

Staple!

Algebra 1 Prof. JLF King
MAS4301 3175 Home-C Thursday 17Apr2003

Ord: _____

Hello. The order of your hand-in should be: PROBLEM SHEET (P-S, this side up), TYPESETTING CONVENTIONS (if any), followed by the write-up to the essay. General instructions are on the **CHECKLIST**. Every “if” should have an explicit “then”. Use “ $f(x)$ notation” when writing fncs; E.g, write “ $\sin(x)$ ” rather than $\sin x$ or $[\sin x]$.

C1: Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed. (Pts: 40×2 , 60×2 .) **Show NO work!**

a In ring $\mathbb{Z}_4[[x]]$, poly $2x + 3$ has multiplicative inverse _____.

b This deg-4 poly in $\mathbb{Z}_4[[x]]$ is the zero-function on \mathbb{Z}_4 .

c In ring $\mathbb{Q}[[x]]$, let \mathbf{J} be the ideal generated by

$$\begin{aligned}\alpha(x) &:= x^4 + 4x^3 - 5x + 2; \\ \beta(x) &:= x^4 + 3x^3 - 3x^2 - 3x + 2;\end{aligned}$$

As $\mathbb{Q}[[x]]$ is a PID, there exists a monic intpoly

$$D(x) = \text{_____} \text{ st. } \mathbf{J} = D(x) \cdot \mathbb{Q}[[x]].$$

[Hint: Use the Div.Alg and Eucl.Alg to compute the gcd of $\alpha(x)$ and $\beta(x)$.] Find intpolys st. $\alpha(x) = [\text{_____}] \cdot$

$$D(x) \text{ and } \beta(x) = [\text{_____}] \cdot D(x).$$

Your D is in \mathbf{J} , since $D = \alpha \cdot K + \beta \cdot L$, where $K(x) = \text{_____}$ & $L(x) = \text{_____}$.

d Positive integers $A = \text{_____}$, $B = \text{_____}$ and $C = \text{_____}$, each in $[1..360]$, are such that

$$(x, y, z) \mapsto [Ax + By + Cz] \bmod 360$$

is a ring-iso from $\mathbb{Z}_5 \times \mathbb{Z}_8 \times \mathbb{Z}_9 \rightarrow \mathbb{Z}_{360}$. In $[1..360]$, integer $n = \text{_____}$ is such that $n \equiv_5 4$ and $n \equiv_8 6$ and $n \equiv_9 3$.

Essay question. Type your solution, in complete, grammatical English sentences that would make Shakespeare weep with admiration. *Double*

or triple space! Draw many good, useful **Large** pictures showing your ideas.

C2: A labeling with posreals, of the cells (squares) of an infinite chessboard, is a **peg-jump labeling** if: For each triple A, B, C of consecutive (vertically or horizontally) cells, both $[A \leq B + C]$ and $[A + B \geq C]$. Tell me the posreal $\beta \in (0, 1)$ that you will use to make peg-jump labelings of this form: Each labeling is determined by a integer-valued fnc $N(x, y)$, so that if cell (x, y) is labeled with $\beta^{N(x, y)}$ then the result is peg-jump labeled. Probably, you’ll want N to change by at-most-1 in moving from a cell to an adjacent cell.

What to prove. On the infinite chessboard, fill rows $0, -1, -2, \dots$ with pegs. Give a *careful proof* that it is **impossible** to jump a peg up to row 5. (Pay attention to \leq and $<$.) Is it possible to jump to row 4?; if yes, show how.

Now compute, with proof, a posodd $D = 2R + 1$, so that if the chessboard is completely filled with pegs, with the $D \times D$ cell (centered at the origin) subsequently emptied, then it is impossible to jump a peg to the origin. Extra credit: Generalize either of these to K dimensions. So you’ll have an R_K and the “5” will change with K .

End of Home-C

C1: _____ 200pts

C2: _____ 175pts

Total: _____ 375pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor (or his colleague). Name/Signature/Ord*

Ord: _____