
Cayley Hamilton theorem: LinearAlg
Jonathan L.F. King

University of Florida, Gainesville FL 32611-2082, USA
squash@ufl.edu

Webpage http://squash.1gainesville.com/
8 November, 2023 (at 20:43)

Ques.Q1. Suppose two F-matrices are conjugate over the
algebraic closure of F. Are they conjugate over F? �

Notation. Use ℘M(x) := Det(M− xI) for the
characteristic poly of M. I’ll use symbol “m”
with the following meaning: Suppose ℘ is the
characteristic polynomial of an N×N matrix M,
or of a trn T:FN→FN , and h is a polynomial. I’ll
write ℘ m h to mean that

[ 1]N ·℘ = h .

Use a similar convention for an alteration of the
word “monic”: The phrase

“Consider a degree-K mmnic polyno-
mial g . . . ”

means that the high-order term of g(x) is [ 1]KxK.
Let boldface 0 denote the zero-matrix or trn.

Use ~0 for the zero vector.

1: Cayley-Hamilton Theorem.Over field F, consider
an N×N -matrix M. With ℘ := ℘M, then,

℘(M) = 0N×N .

So M is a “root” of its own char-poly. ♦

Proof when M is upper-triangular. In matrix M, let
α1, α2, . . . , αN ∈ F be the diagonal entries; these
are the eigenvalues of M. Using the std basis, let
Uj := Spn

(
{e1, . . . , ej}

)
; so U0 = {0}. Since M

is upper-triangular, the difference vector

dj−1 := Mej − αjej

is in Uj−1,
2:

for each j ∈ [1 .. N ]. We want to show that each
such ej is annihilated by ℘(M).

For j ∈ [0 .. N ], factor the characteristic poly-
nomial as ℘ m Lj·Rj, where the left&right are

Lj(x) := [x− αN ] · [x− αN−1] · . . . · [x− αj+1] ;

Rj(x) := [x− αj] · [x− αj−1]· . . . ·[x− α2] · [x− α1] .

[So L0() m ℘() and R0() = 1.] All powers of M mu-
tually commute, thus

℘(M) m Lj(M) ·Rj(M) .

Hence ISTShow that

Rj(M) annihilates Uj.Q[j]:

Since all transformations annihilate U0, we need
to prove Q[j−1]⇒ Q[j], for each j = 1, 2, . . . , N .

Induction. Fix a j ∈ [1 .. N ] such that Q[j−1].
Firstly, Rj(M) annihilates e1, . . . , ej−1, since

Rj−1(M) does, and Rj(M) = [M− αjI] ·Rj−1(M).
Secondly, to kill off ej note that

Rj(M) · ej = Rj−1(M) · [M− αjI] · ej
= Rj−1(M) · dj−1 .

This last product is 0, courtesy (2) and Q[j−1].�

Proof of C-H using JCF. We now handle a gen-
eral M by means of JCF, the Jordan Canonical
Form thm. Let G denote the algebraic closure of F.
Viewing M as acting on G×N , our M is conjugate
(i.e similar) to its Jordan Canonical Form. Since
the JCF is upper-triangular, the previous proof
finishes the argument in the general case. �

Elementary proof using a cyclic subspace.
The preceding argument used two non-trivial the-
orems: JCFThm, as well as the result that a field
has an algebraic closure.

Here is an elementary proof of C-H thm, never
leaving field F. Consider a trn T on a finite-dim’al
F-vectorspace and let ℘ be its characteristic poly.
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Fixing a vector v0 6=0, our goal is to show that[
℘(T)

]
(v0) equals 0.3:

Exer: Why does this suffice?

Iteratively define vj+1 := T(vj) and stop at the
first natnum N where T(vN) is in the vectorspace

W := Spn(v0,v1, . . . ,vN) .

Exer: Why must there be such an N?
Define coeffs αj by

T(vN) :=
∑

j+k=N

αjvk ,4:

where such sums are taken over natnums j and k.
Notice that our W is a T-invariant subspace .

