

Staple!

Differential Eqns
MAP2302

Prof. JLF King
Touch: 17Oct2017

Notation. For the *Laplace transform* of f , use $\mathcal{L}(f) = \hat{f}$. Use \mathcal{L}^{-1} for the inverse Laplace-transform operator.

C1: Show no work.

a Function

$$y_{\alpha,\beta}(t) =$$

is the general soln to

$$y'' + 4y' + 3y = \cos(2t).$$

Also, the *constants* on the LhS are 1, 4, 3. Suppose the DE describes the position of a spring, with forcing-function $\cos(2t)$. Then the *constant* corresponding to the coefficient-of-friction is

b With $\mathbf{1}()$ the constant-1 fnc and $F(x) := \sin(5x)$, then, convolution

$$[\mathbf{1} * F](x) =$$

c With $\mathbf{1}()$ the constant-1 fnc and $F(x) := e^{2x}$, then, convolution

$$[\mathbf{1}^{*4} * F](x) =$$

d With $f(x) := e^{7x}$ and $g(x) := e^{4x}$, then

$$[f * g](5) =$$

e Matrices A, B, U are 2×2 , with U is invertible. Then $e^{A+B} = e^A \cdot e^B$:
 $Ue^B U^{-1} = e^{UBU^{-1}}$:
If e^B invertible, then B is invertible:

f Fncts $x(t)$ and $y(t)$ satisfy this system of DEs,

$$\begin{aligned} x' + x - 3y &= 0, \\ y' + 6x - 8y &= 0. \end{aligned}$$

It can be written as $\mathbf{Y}' = \mathbf{M} \cdot \mathbf{Y}$,

C-Practice

where $\mathbf{Y} := \begin{bmatrix} x \\ y \end{bmatrix}$ and \mathbf{M} is matrix

Characteristic poly of \mathbf{M} is $\varphi_{\mathbf{M}}(z) =$

A soln has $x(t)$ a linear combination of $e^{\alpha t}$ and $e^{\beta t}$ for numbers $\alpha =$ and $\beta =$.

g Matrix $\mathbf{G} := \begin{bmatrix} 2 & -1 & 3 \\ 4 & -2 & 4 \\ 0 & 0 & 0 \end{bmatrix}$

is nilpotent. Computing, $\mathbf{G}^2 =$

The $(1, 3)$ -entry of $e^{\mathbf{G}t}$ is

h We can re-write function

$$f(t) := \cdot \cos\left(\frac{3}{4}\pi + 5t\right) + \sqrt{2} \cdot \cos\left(\frac{3}{2}\pi + 5t\right)$$

as $f(t) = R \cdot \cos(\theta + 5t)$, for real numbers

$$R = \geq 0 \text{ and } \theta = \in [0, 2\pi).$$

i Let $\mathbf{B} := \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix}$, $\mathbf{M} := \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$. and $\mathbf{R} := \mathbf{M}\mathbf{B}\mathbf{M}^{-1}$.

Then

$$e^{\mathbf{R}t} =$$

j The Laplace transform of fnc $f(t) := \cos(7t)$ is $\hat{f}(s) =$

For IVP $3y'' - y = \cos(7t)$ with $y(0)=2$ and $y'(0)=5$, then,

$$\hat{y}(s) =$$

k $\mathcal{L}(t^{26}e^{3t})(s) =$

$$\mathcal{L}(t^{26} * e^{3t})(s) =$$

$$\mathcal{L}(\sin(2t) \cdot \exp(3t))(s) =$$

Determine the inverse-transform, please.

$$\mathcal{L}^{-1}\left(\frac{3s+5}{s^2+2s+5}\right)(t) =$$

Continued...

1 Suppose $y(0) = 2$, $y'(0) = 3$, $y''(0) = 5$. Then $\mathcal{L}(y^{(3)} + 2y')(s)$ equals $[[p(s) \cdot \hat{y}(s)] + q(s)]$ for **polynomials**

$$q(s) = \text{.....}$$

and $p(s) = \text{.....}$

OYOP: *In grammatical English sentences, write your essay on every third line (usually), so that I can easily write between the lines.*

C2: **i** Start your essay with this sentence-fragment, and complete the defn using as many sentences as you need:

An $N \times N$ matrix B is nilpotent if... Moreover, saying that its nilpotency degree is 4 means that...

ii Give an example of 3×3 matrix which has nilpotency degree 2.

C3: Let $G(t) := \begin{bmatrix} 0 \\ t \end{bmatrix}$ and $R := \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$, which is nilpotent. U.F. $Z(t) := \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$ satisfies

$$Z'(t) + R \cdot Z(t) = G(t).$$

Use MacFOLDE to solve for $Z(t)$, showing all the steps, in complete English sentences. *Each sentence starts with a capitalized word, and ends with visible punctuation.*

End of C-Practice