

NT-Cryptography
MAT4930 7554

Home-C

Prof. JLF King
Touch: 2Jul2018Due **BoC, Monday, 07Apr2014**. Please *fill* in every *blank* on this sheet.**C1:** Show no work. Write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.**a** Posints $K = \underline{\dots}$, $N = \underline{\dots}$, $\alpha = \underline{\dots}$, $\beta = \underline{\dots}$, are st. $\alpha \equiv_K \beta$, yet $N^\alpha = \underline{\dots}$ is not \equiv_K to $N^\beta = \underline{\dots}$.**b** Using dictionary 0: ε , 1: "1", 2: "0", compute $\text{EnZiv}(11110110) = \underline{\dots}$, in $\langle 7 \rangle 1 \langle 34 \rangle 0 \dots$ notation. In bits, $\text{EnZiv}(11110110)$ is $\underline{\dots}$.OYOP: Your 2 essay(s) must be TYPED, and Double or Triple spaced. Use the Print/Revise cycle to produce good, well thought out, essays. Start each essay on a new sheet.Do not restate the problem; just solve it.**C2:** Let $\vec{1} := 1111\dots$, the half- ∞ constant-1 bit-string. Using our Ziv-algorithm, with dictionary that [initially] only has the nullword, we start parsing $\vec{1}$.Let $P(k)$ be the largest-number of bits we've parsed, having used-up at most k many bits from $\vec{1}$. I.e, we Ziv-parse, and we eventually parse a new word [which we enter into our dictionary], having read exactly $P(k)$ many bits, in total, where $P(k) \leq k$. As we scan for the next new word, we run past the k^{th} -bit in $\vec{1}$.**i** Give an approximate formula for $N(k)$, the number of words you've parsed, having read the first $P(k)$ many bits.**ii** Let $Z(k)$ be the length of the Ziv-compressed bit-string that encodes the first $P(k)$ many bits in the source-string. When k is large, give a pretty good estimate for $Z(k)$; a "closed formula", neither having a \sum summation operator, nor a \prod product operator.What are approximate values for $N(500,000)$, and for $Z(500,000)$?Compute $\lim_{k \rightarrow \infty} \frac{Z(k)}{k}$.**C3:** Consider posreals $p + q = 1$. Your coin outputs bit 0 with prob. = p , and bit 1 with prob. = q . Flipping the coin K times, the WLLN [Weak Law of Large Numbers] says, when K is "large", that a typical sequence has about pK many 0s, and has about qK many 1s. **α** Let $f(K)$ denote the number of such length- K bit-sequences. Estimate $f(K)$ using a binomial coefficient.Now use Stirling's formula to get an "algebraic" estimate for $f(K)$ that just uses multiplication, division, and powers; it does not use factorials. **β** Define a fnc g by: $2^{[K \cdot g(K)]} = f(K)$. Using your "algebraic" formula for f , derive a formula estimating $g(K)$.Assuming that all of your estimates could be proved rigorously, compute $\lim_{K \rightarrow \infty} g(K)$. What familiar formula is this limit? **γ** Using these ideas, do something extra. Impress me. [Hopefully, not with a brick...]

End of Home-C

C1: $\underline{\dots}$ 40pts**C2:** $\underline{\dots}$ 85pts**C3:** $\underline{\dots}$ 95pts**Total:** $\underline{\dots}$ 220pts**HONOR CODE:** "I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)." Name/Signature/OrdOrd: $\underline{\dots}$ Ord: $\underline{\dots}$ Ord: $\underline{\dots}$