

C1: 195 For $m \in [1, \infty)$, let Ω_m denote the equi-angular spiral which crosses the x -axis at $Q_1 := (1, 0)$ and, one wrap later, at $Q_m := (m, 0)$. (When $m=1$, the “spiral” degenerates into a circle.) Let $\mathbf{P}_m = (\alpha_m, \beta_m)$ be the param’tion of Ω_m st. $\mathbf{P}_m(0) = Q_1$, $\mathbf{P}_m(2\pi) = Q_m$ and $\mathbf{P}_m(t)$ wraps once whenever t increases by 2π .

So $\alpha_m(t) = m^{t/[2\pi]} \cdot \cos(t)$.

& $\beta_m(t) = e^{Kt} \cdot \sin(t)$, where $K := \frac{\log(m)}{2\pi}$.

Viewing \mathbf{P}_m as *position*, we get the *speed fnc*

*0: $\|\mathbf{P}'_m(t)\| = Be^{Kt}$, where $B := \sqrt{K^2 + 1^2}$.

a Length $L_m := \text{Len}_{(\text{wrap})}^{(Q_1 \cup Q_m)} \stackrel{\text{note}}{=} \int_0^{2\pi} Be^{Kt} dt$, which equals

$$\frac{B}{K} \cdot [m-1] = \sqrt{1^2 + [\frac{2\pi}{\log(m)}]^2} \cdot [m-1]$$

*1: $= T_m \cdot [m-1]$. Alternatively,

$$\frac{B}{K} \cdot [m-1] = \frac{\sqrt{K^2+1^2}}{K} \cdot [e^{2\pi K} - 1].$$

Total-len of Ω_m going in to the origin from Q_1 , is

$$T_m = \int_{-\infty}^0 Be^{Kt} dt = \frac{B}{K} = \sqrt{1^2 + [\frac{1}{K}]^2}.$$

*2: An alternative derivation is

$$T_m \stackrel{\text{note}}{=} L_m \cdot \sum_{j=1}^{\infty} \left[\frac{1}{m}\right]^j = \frac{B}{K} = \sqrt{1^2 + [\frac{2\pi}{\log(m)}]^2}.$$

As $m \searrow 1$. Geometry tells us that one wrap of Ω_m tends to the unit-circle. So $\boxed{\text{WExpect } L_m \rightarrow 2\pi \cdot 1}$. And T_m approaches the length of ∞ many trips around the circum of a circle; so $\boxed{\text{WExpect } T_m \rightarrow \infty}$.

Letting $R_m := \frac{m-1}{\log(m)}$, note $[L_m]^2$ equals

$$[m-1]^2 + [2\pi]^2 \cdot [R_m]^2.$$

By l’Hôpital’s theorem

$$*3: \lim_{m \rightarrow 1} R_m = \lim_{m \rightarrow 1} \frac{1}{1/m} \stackrel{\text{note}}{=} 1.$$

Thus

$$[\lim_{m \rightarrow 1} L_m]^2 = 0^2 + [2\pi]^2 \cdot 1^2.$$

Since each L_m is non-negative, $\lim_{m \rightarrow 1} L_m = 2\pi$. □

As $m \nearrow \infty$. Imagine m enormous. Then the portion of Ω_m going in from Q_1 looks like the line-segment from

$(1, 0)$ to $(0, 0)$. So $\boxed{\text{WExpect } \lim_{m \nearrow \infty} T_m = 1}$. And indeed, $\lim_{m \nearrow \infty} \text{RhS}(??)$ equals $\sqrt{1^2}$.

With m huge, look at the plane from a distance m . From that distance, curve L_m appears to be a line-segment from the origin to $(m, 0)$. So $\text{WExpect } L_m$ to be *asymptotic* to m . And from $\text{RhS}(??)$,

$$\lim_{m \nearrow \infty} \frac{L_m}{m} = \left[\lim_{m \nearrow \infty} T_m \right] \cdot \left[\lim_{m \nearrow \infty} \frac{m-1}{m} \right] = 1 \cdot 1,$$

which equals 1, as predicted. □

b Fnc $\mathbf{F}(t) := (x(t), y(t))$ parametrizes the *Friendly* spiral Φ by

$$*4: \quad x(t) = e^t \cdot \cos(t) \quad \text{and} \quad y(t) = e^t \cdot \sin(t). \quad \text{Thus} \\ \frac{dx}{dt} = e^t [\cos(t) - \sin(t)].$$