And the linearly-independent (exercise!) tuple

B := (((v0, . . . ,vN)))

is a basis for subspace W.

5: Companion Lemma. With T, W and B as
above, letM be the [N+1]× [N+1] matrix of T�W
(T restricted to W) relative to ordered W-basis B.
Then

M =



0 αN

1 0 αN−1
1 0 αN−2

. . .
. . .

...
1 0 α3

1 0 α2

1 0 α1

1 α0


.5a:

And its characteristic polynomial is

℘M(x) m xN+1 −
∑

j+k=N ,
with j,k∈N

αjx
k .5b: ♦

Remark. A matrix of form (5a) is a companion
matrix. It is “the companion matrix of polyno-
mial (5b)”. Wikipedia has a nice write-up. �

Proof of (5). The [N+1]× [N+1] matrix xI−M
is 

x αN
1 x αN−1

1 x αN−2
. . .

. . .
...

1 x α3

1 x α2

1 x α1

1 [x− α0]


.

We compute its determinant by summing prod-
ucts over transversals. The main diagonal yields

xN · [x− α0]
note
=== xN+1 − α0x

N .‡0:

Now, in columns 0, 1, . . . N−1 we either choose “x”
or “ 1”. In a column where we choose 1, the row
of our choice prevents us from choosing x in the
next column; so we must again choose 1. Thus:
Once we leave the main diagonal, we must stay on
the first off-diagonal.

What is the contribution to Det(xI − M) from
a transversal with j ∈ [1 .. N ] many 1’s? It is

xN−j · [ 1]j · [ αj] · Sign-of-permutation .

The sign of the perm is [ 1]j, so the jth-transversal
contribution to ℘M(x) is

−[αj · xN−j] .‡j:

Adding (‡0) to
∑N
j=1 (‡j) yields RhS(5b). �

Second Proof of C-H. The given trn T and vec-
tor v0 determine a T-invariant subspace W and
matrix M, as above. An exercise (see the Block-UT-
matrix Lemma in the jordan_decomp.latex file) is that
the CharPoly of a trn restricted to an invariant
subspace, divides the CharPoly of the trn. In par-
ticular, ℘M is a factor-poly of ℘T.

So (3) will follow from showing that ℘M(T) an-
nihilates v0. And this follows from (5b) and (4).�
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6: Corollary. Fix K ∈ Z+ and an arbitrary degree-
K mmnic F-poly g() Then there exists a K×K
matrix over F whose characteristic-poly equals g.
Pf. Use matrix (5a) with K := N+1. ♦

7: Application. Let F := Zp, where p is prime. To
produce a p×p F-matrix M with no F-eigenvalues,
pick a non-zero element β ∈ F, and define

g(x) := β +
∏
γ∈F

[x− γ] .

F’irinstance, consider p := 3 and β := 1. Then

g(x) = 1 + x[x− 1][x+ 1]

= x3 − [x+ 1] = x3 − [α0x
2 + α1x+ α2] ,

using the notation of (5b), where α0 := 0, α1 := 1
and α2 := 1. Courtesy our (5a), then, matrix

M :=

[
0 0 1
1 0 1
0 1 0

]
has no eigenvalues in Z3. ♦
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End Notes
First, we need a general lemma.

8: Lemma. Fix fields G ⊃ F and consider a collec-
tion C ⊂ F×N of vectors which is linearly depen-
dent over G. (Typically, G is the algebraic closure of F.)
Then C is already linearly dependent over F. ♦

Proof. View F×N -vectors as column vectors, and
use ~0 for the col-vec of all zeros. FTSOC, suppose
we have a non-trivial dependence∑7

j=1
αj · ~cj = ~0 ,†:

for scalars αj ∈ G and colvecs in ~cj ∈ C. Some
αj 6= 0, so WLOG α1 6= 0. By multiplying (†)
by 1/α1, WLOG

�� ��α1 = 1 .
Shrink G to the subfield generated by F and

α1, . . . , α7. We can now view G as a F-vectorspace
of dimension ≤7. Collection {1} is LI, so it ex-
tends to an F-basis {1} t E for G. [So E ⊂ G,
and each “vector” α ∈ G can be uniquely written as an
F-linear-combination of {1} t E.]

