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Ques. Q1. Suppose two F-matrices are conjugate over the
algebraic closure of F. Are they conjugate over F? (]

Notation. Use gy (z) = Det(M — zI) for the
characteristic poly of M. T’ll use symbol “<”
with the following meaning: Suppose g is the
characteristic polynomial of an Nx/N matrix M,
or of a trn T:FY—F", and / is a polynomial. I'll
write ( <= /. to mean that

[fl]N-p = h.

Use a similar convention for an alteration of the
word “monic”: The phrase

“Consider a degree-K m=nic polyno-
mial g...”
means that the high-order term of g(z) is [-1]* 2%

Let boldface 0 denote the zero-matrix or trn.
Use 0 for the zero vector.

1: Cayley-Hamilton Theorem. Over field F, consider
an NxN-matrix M. With o := pwu, then,

p(M) =

So M is a “root” of its own char-poly. O

Onxn -

Proof when M is upper-triangular. In matrix M, let
a1, Qa, ...,y € F be the diagonal entries; these
are the eigenvalues of M. Using the std basis, let
U; = Spn({el, o ,ej}>; so Uy ={0}. Since M
s upper-triangular, the difference vector

dj—l =

is in

Mej — Oéjej

7—1,

for each j € [1.. N]. We want to show that each
such e; is annihilated by o(M).
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For j € [0.. N], factor the characteristic poly-
nomial as o < L;-R;, where the left&right are

Li(z) =z —an] [z —an-] ... [z —aju];

Ri(z) =[x — o4 [z —aj_q]-...- [t —ag] - [z — 1] .

[So Lo() = ¢() and Ry() = 1.] All powers of M mu-
tually commute, thus

p(M) = L;j(M) - R;(M).
Hence ISTShow that
Qljl:

Since all transformations annihilate Uy, we need
to prove Q[j—1] = Q[j], for each j =1,2,... N.

R;(M) annihilates U;.

Fix a j € [1.. N] such that Q[j—1].

Firstly, R;(M) annihilates e;,...,e;_;, since
R;_1(M) does, and R;(M) = [M — ;1] - R;_1(M).
Secondly, to kill off e; note that

Induction.

R;(M) - e; Rj1(M) - [M — q;I] - e;

= R;1(M)-d;-1 .

This last product is 0, courtesy (2) and Q[j—1].4¢

Proof of C-H using JCF.  'We now handle a gen-
eral M by means of JCF, the Jordan Canonical
Form thm. Let G denote the algebraic closure of F.
Viewing M as acting on G**V, our M is conjugate
(i.e similar) to its Jordan Canonical Form. Since
the JCF is upper-triangular, the previous proof
finishes the argument in the general case. ¢

Elementary proof using a cyclic subspace.
The preceding argument used two non-trivial the-
orems: JCFThm, as well as the result that a field
has an algebraic closure.

Here is an elementary proof of C-H thm, never
leaving field F. Consider a trn T on a finite-dim’al
F-vectorspace and let p be its characteristic poly.
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Fixing a vector vy #0, our goal is to show that

B [p(T)] (vo) equals O.

Exer: Why does this suffice?
Iteratively define v;.; := T(v;) and stop at the

first natnum N where T(v ) is in the vectorspace

W = Spn(vg,Vvi,...,VN).

Exer: Why must there be such an N7

Define coeffs «; by

4: T(vy) =

Z AV,

j+k=N

where such sums are taken over natnums j and £.

Notice that our ‘W is a T-invariant subspace ‘

And the linearly-independent (exercise!) tuple
B = (vo,.--,VnN)
is a basis for subspace W.

5: Companion Lemma. With T, W and B as
above, let M be the [N+1] x [N+1] matrix of T |
(T restricted to W) relative to ordered W-basis B.
Then

0 oy ]
1 0 aN-—1
1 0 QaN-—2

Ha: M = : :
1 0 (%3
1 0 (%)
1 0 ap

1

And its characteristic polynomial is

5b: om(z) = 2Nt — > oz . O
jtk=N,
with j,k €N

Remark. A matrix of form (5a) is a companion
matriz. It is “the companion matrix of polyno-
mial (5b)”. Wikipedia has a nice write-up. O
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Proof of (5).

1S

The [N+1] x [N+1] matrix zI —M

T —Q N
“N-_1
—aN_—2

-1 =z ek
-1 =z —Qo

-1 x -1

-1 [z — ag]

We compute its determinant by summing prod-
ucts over transversals. The main diagonal yields

105 oV —ap] 2 N gzt

Now, in columns 0, 1, ... N—1 we either choose “x”
or “~1”. In a column where we choose -1, the row
of our choice prevents us from choosing = in the
next column; so we must again choose ~1. Thus:
Once we leave the main diagonal, we must stay on
the first off-diagonal.