Note \mathbf{F} is \mathbf{P}_m when $K = 1$. So, courtesy $(??)$, the *speed function* for \mathbf{F} is

$$*5: \quad \|\mathbf{F}'(t)\| = Be^t, \quad \text{where } B = \sqrt{2}.$$

For $\tau \in [-\infty, 0)$, let $\Lambda\langle\tau\rangle$ be the section of Φ from $\mathbf{F}(\tau)$ to Q_1 . Rotate $\Lambda\langle\tau\rangle$ about the $y = x+3$ line \mathbb{L} , generating a surface-of-revolution whose area, $\mathcal{A}\langle\tau\rangle$, we now compute.

Note that all of $\Lambda\langle\tau\rangle$ lies south-east of \mathbb{L} . And, measuring in the north-west direction, the *signed-distance* to \mathbb{L} from a point $P := (a, b)$ in the plane, is

$$\mathcal{D}(P) := [3 + a - b] / \sqrt{2}$$

So the area of the surface is

$$\begin{aligned} \mathcal{A}\langle\tau\rangle &= \int_{\tau}^0 \overbrace{2\pi \cdot \mathcal{D}(\mathbf{F}(t))}^{\text{Circum}} \cdot \overbrace{\|\mathbf{F}'(t)\| dt}^{\frac{ds}{dt}} \\ &= 2\pi \int_{\tau}^0 [3 + x(t) - y(t)] \cdot e^t dt \\ &= \frac{2\pi}{5} \left[18 - e^{\tau} [15 + e^{\tau} [3\cos(\tau) - \sin(\tau)]] \right]. \end{aligned}$$

(Geometrically, $\mathcal{A}\langle\tau\rangle \xrightarrow{\text{must}} 0$ as $\tau \nearrow 0$, and this formula indeed has this property.) Also, $\mathcal{A}\langle-\infty\rangle = \frac{2\pi}{5} \cdot 18 = \frac{36\pi}{5}$.

c Let Υ be the part of Φ from $B := \mathbf{F}(-\pi/2)$ to Q_1 . Let R be the region up-from Υ to the x -axis. Let \mathbb{S} be the SoR obtained by rotating R about the x -axis.. Compute the volume of this SoR.

Using “CrSecArea” to label the area of the cross-section at time t , formulas $(??)$ yield

$$\begin{aligned} *6: \quad \text{Vol}(\mathbb{S}) &= \int_{-\pi/2}^0 \overbrace{\pi \cdot y(t)^2}^{\text{CrSecArea}} \cdot \overbrace{\frac{dx}{dt} dt}^{\text{Width}} \\ &= \frac{\pi}{15} \cdot \left[1 - 3 \cdot \exp\left(\frac{-3\pi}{2}\right) \right]. \end{aligned}$$

d Showing the interesting steps, compute from $\mathbf{F}()$ the arclength parametrization $\mathbf{A}(s) = (x(s), y(s))$, of the spiral, satisfying that $\mathbf{A}(0) = \mathbf{F}(0)$.

Using speed fnc (??), the distance traveled by time τ is

$$*7: \quad s(\tau) = \int_0^\tau B e^t dt = [e^\tau - 1] \cdot B.$$

To obtain the *time* at which we have traveled a given *distance*, we write the inverse-fnc of $s()$ as

$$*8: \quad \tau(s) := \log\left(1 + \frac{s}{B}\right).$$

So the arclen-parametrization is $\mathbf{A}(s) = \mathbf{F}(\tau(s))$. Looking at the horiz. coord,

$$x(s) = \alpha(\tau(s)) = [1 + \frac{s}{B}] \cdot \cos(\log(1 + \frac{s}{B})) \\ = \left[1 + \frac{s}{\sqrt{2}}\right] \cdot \cos\left(\log\left(1 + \frac{s}{\sqrt{2}}\right)\right).$$

C2: 95 **α** The quotient and remainder polynomials,

$$q(x) = 2x^3 + x^2 - \frac{1}{3}$$

$$\& r(x) = 5x^2 - x + 2,$$

satisfy $B = [q \cdot C] + r$ and $\text{Deg}(r) < \text{Deg}(C)$, where $B(x) := 6x^6 + 3x^5 - 6x^4 + 2x^3 + 8x^2 + 1$ and $C(x) := 3x^3 - 3x + 3$.

