

End of Home-C

Intro. Due, no later than **4PM, Friday, 23Apr2010**, slid completely under my office door, LIT402.

Below, (X, \mathcal{X}, μ) is a non-atomic Lebesgue probability space.

C1: i Suppose $(T: X, \mathcal{X}, \mu)$ is weak-mixing, and $S \in C(T)$. If S ergodic, prove that S itself is weak-mixing.

ii Construct a weak-mixing $(T: X, \mathcal{X}, \mu)$ and non-ergodic $S \in C(T)$ st. $S \neq \text{Id}$.

C2: Let G be the semigroup of mpts on (X, μ) . Given a $B \in \mathcal{X}$, define a pseudo-metric d_B on G by

$$d_B(S, T) := \mu(S^{-1}(B) \Delta T^{-1}(B)).$$

Let $\vec{\mathbf{B}} = (B_k)_{k=1}^{\infty}$ be a μ -dense family of sets. With $\mathbf{d}_k := d_{B_k}$, define

$$1: \quad \mathbf{m}(S, T) := \sum_{k=1}^{\infty} \frac{1}{2^k} \cdot \mathbf{d}_k(S, T),$$

which perforce is a pseudo-metric.

a Prove: **PROPOSITION.** *If $\mathbf{m}(S, T) = 0$, then $\forall E \in \mathcal{X}$: $d_E(S, T) = 0$. If $\tau_n \xrightarrow{n \rightarrow \infty} T$ in (G, \mathbf{m}) , then $\forall E \in \mathcal{X}$: $d_E(\tau_n, T) \rightarrow 0$.*

Here is a: **FACT.** *If $S \not\equiv T$, then $\exists E \in \mathcal{X}$ st. $d_E(S, T) > 0$.* This fact shows that \mathbf{m} separates points in G , hence is a metric on G . (Optional: Prove the above FACT.)

b Fix sequences $\sigma_n \xrightarrow{n \rightarrow \infty} S$ and $\tau_n \xrightarrow{n \rightarrow \infty} T$ in (G, \mathbf{m}) . Our goal: **THM.** $\mathbf{m}(\sigma_n \tau_n, ST) \xrightarrow{n \rightarrow \infty} 0$.

First show that ISTFix a $B \in \vec{\mathbf{B}}$ and establish

$$2: \quad d_B(\sigma_n \tau_n, ST) \xrightarrow{n \rightarrow \infty} 0.$$

Now prove (??) by using the triangle inequality and the above PROPOSITION.

c Produce an example of convergence

$$\tau_n \xrightarrow{n \rightarrow \infty} T \text{ in } (G, \mathbf{m}),$$

where each τ_n is invertible, but T is not. [Hint: This is the “creativity” part of the project. Necessarily, you can *not* have that $[\forall n, \ell: \tau_n \leftrightharpoons \tau_\ell]$, since that would force the limit transformation to be invertible.]

C1: _____ 85pts

C2: _____ 180pts

Total: _____ 265pts

Please PRINT your Name

.....

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor.*

Signature:

.....