

Hello. Take-home C is due, *slid under my office door*, by **6PM, Monday, 11 Dec., 1995.**

C1:

a Sum $\sum_{k=3}^{\infty} \frac{1}{k[k+3]} = \frac{U}{D}$, where $U = \dots$ and $D = \dots$ are co-prime posints.

[Hint: Telescoping series (several). “Co-prime” means “with no common factor”.]

b Series $\sum_{n=2}^{\infty} \frac{[-1]^n}{n \cdot \log(n)}$ (*circle one*): **diverges**, **converges-conditionally**, **converges-absolutely**.

[Hint: Alternating-series-test and Integral-test.]

c Let $b_n := \frac{\log(n)+n}{1+2n}$. Then

$\sum_{n=1}^{\infty} [b_n - b_{n+1}] = \dots$

[Hint: A real, $+\infty$, $-\infty$ or **DNEinR**.]

d Let $s_K := \sum_{n=3}^K \frac{[-1]^n}{\sqrt{n}}$ and let $L := \lim_{K \rightarrow \infty} s_K$.

What is the *smallest* value of K such that s_K approximates the limit L to within two decimal-places? [I.e, such that $|L - s_K| < \frac{1}{100}$.] **Circle**

$3 \leq K \leq 10; \quad 10 < K \leq 30; \quad 30 < K \leq 100;$
 $100 < K \leq 1000; \quad 1000 < K \leq 10,000; \quad 10,000 < K \leq 10^5;$
 $10^5 < K \leq 10^6; \quad K > 10^6.$

e Let $f(x) := x^6 - 3x^4 + 2x + 1$. Compute the degree-3 Taylor polynomial of f , **centered at -1**.

TayPoly(x) = \dots

f For series $\sum_{n=3}^{\infty} \frac{[-2]^n}{3^{n+1} n^2} x^n$, its RoC = \dots and

its interval-of-convergence = \dots

g Compute the real $\alpha = \dots$ such that

$$3^{\alpha} \cdot \sum_{k=0}^{4000} \binom{4000}{k} 2^k = \sum_{j=0}^{1995} \binom{1995}{j} 8^j.$$

h,i

[Hint: Theorem 9.25 might be useful.] Let’s alter problem #59^P614. Let N denote the *expected number* (average number) of rolls of the dice to first get a “2” or “11”. (The original problem had “7” or “11”.)

The series whose sum you want to compute is:

\dots And its sum is $N = \dots$

As essay problems, the original exam had two questions from the text; #42^P634 and #24^P630.

C2: Let $G(x) := e^{[x^2]} \cdot \int_0^x e^{-[t^2]} dt$.

i Show that $G()$ is well-defined for *all* $x \in \mathbb{R}$; what theorems are you using to show this?

ii Show that $G'(x) = 1 + 2x \cdot G(x)$. What theorem(s) are you using?

iii For each $n \geq 1$, prove by induction that

$$G^{(n+1)}(x) = 2n \cdot G^{(n-1)}(x) + 2x \cdot G^{(n)}(x).$$

iv Letting b_n be $G^{(n)}(0)/n!$, the the Maclaurin series for G is $\sum_{n=0}^{\infty} b_n x^n$. Derive an explicit formula for b_n in terms of factorials and powers.

v Compute (with proof) the radius of convergence, and the interval-of-convergence of the series.

[Parts (iv) and (v) are the most important. In (iv), your formula can have cases, e.g, “When n is a multiple of 3, then b_n equals ...”.]

Notes: Good theorems to look up are: **Alternating Series Thm**; **FTC**; **The Binomial Theorem** (the elementary one, not the Binomial Series Theorem); **IVT**; **MVT**; **The Ratio and Root Tests**, and the various theorems of convergence of power series.

Recall that the interval-of-convergence of a power series can be open, half-open, or closed. Make sure to specify which endpoints are in your interval

For C1(a), play with telescoping series. For (c), recall that **DNEinER** means “does not exist in (the) extended reals”, where the set of **extended reals** is the closed interval $[-\infty, +\infty]$. □

Filename: Classwork/2Calculus/2Calc1995t/c-hm.2Calc1995t.
latex

As of: Monday 31Aug2015. Typeset: 4Oct2017 at 08:54.