β (Solve prob. #16^P548, having replaced “70ft” by “80ft”. We use $\Gamma := \frac{1b}{ft^3}$ for the weight-density of water.)

The dam is inclined at angle $\theta := 30^\circ$ from vertical. Let $\hat{\mathbf{F}}$ denote the total hydrostatic force on the tilted dam. Then

$$\hat{\mathbf{F}} = \cos(\theta) \cdot \mathbf{F} = \frac{\sqrt{3}}{2} \cdot \mathbf{F},$$

where \mathbf{F} is the total force on the dam, *were the dam vertical*. We henceforth compute \mathbf{F} .

The dam is an isosceles trapezoid, \mathbb{T} , with bottom and top edges parallel; their lengths are $B := 50\text{ft}$ and $B + 2E := 100\text{ft}$, respectively. So $E = 25\text{ft}$.

The slant-height of \mathbb{T} is $S := 80\text{ft}$. Thus the height of \mathbb{T} (distance between parallel edges) is

$$H := \sqrt{S^2 - E^2}. \quad \text{And}$$

$$A := \text{Area}(\mathbb{T}) \\ = \text{Area}(\text{Rect}) + \text{Area}(\text{Triangles}) = [B \cdot H] + [E \cdot H].$$

The centroid of the $B \times H$ rectangle is distance $\frac{1}{2}H$ below the top edge. The centroid of the two triangles is distance $\frac{1}{3}H$ below the top edge. So the 1st-moment of \mathbb{T} w.r.t the top edge is

$$M := \frac{1}{2}H \cdot BH + \frac{1}{3}H \cdot EH \\ = [\frac{1}{2}B + \frac{1}{3}E] \cdot H^2.$$

So the distance of Centroid(\mathbb{T}) from the top edge is

$$Y := \frac{M}{A} = \frac{\frac{1}{2}B + \frac{1}{3}E}{B + E} \cdot H.$$

The *pressure* at depth Y is ΓY . Thus the total force on the (vertical) dam is

$$\mathbf{F} = \text{Pressure} \cdot \text{Area} = \Gamma Y \cdot A = \Gamma M.$$

Consequently,

$$\mathbf{F} = \Gamma \cdot [\frac{1}{2}B + \frac{1}{3}E] \cdot H^2 \\ = \Gamma \cdot \left[\frac{B}{2} + \frac{E}{3}\right] \cdot [S^2 - E^2] \\ = \Gamma \cdot 192500 \text{ ft}^3. \quad \text{Thus,} \\ \hat{\mathbf{F}} = 96250 \cdot \sqrt{3} \cdot [\text{ft}^3 \cdot \Gamma] \\ \approx 166709.8903 \cdot [\text{ft}^3 \cdot \Gamma].$$

γ For $M \in \mathbb{R}$, let \bar{y}_M denote the *y*-coord of the centroid of R_M , the region in the lying above

parabola $y = x^2 =: \mathcal{B}(x)$ and below line $y = 1 + Mx =: \mathcal{T}(x)$,

whose 1stquadrant-intersection has *x*-coordinate

$$\text{‡1:} \quad \mathbf{U} = \mathbf{U}_M = \frac{1}{2} [M + \sqrt{M^2 + 4}].$$

ITOf M and $\mathbf{U} = \mathbf{U}_M$, we see that

$$\text{‡2:} \quad \text{Area}(R_M) = \int_0^{\mathbf{U}} \overbrace{[\mathcal{T}(x) - \mathcal{B}(x)]}^{\text{Height}} \overbrace{dx}^{\text{Width}} \\ = \mathbf{U} + \frac{1}{2} M \mathbf{U}^2 - \frac{1}{3} \mathbf{U}^3.$$

To compute the *torque* about the $y=0$ line, note that the vertical cross-section of R_M at x has centroid at height $\frac{\mathcal{T}(x) + \mathcal{B}(x)}{2}$. So the torque equals

$$\text{‡3:} \quad \text{Tor}(R_M) = \int_0^{\mathbf{U}} \overbrace{\frac{\mathcal{T}(x) + \mathcal{B}(x)}{2}}^{\text{Lever arm}} \cdot \overbrace{[\mathcal{T}(x) - \mathcal{B}(x)] dx}^{\text{Area}} \\ = \frac{1}{2} \mathbf{U} - \frac{1}{10} \mathbf{U}^5 + \frac{1}{6} M^2 \mathbf{U}^3 + \frac{1}{2} M \mathbf{U}^2.$$

Consequently, $\bar{y}_M = \frac{\text{Tor}(R_M)}{\text{Area}(R_M)}$.

