v}_N) := \sum_{j+k=N} \alpha_j \mathbf{v}_k,$$

where such sums are taken over **natnums** j and k .

Notice that our **W** is a **T**-invariant subspace. And the linearly-independent (exercise!) tuple

$$\mathcal{B} := (\mathbf{v}_0, \dots, \mathbf{v}_N)$$

is a basis for subspace **W**.

5: Companion Lemma. With **T**, **W** and **B** as above, let **M** be the $[N+1] \times [N+1]$ matrix of $\mathbf{T}|_{\mathbf{W}}$ (**T** restricted to **W**) relative to ordered **W**-basis **B**. Then

$$5a: \quad \mathbf{M} = \begin{bmatrix} 0 & & & & \alpha_N \\ 1 & 0 & & & \alpha_{N-1} \\ & 1 & 0 & & \alpha_{N-2} \\ & & \ddots & \ddots & \vdots \\ & & & 1 & 0 & \alpha_3 \\ & & & & 1 & 0 & \alpha_2 \\ & & & & & 1 & 0 & \alpha_1 \\ & & & & & & 1 & \alpha_0 \end{bmatrix}.$$

And its characteristic polynomial is

$$5b: \quad \wp_{\mathbf{M}}(x) \approx x^{N+1} - \sum_{\substack{j+k=N, \\ \text{with } j, k \in \mathbb{N}}} \alpha_j x^k. \quad \diamond$$

Remark. A matrix of form (5a) is a **companion matrix**. It is “the companion matrix of polynomial (5b)”. Wikipedia has a nice write-up. \square

Proof of (5). The $[N+1] \times [N+1]$ matrix $x\mathbf{I} - \mathbf{M}$ is

$$\begin{bmatrix} x & & & & -\alpha_N \\ -1 & x & & & -\alpha_{N-1} \\ & -1 & x & & -\alpha_{N-2} \\ & & \ddots & \ddots & \vdots \\ & & & -1 & x & -\alpha_3 \\ & & & & -1 & x & -\alpha_2 \\ & & & & & -1 & x & -\alpha_1 \\ & & & & & & -1 & [x - \alpha_0] \end{bmatrix}.$$

We compute its determinant by summing products over transversals. The main diagonal yields

$$\ddagger_0: \quad x^N \cdot [x - \alpha_0] \stackrel{\text{note}}{=} x^{N+1} - \alpha_0 x^N.$$

Now, in columns $0, 1, \dots, N-1$ we either choose “ x ” or “ -1 ”. In a column where we choose -1 , the row of our choice *prevents* us from choosing x in the *next* column; so we must again choose -1 . Thus: *Once we leave the main diagonal, we must stay on the first off-diagonal.*

What is the contribution to $\text{Det}(x\mathbf{I} - \mathbf{M})$ from a transversal with $j \in [1..N]$ many -1 ’s? It is

$$x^{N-j} \cdot [-1]^j \cdot [-\alpha_j] \cdot \text{Sign-of-permutation}.$$

The sign of the perm is $[-1]^j$, so the j^{th} -transversal contribution to $\wp_{\mathbf{M}}(x)$ is

$$\ddagger_j: \quad -[\alpha_j \cdot x^{N-j}].$$

Adding (\ddagger_0) to $\sum_{j=1}^N (\ddagger_j)$ yields RhS(5b). \diamond

Second Proof of C-H. The given trn **T** and vector \mathbf{v}_0 determine a **T**-invariant subspace **W** and matrix **M**, as above. An exercise (see the Block-UT-matrix Lemma in the *jordan_decomp.latex* file) is that the CharPoly of a trn restricted to an invariant subspace, divides the CharPoly of the trn. In particular, $\wp_{\mathbf{M}}$ is a factor-poly of $\wp_{\mathbf{T}}$.

So (3) will follow from showing that $\wp_{\mathbf{M}}(\mathbf{T})$ annihilates \mathbf{v}_0 . And this follows from (5b) and (4). \diamond

6: **Corollary.** Fix $K \in \mathbb{Z}_+$ and an arbitrary degree- K monic \mathbb{F} -poly $g()$. Then there exists a $K \times K$ matrix over \mathbb{F} whose characteristic-poly equals g .
Pf. Use matrix (5a) with $K := N+1$. \diamond

7: **Application.** Let $\mathbb{F} := \mathbb{Z}_p$, where p is prime. To produce a $p \times p$ \mathbb{F} -matrix \mathbf{M} with no \mathbb{F} -eigenvalues, pick a non-zero element $\beta \in \mathbb{F}$, and define

$$g(x) := \beta + \prod_{\gamma \in \mathbb{F}} [x - \gamma].$$

For instance, consider $p := 3$ and $\beta := -1$. Then

$$\begin{aligned} g(x) &= -1 + x[x-1][x+1] \\ &= x^3 - [x+1] = x^3 - [\alpha_0 x^2 + \alpha_1 x + \alpha_2], \end{aligned}$$

using the notation of (5b), where $\alpha_0 := 0$, $\alpha_1 := 1$ and $\alpha_2 := 1$. Courtesy our (5a), then, matrix $\mathbf{M} := \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ has no eigenvalues in \mathbb{Z}_3 . \diamond

End Notes

First, we need a general lemma.

