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C1: 195 For m ∈ [1,∞), let Ωm denote the equi-an-
gular spiral which crosses the x-axis at Q1:=(((1, 0))) and,
one wrap later, at Qm:=(((m, 0))). (When m=1, the “spiral” degener-

ates into a circle.) Let Pm =
(((
αm, βm

)))
be the parm’tion of Ωm

st. Pm(0) = Q1, Pm(2π) = Qm and Pm(t) wraps once
whenever t increases by 2π.

So αm(t) =mt/[2π] · cos(t).

& βm(t) = eKt · sin(t), where K := log(m)
2π .

Viewing Pm as position, we get the speed fnc

‖P′m(t)‖ = BeKt , where B :=
√
K2 + 12 .∗0:

a
Length Lm := Len

(
Q1`Qm

wrap

)
note
====

∫ 2π

0

BeKt dt,

which equals

B
K · [m− 1] =

√
12 +

[
2π

log(m)

]
2 ·
[
m− 1

]
= Tm ·

[
m− 1

]
. Alternatively,

B
K · [m− 1] =

√
K2+12

K ·
[
e2πK − 1

]
.

∗1:

Total-len of Ωm going in to the origin from Q1, is

Tm =

∫ 0

∞
BeKt dt = B

K =
√

12 +
[
1
K

]
2 .

An alternative derivation is

Tm
note
==== Lm ·

∞∑
j=1

[
1
m

]j
= B

K =
√

12 +
[

2π
log(m)

]
2 .

∗2:

As m↘1. Geometry tells us that one wrap of Ωm

tends to the unit-circle. So
�� ��WExpect Lm→2π·1. And

Tm approaches the length of ∞ly many trips around the

circum of a circle; so
�� ��WExpect Tm→∞.

Letting Rm := m−1
log(m) , note [Lm]2 equals

[m− 1]2 + [2π]2 · [Rm]2 .

By l’Hôpital’s theorem

lim
m→1

Rm = lim
m→1

1
1/m

note
==== 1 .∗3:

Thus [
lim
m→1

Lm
]
2 = 02 +

[
[2π]2 · 12

]
.

Since each Lm is non-negative, lim
m→1

Lm = 2π. �

As m↗∞. Imagine m enormous. Then the portion
of Ωm going in from Q1 looks like the line-segment from

(((1, 0))). to (((0, 0))). So
�� ��WExpect limm↗∞ Tm = 1, And in-

deed, limm↗∞RhS(??) equals
√
12 .

With m huge, look at the plane from a distance m. From
that distance, curve Lm appears to be a line-segment from
the origin to (((m, 0))). So WExpect Lm to be asymptotic
to m. And from RhS(??),

lim
m↗∞

Lm
m

=
[

lim
m↗∞

Tm
]
·
[

lim
m↗∞

m− 1

m

]
= 1 · 1 ,

which equals 1, as predicted. �

b
Fnc F(t) :=

(((
x(t), y(t)

)))
parametrizes the Friendly

spiral Φ by

x(t) = et·cos(t) and y(t) = et·sin(t) . Thus
dx
dt = et[cos(t)− sin(t)] .

∗4:

Note F is Pm when K = 1. So, courtesy (??), the speed
function for F is

‖F′(t)‖ = Bet , where B =
√

2.∗5:

For τ ∈ [ ∞, 0), let Λ〈τ〉 be the section of Φ from F(τ)
to Q1. Rotate Λ〈τ〉 about the y = x+3 line L, generating
a surface-of-revolution whose area, A〈τ〉, we now compute.

Note that all of Λ〈τ〉 lies south-east of L. And, measur-
ing in the north-west direction, the signed-distance to L
from a point P := (((a, b))) in the plane, is

D(P ) := [3 + a− b]
/√

2

So the area of the surface is

A〈τ〉 =

∫ 0

τ

Circum︷ ︸︸ ︷
2π ·D(F(t)) ·

ds︷ ︸︸ ︷
‖F′(t)‖dt

= 2π

∫ 0

τ

[
3 + x(t)− y(t)

]
· et dt

=
2π

5

[
18− eτ

[
15 + eτ [3cos(τ)− sin(τ)]

]]
.