Define a linear map Proj :G→F by 17→1 and, for
each e ∈ E, have Proj send e7→0. Whence Proj()
is the identity on F, and for α, β ∈ G and f ∈ F:

Proj(α + β) = Proj(α) + Proj(β) ;

Proj(α · f) = Proj(α) · f .∗:

Applying map Proj×N :G×N→F×N to (†) yields
∑7

j=1
Proj(αj) · ~cj = ~0‡:

by (∗), since each entry in each ~cj is in F.
Finally, Proj(α1) = Proj(1) = 1 is not zero.

So (‡) exposes a non-trivial F-linear-dependence
of C. �
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Minimal poly of M

See jordan_decomp.latex for theorems used be-
low. The minimal polynomial of an F-
matrixM is the smallest-degree monic F-poly ΥM()
such that ΥM(M) = 0. Applying (8) to collection
C := {Mj}j∈N shows, if we take the smallest-degree
monic G-poly, that we still get ΥM.

For a λ ∈ G, consider the D×D Jordan Block

J := λ-JB(D) :=


λ 1
λ 1

. . .
. . .
λ 1
λ

 .
It is the sum λI + N, where N is the nilpotent
matrix 0-JB(D). For R ∈ N, the Binomial thm ap-
plies, since N� I, to the Rth-power of J to assert

JR =
∑

j+k=R

λj ·
(
R
j,k

)
· Nk .

For R ∈ [0 .. D), then, JR has 1’s on the
Rth off-diagonal, and 0’s on all higher di-
agonals. Thus {I, J, J2, . . . , JD−1} is a lin-
indep collection of matrices. And (E1:Exercise)
JD ∈ Spn(I, J, J2, . . . , JD−1). So Deg(ΥJ) equalsD.
Therefore,

℘J(x) m ΥJ(x) = [x− λ]D .

9: Fact. Consider block-diagonal matrix.
M := Diag(A,B). (So A and B are square, but could
have different sizes.) Then, the characteristic and
minimum polynomials satisfy

℘M = ℘A · ℘B and

ΥM = LCM(ΥA,ΥB) .

Proof. Immediate. ♦

Caveat.SupposeM is block upper-triangular ; it has
square-blocks B1, . . . ,BL along the diagonal, zeros
south-west of these blocks, and possibly non-zero
values north-east of these blocks. Certainly

℘M = ℘B1 · ℘B2 · . . . · ℘BL
.

However, the corresponding stmt for ΥM with LCM
is false.

As a CEX, the matrices [ 0 0
0 0 ] and [ 0 1

0 0 ] have
the same 1×1 diagonal-blocks, and the same char-
poly, but different min-polys; they are x and x2.�

An eigenvalue is a “simple eigenvalue” if its
eigenspace is 1-dim’al.

10: Coro. A block-diagonal M has “equality”
℘M m ΥM IFF M has only simple eigenvalues. [I.e,
each M-eVal has only one JordanBlock in JCF(M).] ♦

Proof. This follows from either (9) or (12). �

Defn. A downtup
−→
D is a sequence of positive

integers D1 ≥ D2 ≥ · · · ≥ DE . It yields the JCF

λ-JB(
−→
D) := Diag

(
λ-JB(D1), . . . , λ-JB(DE)

)
of the general λ-nilpotent matrix. Use Size(

−→
D)

for D1 + · · ·+DE . �

For F-matrixM, suppose that λ1, . . . , λL are the
distinct G-eigenvalues. The eigenvalues yield a
unique list

−→
D 1,
−→
D 2, . . . ,

−→
DL of downtups (of varying

lengths) so that

Diag
(
λ1-JB(

−→
D 1), . . . , λL-JB(

−→
DL)

)
11:

is the JCF of M.