8: Lemma. *Fix fields $\mathbb{G} \supset \mathbb{F}$ and consider a collection $\mathcal{C} \subset \mathbb{F}^{\times N}$ of vectors which is linearly dependent over \mathbb{G} . (Typically, \mathbb{G} is the algebraic closure of \mathbb{F} .) Then \mathcal{C} is already linearly dependent over \mathbb{F} . \diamond*

Proof. View $\mathbb{F}^{\times N}$ -vectors as column vectors, and use $\vec{0}$ for the col-vec of all zeros. FTSOC, suppose we have a *non-trivial* dependence

$$\dagger: \quad \sum_{j=1}^7 \alpha_j \cdot \vec{c}_j = \vec{0},$$

for scalars $\alpha_j \in \mathbb{G}$ and colvecs in $\vec{c}_j \in \mathcal{C}$. Some $\alpha_j \neq 0$, so WLOG $\alpha_1 \neq 0$. By multiplying (\dagger) by $1/\alpha_1$, WLOG $\alpha_1 = 1$.

Shrink \mathbb{G} to the subfield generated by \mathbb{F} and $\alpha_1, \dots, \alpha_7$. We can now view \mathbb{G} as a \mathbb{F} -vectorspace of dimension ≤ 7 . Collection $\{1\}$ is LI, so it extends to an \mathbb{F} -basis $\{1\} \sqcup \mathcal{E}$ for \mathbb{G} . [So $\mathcal{E} \subset \mathbb{G}$, and each “vector” $\alpha \in \mathbb{G}$ can be uniquely written as an \mathbb{F} -linear-combination of $\{1\} \sqcup \mathcal{E}$.]

Define a linear map $\text{Proj} : \mathbb{G} \rightarrow \mathbb{F}$ by $1 \mapsto 1$ and, for each $e \in \mathcal{E}$, have Proj send $e \mapsto 0$. Whence $\text{Proj}()$ is the identity on \mathbb{F} , and for $\alpha, \beta \in \mathbb{G}$ and $f \in \mathbb{F}$:

$$\begin{aligned} \text{Proj}(\alpha + \beta) &= \text{Proj}(\alpha) + \text{Proj}(\beta); \\ *: \quad \text{Proj}(\alpha \cdot f) &= \text{Proj}(\alpha) \cdot f. \end{aligned}$$

Applying map $\text{Proj}^{\times N} : \mathbb{G}^{\times N} \rightarrow \mathbb{F}^{\times N}$ to (\dagger) yields

$$\ddagger: \quad \sum_{j=1}^7 \text{Proj}(\alpha_j) \cdot \vec{c}_j = \vec{0}$$

by $(*)$, since each entry in each \vec{c}_j is in \mathbb{F} .

Finally, $\text{Proj}(\alpha_1) = \text{Proj}(1) = 1$ is *not* zero. So (\ddagger) exposes a non-trivial \mathbb{F} -linear-dependence of \mathcal{C} . \spadesuit

Minimal poly of \mathbf{M}

See `jordan_decomp.latex` for theorems used below. The **minimal polynomial** of an F -matrix \mathbf{M} is the smallest-degree monic F -poly $\Upsilon_{\mathbf{M}}()$ such that $\Upsilon_{\mathbf{M}}(\mathbf{M}) = \mathbf{0}$. Applying (8) to collection $\mathcal{C} := \{\mathbf{M}^j\}_{j \in \mathbb{N}}$ shows, if we take the smallest-degree monic G -poly, that we still get $\Upsilon_{\mathbf{M}}$.