(Geometrically, A〈τ〉 must−−−→ 0 as τ↗0, and this formula indeed has

this property.) Also, A〈 ∞〉 = 2π
5
· 18 = 36π

5 .

c
Let Υ be the part of Φ from B := F( π/2) to Q1.

Let R be the region up-from Υ to the x-axis. Let S be the
SoR obtained by rotating R about the x-axis.. Compute
the volume of this SoR.

Using “CrSecArea” to label the area of the cross-section
at time t, formulas (??) yield

Vol(S) =

∫ 0

π/2

CrSecArea︷ ︸︸ ︷
π · y(t)2 ·

Width︷ ︸︸ ︷
dx
dt dt

=
π

15
·
[
1 − 3 · exp

( 3π

2

)]
.

∗6:
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d
Showing the interesting steps, compute from F() the

arclength parametrization A(s) = (((x(s), y(s)))), of the spi-
ral, satisfying that A(0) = F(0).

Using speed fnc (??), the distance traveled by time τ is

s(τ) =

∫ τ

0

Bet dt = [eτ − 1] · B .∗7:

To obtain the time at which the we have traveled a given
distance, we write the inverse-fnc of s() as

τ(s) := log
(

1 +
s

B

)
.∗8:

So the arclen-parametrization is A(s) = F
(
τ(s)

)
. Looking

at the horiz. coord,

x(s) = α
(
τ(s)

)
= [1 + s

B ] · cos
(
log(1 + s

B )
)

=
[
1 + s√

2

]
· cos

(
log(1 + s√

2
)
)
.

C2: 95
α

The quotient and remainder polynomials,

q(x) = 2x3 + x2 − 1
3

& r(x) = 5x2 − x + 2,

satisfy B = [q · C] + r and Deg(r) < Deg(C), where

B(x) := 6x6 + 3x5 − 6x4 + 2x3 + 8x2 + 1 and
C(x) := 3x3 − 3x+ 3.

β
(Solve prob. #16P.548, having replaced “70ft” by “80ft”. We

use Γ :: lb
ft3

for the weight-density of water.)
The dam is inclined at angle θ := 30◦ from vertical. Let

F̂ denote the total hydrostatic force on the tilted dam.
Then

F̂ = cos(θ) · F =
√
3
2 · F ,

where F is the total force on the dam, were the dam ver-
tical. We henceforth compute F.

The dam is an isosceles trapezoid, T, with bottom
and top edges parallel; their lengths are B := 50ft and
B + 2E := 100ft, respectively. So E = 25ft.

The slant-height of T is S := 80ft. Thus the height of T
(distance between parallel edges) is

H :=
√
S2 − E2 . And

A := Area(T)

= Area(Rect) + Area(Triangles) = [B·H] + [E·H] .

The centroid of the B×H rectangle is distance 1
2H be-

low the top edge. The centroid of the two triangles is
distance 1

3H below the top edge. So the 1st-moment of T
w.r.t the top edge is

M := 1
2H·BH + 1

3H·EH

= [12B + 1
3E] ·H2 .

So the distance of Centroid(T) from the top edge is

Y := M
A =

1
2B + 1

3E

B + E
·H .

The pressure at depth Y is ΓY . Thus the total force on
the (vertical) dam is

F = Pressure · Area = ΓY ·A = ΓM .

Consequently,

F = Γ · [ 12B + 1
3E] ·H2

= Γ ·
[
B
2 + E

3

]
· [S2 − E2]

= Γ · 192500 ft3 . Thus,

F̂ = 96250 ·
√
3 · [ft3 · Γ]

≈ 166709.8903 · [ft3 · Γ] .

