

Staple!

Linear Algebra
MAS4105 5441

C-Home

Prof. JLF King
Touch: 1Feb2022

Greetings, Humanoid. Your essays violate the CHECKLIST at *Your Peril!* “IP” means “inner product”. Exam is due by 4:30PM, Thursday, 08Dec2005.

C1: Short answer: Show no work. Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0$.

[z] Professor King hopes I'll stop by next semester to chat. **True**
He has an office? **Will there be chocolate?**

[a] Compute the \mathbb{L}_p -norm of $\mathbf{v} := (2\mathbf{i}, -4, 2, \mathbf{i})$.
 $\|\mathbf{v}\|_1 = \underline{\dots}$, $\|\mathbf{v}\|_2 = \underline{\dots}$, $\|\mathbf{v}\|_3 = \underline{\dots}$, $\|\mathbf{v}\|_\infty = \underline{\dots}$.

[b] #4(b) ^P336. $\|\mathbf{A}\| = \underline{\dots}$. $\langle \mathbf{A}, \mathbf{B} \rangle = \underline{\dots}$.

[c⁺] In \mathbb{C}^3 , let $\mathbf{W} := \text{Span}((\mathbf{i}, -1, 1))$. As col-vecs, an orthonormal basis for \mathbf{W}^\perp is:
 $\underline{\dots}$

[d] Column-vecs $\begin{bmatrix} -1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ are orthonormal relative to IP $\langle \mathbf{v}, \mathbf{b} \rangle := \mathbf{v}^T \mathbf{M} \mathbf{b}$ where the real symmetric (positive definite) matrix \mathbf{M} is
 $\underline{\dots}$

[e⁺] In \mathbb{R}^4 , let \mathbb{L}_0 be the line passing through the origin and the point $Q := (1, 2, 3, 4)$. Let \mathbb{L}_1 be the line $t \mapsto (2, -1, 0, 1) + t(5, 0, 1, 2)$. The (orthogonal) dist. between lines \mathbb{L}_0 and \mathbb{L}_1 is
 $\underline{\dots}$

[f⁺] In \mathbb{R}^3 , let \mathbb{L}_3 be the line $3 - x = \frac{y-6}{2} = z - 3$. Let \mathbb{L}_2 be the line passing through the origin and the point $Q := (4, -8, -4)$. Then
 $\text{Dist}(\mathbb{L}_2, \mathbb{L}_3) = \underline{\dots}$

[g⁺] Let $\mathbf{G} := \begin{bmatrix} 11 & -18 \\ 6 & -10 \end{bmatrix}$. Compute diagonal matrix

$\mathbf{D} = \underline{\dots}$ and non-sing $\mathbf{Q} = \underline{\dots}$
so that $\mathbf{Q} \mathbf{D} \mathbf{Q}^{-1} = \mathbf{G}$. Using #21 ^P312, compute the exponential matrix $\mathbf{e}^{\mathbf{G}} = \underline{\dots}$

[h⁺] Let $\mathbf{M} := \frac{1}{5} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$. Compute the limit vector
 $\lim_{k \rightarrow \infty} \mathbf{M}^k \begin{bmatrix} 7 \\ 6 \end{bmatrix} = \underline{\dots}$. [Hint: \mathbf{M} is a Markov matrix.]
 $\underline{\dots}$

Team C

On $\mathbb{P} := \mathbb{P}_{<4}$ define an IP $\langle f, g \rangle := \int_{-1}^0 f \cdot g$. Let \mathcal{E} be the ordered-basis $(1, x, x^2, x^3)$. Apply Gram-Schmidt to produce an orthonormal basis

$$\mathcal{B} := (1, h_1, h_2, h_3)$$

for \mathbb{P} . Here, each $h_n(x)$ is a polynomial of degree n .

$$h_1(x) = \underline{\dots}, h_2(x) = \underline{\dots}, h_3(x) = \underline{\dots}.$$

C2: Prove #16(a,b) ^P355. (Jog: Bessel's Inequality)

C3: #23 ^P324. (Jog: Sums of evecs from distinct eigenspaces.)

C4: Matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ have sizes $K \times K, K \times L, L \times K, L \times L$, resp., forming block matrix $\mathbf{G} := \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}$, with \mathbf{A} invertible. Let \mathbf{I} and \mathbf{J} be the $K \times K$ and $L \times L$ identity matrices. Prove this block-matrix-formula:

$$\dagger: \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{C}\mathbf{A}^{-1} & \mathbf{J} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{0} & \mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B} \end{bmatrix}.$$

Using that, in (\dagger) , the first and third block matrices are *block-triangular*, prove that

$$\ddagger: \text{Det}(\mathbf{G}) = \text{Det}(\mathbf{A}) \cdot \text{Det}(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1} \cdot \mathbf{B}).$$

Suppose now that \mathbf{A} and \mathbf{D} have the same size (hence $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ are each, say, $K \times K$). *If* \mathbf{A} and \mathbf{C} commute, prove that

$$*: \text{Det}(\mathbf{G}) = \text{Det}(\mathbf{A}\mathbf{D} - \mathbf{C}\mathbf{B}).$$

Give a CEX to $(*)$ when $\mathbf{A} \not\cong \mathbf{C}$. (Use $K := 2$.)

$$\mathbf{C1}: \underline{\dots} \quad 240\text{pts}$$

$$\mathbf{C2}: \underline{\dots} \quad 120\text{pts}$$

$$\mathbf{C3}: \underline{\dots} \quad 135\text{pts}$$

$$\mathbf{C4}: \underline{\dots} \quad 120\text{pts}$$

$$\mathbf{Total}: \underline{\dots} \quad 615\text{pts}$$

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).* **Name/Signature/Ord**

Ord:

 $\underline{\dots} \quad \underline{\dots} \quad \underline{\dots} \quad \underline{\dots} \quad \underline{\dots}$

Ord:

 $\underline{\dots} \quad \underline{\dots} \quad \underline{\dots} \quad \underline{\dots} \quad \underline{\dots}$

Ord:

 $\underline{\dots} \quad \underline{\dots} \quad \underline{\dots} \quad \underline{\dots} \quad \underline{\dots}$

Filename: Classwork/LinearAlg/LinA2005t/c-home.LinA2005t.

latex

As of: Monday 31Aug2015. Typeset: 1Feb2022 at 10:22.