What is the contribution to Det(zI — M) from
a transversal with j € [1.. N] many -1’s? It is
NI 1] - [-ay] - Sign-of-permutation .
The sign of the perm is [-1)/, so the j'-transversal
contribution to pm(x) is

1) —[aj -z

Adding (%) to XN, (1;) yields RhS(5b). ¢

Second Proof of C-H. The given trn T and vec-
tor vy determine a T-invariant subspace W and
matrix M, as above. An exercise (see the Block-UT-
matrix Lemma in the jordan_decomp.latex file) is that
the CharPoly of a trn restricted to an invariant
subspace, divides the CharPoly of the trn. In par-
ticular, oy is a factor-poly of or.

So (3) will follow from showing that o (T) an-
nihilates v. And this follows from (5b) and (4).4
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6: Corollary. Fix K € Z, and an arbitrary degree-
K m=znic F-poly g() Then there exists a KxK
matrix over F whose characteristic-poly equals g.
Pf. Use matrix (ba) with K = N+1. O

7: Application. Let F := Z,, where p is prime. To
produce a pxp F-matrix M with no F-eigenvalues,
pick a non-zero element [ € F, and define

g(x) = B+ [z -]

~Y€EF

F’irinstance, consider p := 3 and 3 :=-1. Then

glw) = -1+ zlz— 1]z +1]

=2 —[z+1] = 2° - [r® + 1 + ),
using the notation of (5b), where o =0, ay =1
and ay = Courtesy our (ba), then, matrix
00
M := [1 0
0 1

1.
1 . .

1| has no eigenvalues in Zs. O
0
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End Notes

First, we need a general lemma.

8: Lemma. Fix fields G D F and consider a collec-
tion C C PV of vectors which is linearly depen-
dent over G. (Typically, G is the algebraic closure of F.)
Then C is already linearly dependent over F.  {

Proof. View F*"-vectors as column vectors, and
use 0 for the col-vec of all zeros. FTSOC, suppose
we have a non-trivial dependence

7 . —
f: ijl%"cj = 0,

for scalars o; € G and colvecs in ¢; € C. Some
a; # 0, so WLOG oq # 0. By multiplying ()
by 1/aq, WLOG .

Shrink G to the subfield generated by F and
i, ...,a7. We can now view G as a F-vectorspace

of dimension <7. Collection {1} is LI, so it ex-
tends to an F-basis {1} L& for G. [So & C G,
and each “vector” o € G can be uniquely written as an

F-linear-combination of {1} L 8.]

Define a linear map Proj:G—F by 11 and, for
each e € &, have Proj send e—0. Whence Proj()
is the identity on F, and for o, 3 € G and f € F:

Proj(a+ ) = Proj(a) + Proj(8)
158 Proj(a - f) = Proj(a) - f.

Applying map Proj" :G*N =PV to (1) yields
7 , . ~
I: ijl Proj(a;)-¢; = 0

by (), since each entry in each c; is in F.
Finally, Proj(a;) = Proj(1) =1 is not zero.
So (I) exposes a non-trivial F-linear-dependence

of C. ¢
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Minimal poly of M

See jordan_decomp.latex for theorems used be-
low. The minimal polynomial of an F-
matrix M is the smallest-degree monic F-poly Ty ()
such that Yy, (M) = 0. Applying (8) to collection
C = {M/},cy shows, if we take the smallest-degree
monic G-poly, that we still get Ty.

For a A € G, consider the DxD Jordan Block

Al
J = M B(D) = .
A1
A
It is the sum AI + N, where N is the nilpotent
matrix 0-JB(D). For R € N, the Binomial thm ap-

plies, since N < I, to the R"-power of J to assert

S ()
j+k=R

For R € [0.D), then, J® has 1's on the
R™ off-diagonal, and 0’s on all higher di-
agonals.  Thus {I,J,J? ... JP"'} is a lin-
indep collection of matrices. And (El:Exercise)
JP e Spn(1,J, 0%, ... JP71). So Deg(Y)) equals D.
Therefore,

9: Fact. Consider block-diagonal matrix.
M = Diag(A,B). (So A and B are square, but could
have different sizes.) Then, the characteristic and
minimum polynomials satisfy

PM = QA PB and
Tv = LCM(Ya, 1) .