γ
For M ∈ R, let yM denote the y-coord of the centroid

of RM , the region in the lying above

parabola y = x2 =: B(x) and below
line y = 1 +Mx =: T(x),

whose 1stquadrant-intersection has x-coordinate

U = UM = 1
2

[
M +

√
M2 + 4

]
.‡1:

ITOf M and U=UM , we see that

Area(RM ) =

∫ U

0

Height︷ ︸︸ ︷
[T(x)− B(x)]

Width︷︸︸︷
dx

= U + 1
2
MU2 − 1

3
U3 .

‡2:

To compute the torque about the y=0 line, note that
the vertical cross-section of RM at x has centroid at
height T(x)+B(x)

2 . So the torque equals

Tor(RM ) =

∫ U

0

Lever arm︷ ︸︸ ︷
T(x)+B(x)

2 ·
Area︷ ︸︸ ︷

[T(x)− B(x)] dx

= 1
2
U− 1

10
U5 + 1

6
M2U3 + 1

2
MU2 .

‡3:

Consequently, yM =
Tor(RM )
Area(RM ) .�� ��Case: M = 0 From (??), the x-coord of intersection

is U = 1
2 ·
√

4 = 1. Formulas (??) and (??) give us:

Tor(R0) = 1
2 −

1
10 + 0 + 0

note
==== 2/5 ;

Area(R0) = 1 + 0 − 1
3

note
==== 2/3 .

Thus y0 = 2/5
2/3 = 3/5. (The [M=0]–case can easily be done

directly, without computing general (??),(??) formulas.)
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C3:
z

A multivariate polynomial, where each monomial has

the same degree, is
�� ��homogeneous .

e A
x−4+ B

x+3+ C
x+1

∗
== h(x)

[x−4][x+3][x+1] , where

h(x) := 2x2 − 7x + 2 .

To compute C, multiply both sides of (∗) by x+ 1, then
evaluate at x = 1. This gives

C =
h( 1)

[ 1− 4][ 1 + 3]
=

11

[ 5] · 2
=

11

10
.

f
Having fixed a number G>1, let

y(t) := et·Gsin(t) and

x(t) := et·Gcos(t) .
3a:

Fnc P() :=
(((
x(), y()

)))
parametrizes a spiral Ω. The length

of one wrap of Ω from (((1, 0))) to (((e2πG, 0))) is, from (??),

OneWrapLen =

√
G2 + 12

G
·
[
e2πG − 1

]
.

Let SG denote the slope of Ω at Q := P(0)
note
====(((1, 0))).

When G=0 then our “spiral” is a circle, with verti-

cal slope at Q. So
�



�
	WExpect

[
lim
G→0

SG
]

=∞ . Con-

versely, as G→ ∞ the spiral flattens out near Q; so�



�
	WExpect

[
lim

G→ ∞
SG
]

= 0 .

Having done the preparations, we use (??) to compute:

dy

dx
=

dy/dt

dx/dt
=

G·sin(t) + cos(t)

G·cos(t) − sin(t)
.3b:

Evaluating at t=0 gives SG = 1
G .

g
For the trapezoid-centroid problem, all the ideas are

present in the above solution to the trapezoidal dam prob-
lem.

h
The quotient and remainder polynomials,

q(x) = 2x− 6 and r(x) = 14x+ 12,

satisfy B = [q · C] + r and Deg(r) < Deg(C), where

B(x) := 2x3 and C(x) := x2 + 3x+ 2.

i
That a spiral Ω is equi-angular precisely means that

there is an angle, α, with the following property: For
each point P ∈ Ω, the ray from the center of the spiral
through P makes angle α with the Ω-tangent-line at P .

j
Triangle T, with vertices at (((0,±3))) and (((9, 0))), has

area

A := 3 · 9 = 27 = 33 .

Along a median M of a triangle, the centroid occurs one-
third of the way along M from the edge where the median
terminates. Hence Centroid(T) = (((3, 0))). The closest point
on L, the [y = 3+x]–line, is (((0, 3))), at distance D := 3

√
2.

Rotating T about L produces a SoR with volume

Vol(SoR)
Pappus
====== Circum

(
D-circle

)
· A

= 2πD · A = π · 34 · 2 ·
√

2 .

End of HomeNClass-C-ANS
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