CASE: $M = 0$ From (??), the *x*-coord of intersection is $\mathbf{U} = \frac{1}{2} \cdot \sqrt{4} = 1$. Formulas (??) and (??) give us:

$$\text{Tor}(R_0) = \frac{1}{2} - \frac{1}{10} + 0 + 0 \stackrel{\text{note}}{=} 2/5;$$

$$\text{Area}(R_0) = 1 + 0 - \frac{1}{3} \stackrel{\text{note}}{=} 2/3.$$

Thus $\bar{y}_0 = \frac{2/5}{2/3} = 3/5$. (The $[M=0]$ -case can easily be done directly, without computing general (??), (??) formulas.)

C3: z A multivariate polynomial, where each monomial has the same degree, is homogeneous.

e $\frac{A}{x-4} + \frac{B}{x+3} + \frac{C}{x+1} \stackrel{*}{=} \frac{h(x)}{[x-4][x+3][x+1]}$, where

$$h(x) := 2x^2 - 7x + 2.$$

To compute C , multiply both sides of $(*)$ by $x+1$, then evaluate at $x = -1$. This gives

$$C = \frac{h(-1)}{[-1-4][-1+3]} = \frac{11}{[-5] \cdot 2} = \frac{-11}{10}.$$

f Having fixed a number $G \geq 1$, let

3a: $y(t) := e^{t \cdot G} \sin(t)$ and
 $x(t) := e^{t \cdot G} \cos(t).$

Fnc $\mathbf{P}() := (x(), y())$ parametrizes a spiral Ω . The length of one wrap of Ω from $(1, 0)$ to $(e^{2\pi G}, 0)$ is, from $(??)$,

$$\text{OneWrapLen} = \frac{\sqrt{G^2 + 1^2}}{G} \cdot [e^{2\pi G} - 1].$$

Let S_G denote the slope of Ω at $Q := \mathbf{P}(0) \stackrel{\text{note}}{=} (1, 0)$. When $G=0$ then our “spiral” is a circle, with vertical slope at Q . So WExpect $\lim_{G \rightarrow 0} S_G = \infty$. Conversely, as $G \rightarrow +\infty$ the spiral flattens out near Q ; so WExpect $\lim_{G \rightarrow +\infty} S_G = 0$.

Having done the preparations, we use $(??)$ to compute:

3b: $\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{G \cdot \sin(t) + \cos(t)}{G \cdot \cos(t) - \sin(t)}.$

Evaluating at $t=0$ gives $S_G = \frac{1}{G}$.

g For the trapezoid-centroid problem, all the ideas are present in the above solution to the trapezoidal dam problem.

h The quotient and remainder polynomials,
 $q(x) = 2x - 6$ and $r(x) = 14x + 12$,
satisfy $B = [q \cdot C] + r$ and $\text{Deg}(r) < \text{Deg}(C)$, where
 $B(x) := 2x^3$ and $C(x) := x^2 + 3x + 2$.

i That a spiral Ω is *equi-angular* precisely means that there is an angle, α , with the following property: *For each point $P \in \Omega$, the ray from the center of the spiral through P makes angle α with the Ω -tangent-line at P .*

j Triangle \mathbf{T} , with vertices at $(0, \pm 3)$ and $(9, 0)$, has area

$$\mathcal{A} := 3 \cdot 9 = 27 = 3^3.$$

Along a median M of a triangle, the centroid occurs one-third of the way along M from the edge where the median terminates. Hence Centroid(\mathbf{T}) = $(3, 0)$. The closest point on \mathbb{L} , the $[y = 3+x]$ -line, is $(0, 3)$, at distance $\mathcal{D} := 3\sqrt{2}$. Rotating \mathbf{T} about \mathbb{L} produces a SoR with volume

$$\begin{aligned} \text{Vol(SoR)} &\stackrel{\text{Pappus}}{=} \text{Circum}(\mathcal{D}\text{-circle}) \cdot \mathcal{A} \\ &= 2\pi\mathcal{D} \cdot \mathcal{A} = \pi \cdot 3^4 \cdot 2 \cdot \sqrt{2}. \end{aligned}$$

End of Home&Class-C-ANS