For a $\lambda \in \mathbb{G}$, consider the $D \times D$ Jordan Block

$$\mathbf{J} := \lambda\text{-JB}(D) := \begin{bmatrix} \lambda & 1 & & \\ & \lambda & 1 & \\ & & \ddots & \ddots \\ & & & \lambda & 1 \\ & & & & \lambda \end{bmatrix}.$$

It is the sum $\lambda\mathbf{I} + \mathbf{N}$, where \mathbf{N} is the nilpotent matrix $0\text{-JB}(D)$. For $R \in \mathbb{N}$, the Binomial thm applies, since $\mathbf{N} \leftrightharpoons \mathbf{I}$, to the R^{th} -power of \mathbf{J} to assert

$$\mathbf{J}^R = \sum_{j+k=R} \lambda^j \cdot \binom{R}{j, k} \cdot \mathbf{N}^k.$$

For $R \in [0..D]$, then, \mathbf{J}^R has 1's on the R^{th} off-diagonal, and 0's on all higher diagonals. Thus $\{\mathbf{I}, \mathbf{J}, \mathbf{J}^2, \dots, \mathbf{J}^{D-1}\}$ is a lin-indep collection of matrices. And (E1: Exercise) $\mathbf{J}^D \in \text{Span}(\mathbf{I}, \mathbf{J}, \mathbf{J}^2, \dots, \mathbf{J}^{D-1})$. So $\text{Deg}(\Upsilon_{\mathbf{J}})$ equals D . Therefore,

$$\wp_{\mathbf{J}}(x) \approx \Upsilon_{\mathbf{J}}(x) = [x - \lambda]^D.$$

9: Fact. Consider block-diagonal matrix. $\mathbf{M} := \text{Diag}(\mathbf{A}, \mathbf{B})$. (So \mathbf{A} and \mathbf{B} are square, but could have different sizes.) Then, the characteristic and minimum polynomials satisfy

$$\begin{aligned} \wp_{\mathbf{M}} &= \wp_{\mathbf{A}} \cdot \wp_{\mathbf{B}} \quad \text{and} \\ \Upsilon_{\mathbf{M}} &= \text{LCM}(\Upsilon_{\mathbf{A}}, \Upsilon_{\mathbf{B}}). \end{aligned}$$

Proof. Immediate. \diamond

Caveat. Suppose \mathbf{M} is *block upper-triangular*; it has square-blocks $\mathbf{B}_1, \dots, \mathbf{B}_L$ along the diagonal, zeros south-west of these blocks, and possibly non-zero values north-east of these blocks. Certainly

$$\wp_{\mathbf{M}} = \wp_{\mathbf{B}_1} \cdot \wp_{\mathbf{B}_2} \cdot \dots \cdot \wp_{\mathbf{B}_L}.$$

However, the corresponding stmt for $\Upsilon_{\mathbf{M}}$ with LCM is **false**.

As a CEX, the matrices $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ have the same 1×1 diagonal-blocks, and the same char-poly, but different min-polys; they are x and x^2 . \square

An eigenvalue is a “*simple* eigenvalue” if its eigenspace is 1-dim’al.

10: Coro. A block-diagonal \mathbf{M} has “equality” $\wp_{\mathbf{M}} \approx \Upsilon_{\mathbf{M}}$ IFF \mathbf{M} has only simple eigenvalues. [I.e, each \mathbf{M} -eVal has only one JORDANBLOCK in JCF(\mathbf{M}).] \diamond

Proof. This follows from either (9) or (12). \diamond

Defn. A **downtup** \vec{D} is a sequence of positive integers $D_1 \geq D_2 \geq \dots \geq D_{\varepsilon}$. It yields the JCF

$$\lambda\text{-JB}(\vec{D}) := \text{Diag}(\lambda\text{-JB}(D_1), \dots, \lambda\text{-JB}(D_{\varepsilon}))$$

of the general λ -nilpotent matrix. Use $\text{Size}(\vec{D})$ for $D_1 + \dots + D_{\varepsilon}$. \square

For F -matrix \mathbf{M} , suppose that $\lambda_1, \dots, \lambda_L$ are the distinct G -eigenvalues. The eigenvalues yield a unique list $\vec{D}^1, \vec{D}^2, \dots, \vec{D}^L$ of downtups (of varying lengths) so that

$$11: \quad \text{Diag}(\lambda_1\text{-JB}(\vec{D}^1), \dots, \lambda_L\text{-JB}(\vec{D}^L))$$

is the JCF of \mathbf{M} .

12: Theorem. With F -matrix \mathbf{M} having JCF (11), its characteristic and minimum polys are

$$\begin{aligned} \wp_{\mathbf{M}}(x) &\approx \prod_{\ell=1}^L [x - \lambda_{\ell}]^{\text{Size}(\vec{D}^{\ell})} \quad \text{and} \\ \Upsilon_{\mathbf{M}}(x) &= \prod_{\ell=1}^L [x - \lambda_{\ell}]^{\text{Max}(\vec{D}^{\ell})}. \end{aligned}$$

Necessarily, these polynomials have all their coefficients in F . **Proof.** Use (8) and (9). \diamond

13: Fact. Suppose M is an $N \times N$ matrix. Write its char and min polys as

$$\begin{aligned}\wp_M(x) &\approx [x - \lambda_1] \cdot \dots \cdot [x - \lambda_N] \\ \Upsilon_M(x) &= [x - \beta_1] \cdot \dots \cdot [x - \beta_D].\end{aligned}$$