Proof. Immediate. O
Caveat.Suppose M is block upper-triangular; it has
square-blocks By, ... B, along the diagonal, zeros

south-west of these blocks, and possibly non-zero
values north-east of these blocks. Certainly

PM = ©B; "By - BB -

Minimal poly of M
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However, the corresponding stmt for 1y, with LCM
is false.

As a CEX, the matrices [ (| and [] || have
the same 1x1 diagonal-blocks, and the same char-
poly, but different min-polys; they are 2 and 2°.[]

An eigenvalue is a “simple eigenvalue” if its
eigenspace is 1-dim’al.

10: Coro. A block-diagonal M has “equality”
om < Yv IFF M has only simple eigenvalues. |Le,
each M-eVal has only one JorpanBrock In JCF(M).] O

Proof. This follows from either (9) or (12). ¢

Defn. A downtup B is a sequence of positive
integers D1 > Dy > -+ > Dg. It yields the JCF

MB(D) = Diag(\-JB(Dy), ..., \-JB(D¢))

of the general A-nilpotent matrix. Use Size(B)
for Dy + -+ + Dg. O

For F-matrix M, suppose that A\, ..., A\, are the
distinct G-eigenvalues. The eigenvalues yield a
unique list D*, 82, .
lengths) so that

; Eof downtups (of varying

11:  Diag(M-JB(D), ..., \-JB(DY)
is the JCF of M.

12: Theorem. With F-matrix M having JCF (11),
its characteristic and minimum polys are

and

@M(IE) . H@L:1 [:L“ - )\E]Size(BU
Tu) = T, [r = AP

Necessarily, these polynomials have all their coetf-
ficients in F. Proof. Use (8) and (9). O
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13: Fact. Suppose M is an NxN matrixz. Write
its char and min polys as

om(@) < [z—=XN] ... [x = Ay]

Tu(z) =[x =] ... [z —Bp].

[The (B’s form a sub-multiset of the /\’s.] Then for each
nz-scalar o:

Oom(z) = [z —oX] ... [z —oly]- 1]V
=o' pM(%x) )
and analogously for the min-poly. O

Continuity. Over C, the M > @\ mapping is
cts. But neither Ty nor JCF(M) varies continu-
ously with M. For /3 # 0, define 7x7 matrices

08 01
] andJ:zl ]
08 01

0

Mﬁ =

The JCF (Jordan Canonical Form) of M is J.* So
the min-poly Yy (z) = Yj(z) = 27. But as -0,
our Mz goes to 07,7, whose min-poly is .  This
example also shows that neither eigenspaces nor
nilspaces vary ctsly.

Invariant properties. Suppose S is invertible.
Since ST is conjugate (exercise) to TS , they have
the same min-poly and char-poly. We now gener-
alize char-poly to non-invertible:

14: Lemma. For S, T € MATnyn(F): Products ST
and TS have the same characteristic poly. O

“HINDIRECT: The only M éValis 0, yet Rank(M) = 7 — 1.
So the nullspace, i.e 0-eigenSpace, is only 1-dimensional,
hence JCF (M) has only one JB.

DirecT: Consider ordered-basis V= (vi,...,v7),
where we define v, = (7-e;, with j+k =7. The left-
hand action of M, when expressed w.r.t V, is J. Equiv-
alently, J = C"'MC where C is the diagonal matrix with
entries 3%, 3°,...,3, 1.

Minimal poly of M
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Proof. We can proceed as follows if F has a
topology, with the field operations cts, so that
GL(F*Y) is dense in LIN(FV). TFor then, take
invertible matrices S; which converge to S and use
that the char-poly varies continuously. O

Here is a standard “Algebraist’s argument” Let
F be the field generated by F and N? independent
transcendentals. Let S be a matrix obtained by
putting a distinct transcendental in each position.

Since S is IE—invertible, ST and TS have the same
char-poly. Now apply the ring-hom ¢: F—F which
sends each transcendental to its corresponding F-
element in S. (I.e7 plug in the S-values for the corre-

sponding transcendentals in §) ¢

Note. We used that the above ring-hom @:IEHF
preserves determinants (since it preserves mult and
addition) hence preserves charpolys.

However, this argument does not show that ST
is conjugate to TS. Why? Well, ¢ can carry an
invertible matrix to a non-invertible. Perhaps ¢
carries every matrix conjugating ST to Tg, to a
non-invertible puppy.

Here is an example: Let S .= [V J], T :=[§ ]
Then ST is the zero-matrix, but TS equals S. So
not only is ST not similar (not conjugate to) TS,
they even have different minpolys, hence differ-
ent JCFs. Since S is the limit of S, == [¢ U] as
0, we have another example showing that the
minimum-poly and JCF do not vary ctsly. U
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