12: Theorem. With F-matrix M having JCF (11),
its characteristic and minimum polys are

℘M(x) m
∏L

`=1
[x− λ`]Size(

−→
D`) and

ΥM(x) =
∏L

`=1
[x− λ`]Max(

−→
D`) .

Necessarily, these polynomials have all their coef-
ficients in F. Proof. Use (8) and (9). ♦
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13: Fact. Suppose M is an N×N matrix. Write
its char and min polys as

℘M(x) m [x− λ1] · . . . · [x− λN ]

ΥM(x) = [x− β1] · . . . · [x− βD] .

[The β’s form a sub-multiset of the λ’s.] Then for each
nz-scalar σ:

℘σM(x) = [x− σλ1] · . . . · [x− σλN ] · [ 1]N

= σN · ℘M( 1
σ
x) ,

and analogously for the min-poly. ♦

Continuity. Over C, the M 7→ ℘M mapping is
cts. But neither ΥM nor JCF(M) varies continu-
ously with M. For β 6= 0, define 7×7 matrices

Mβ :=

 0 β

. . .
. . .
0 β

0

 and J :=

[ 0 1
. . .

. . .
0 1

0

]
.

The JCF (Jordan Canonical Form) of M is J.♥1 So
the min-poly ΥM(x) = ΥJ(x) = x7. But as β→0,
our Mβ goes to 07×7, whose min-poly is x. This
example also shows that neither eigenspaces nor
nilspaces vary ctsly.

Invariant properties. Suppose S is invertible.
Since ST is conjugate (exercise) to TS , they have
the same min-poly and char-poly. We now gener-
alize char-poly to non-invertible:

14: Lemma. For S,T ∈MatN×N(F): Products ST
and TS have the same characteristic poly. ♦

♥1Indirect: The onlyM eVal is 0, yet Rank(M) = 7− 1.
So the nullspace, i.e 0-eigenSpace, is only 1-dimensional,
hence JCF(M) has only one JB.

Direct: Consider ordered-basis V := (((v1, . . . ,v7))),
where we define vk := βj ·ek with j + k = 7. The left-
hand action of M, when expressed w.r.t V, is J. Equiv-
alently, J = C 1MC where C is the diagonal matrix with
entries β6, β5, . . . , β, 1.

Proof. We can proceed as follows if F has a
topology, with the field operations cts, so that
GL(F×N) is dense in Lin(F×N). For then, take
invertible matrices Sj which converge to S and use
that the char-poly varies continuously. ♦

Here is a standard “Algebraist’s argument” Let
F̃ be the field generated by F and N2 independent
transcendentals. Let S̃ be a matrix obtained by
putting a distinct transcendental in each position.

Since S̃ is F̃-invertible, S̃T and TS̃ have the same
char-poly. Now apply the ring-hom ϕ:F̃→F which
sends each transcendental to its corresponding F-
element in S. (I.e, plug in the S-values for the corre-
sponding transcendentals in S̃.) �

Note. We used that the above ring-hom ϕ:F̃→F
preserves determinants (since it preserves mult and
addition) hence preserves charpolys.

However, this argument does not show that ST
is conjugate to TS. Why? Well, ϕ can carry an
invertible matrix to a non-invertible. Perhaps ϕ
carries every matrix conjugating S̃T to TS̃, to a
non-invertible puppy.

Here is an example: Let S := [ 0 0
1 0 ], T := [ 0 0

0 1 ].
Then ST is the zero-matrix, but TS equals S. So
not only is ST not similar (not conjugate to) TS,
they even have different minpolys, hence differ-
ent JCFs. Since S is the limit of Sx := [ x 0

1 x ] as
x↘0, we have another example showing that the
minimum-poly and JCF do not vary ctsly. �
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