[The β 's form a sub-multiset of the λ 's.] Then for each nz-scalar σ :

$$\begin{aligned}\wp_{\sigma M}(x) &= [x - \sigma \lambda_1] \cdot \dots \cdot [x - \sigma \lambda_N] \cdot [-1]^N \\ &= \sigma^N \cdot \wp_M\left(\frac{1}{\sigma}x\right),\end{aligned}$$

and analogously for the min-poly. \diamond

Continuity. Over \mathbb{C} , the $M \mapsto \wp_M$ mapping is cts. But neither Υ_M nor $JCF(M)$ varies continuously with M . For $\beta \neq 0$, define 7×7 matrices

$$M_\beta := \begin{bmatrix} 0 & \beta & & & & & \\ & \ddots & \ddots & & & & \\ & & 0 & \beta & & & \\ & & & 0 & & & \\ & & & & 0 & & \\ & & & & & 0 & \\ & & & & & & 0 \end{bmatrix} \text{ and } J := \begin{bmatrix} 0 & 1 & & & & & \\ & \ddots & \ddots & & & & \\ & & 0 & 1 & & & \\ & & & 0 & & & \\ & & & & 0 & & \\ & & & & & 0 & \\ & & & & & & 1 \end{bmatrix}.$$

The JCF (Jordan Canonical Form) of M is J .¹ So the min-poly $\Upsilon_M(x) = \Upsilon_J(x) = x^7$. But as $\beta \rightarrow 0$, our M_β goes to $0_{7 \times 7}$, whose min-poly is x . This example also shows that neither eigenspaces nor nilspaces vary ctsly.

Invariant properties. Suppose S is invertible. Since ST is conjugate (exercise) to TS , they have the same min-poly and char-poly. We now generalize char-poly to non-invertible:

14: Lemma. For $S, T \in \text{MAT}_{N \times N}(\mathbb{F})$: Products ST and TS have the same characteristic poly. \diamond

¹INDIRECT: The only M eVal is 0, yet $\text{Rank}(M) = 7 - 1$. So the nullspace, i.e 0-eigenSpace, is only 1-dimensional, hence $JCF(M)$ has only one JB.

DIRECT: Consider ordered-basis $\mathcal{V} := (\mathbf{v}_1, \dots, \mathbf{v}_7)$, where we define $\mathbf{v}_k := \beta^j \cdot \mathbf{e}_k$ with $j + k = 7$. The left-hand action of M , when expressed w.r.t \mathcal{V} , is J . Equivalently, $J = C^{-1}MC$ where C is the diagonal matrix with entries $\beta^6, \beta^5, \dots, \beta, 1$.

Proof. We can proceed as follows if \mathbb{F} has a topology, with the field operations cts, so that $\text{GL}(\mathbb{F}^{\times N})$ is dense in $\text{LIN}(\mathbb{F}^{\times N})$. For then, take invertible matrices S_j which converge to S and use that the char-poly varies continuously. \diamond

Here is a standard “Algebraist’s argument” Let $\tilde{\mathbb{F}}$ be the field generated by \mathbb{F} and N^2 independent transcendentals. Let \tilde{S} be a matrix obtained by putting a distinct transcendental in each position.

Since \tilde{S} is $\tilde{\mathbb{F}}$ -invertible, $\tilde{S}T$ and $T\tilde{S}$ have the same char-poly. Now apply the ring-hom $\varphi: \tilde{\mathbb{F}} \rightarrow \mathbb{F}$ which sends each transcendental to its corresponding \mathbb{F} -element in S . (I.e, plug in the S -values for the corresponding transcendentals in \tilde{S}). \diamond

Note. We used that the above ring-hom $\varphi: \tilde{\mathbb{F}} \rightarrow \mathbb{F}$ preserves determinants (since it preserves mult and addition) hence preserves charpolys.

However, this argument does not show that ST is conjugate to TS . Why? Well, φ can carry an invertible matrix to a *non*-invertible. Perhaps φ carries *every* matrix conjugating $\tilde{S}T$ to $T\tilde{S}$, to a non-invertible puppy.

Here is an example: Let $S := \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $T := \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Then ST is the zero-matrix, but TS equals S . So not only is ST not similar (not conjugate to) TS , they even have *different* minpolys, hence different JCFs. Since S is the limit of $S_x := \begin{bmatrix} x & 0 \\ 1 & x \end{bmatrix}$ as $x \searrow 0$, we have another example showing that the minimum-poly and JCF do *not* vary ctsly. \square

Filename: [Problems/Algebra/LinearAlg/cayley_hamilton.latex](#)
As of: Tuesday 27May2003. Typeset: 8Nov2023 at 20:43.