

$$M := \begin{bmatrix} 2 & 7 & 2 & & \\ & 1 & 2 & 4 & \\ 1 & & 1 & & \\ & 1 & 3 & & -2 \end{bmatrix}, \quad B := \begin{bmatrix} -10 & -12 \\ 8 & 10 \end{bmatrix}.$$

Do not make approximations. Write expressions unambiguously e.g., “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with **negative** signs!) Question **C1** is short-answer. Questions **C2, C3** are essay questions.

C1: Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed. (...or if the described matrix does not exist.)

Z Prof. King sometimes gives freebie questions. (Circle one: **True** **Yes** **How would I know?**)

y,x The above matrix B has distinct eigenvalues $\alpha < \beta$. Then $\alpha =$ _____ and $\beta =$ _____. Compute an

integer matrix $Q = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}$

so that $B = Q \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix} Q^{-1}$. Also, $Q^{-1} =$ _____.

a Rank(M) = _____. Det(M) = _____. Nullity(M) = _____.

b Give a basis for $\text{Nul}(M)$ (as col-vecs)
Basis = $\left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\}$

c Give a basis for $\text{ColSpn}(M)$ (as col-vecs)
Basis = $\left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\}$

d Give a basis for $\text{RowSpn}(M)$ (as row-vecs)
Basis = $\left\{ \begin{array}{c} \\ \\ \\ \end{array} \right\}$

e What values of y put $\begin{bmatrix} 1 \\ y \\ 0 \\ 2 \end{bmatrix}$ in $\text{ColSpn}(M)$? [Hint: Either \emptyset , a single number, or \mathbb{R}]

f Consider a 12×12 matrix $A(y)$ populated with numbers, except that $A_{2,6} = A_{3,6} = A_{9,6} = y$. I tell you that $\text{Det}(A(2)) = 4$ and $\text{Det}(A(3)) = 8$. Thus $\text{Det}(A(0)) =$ _____.

a Let P be the 2×2 matrix realizing ortho-projection on the $y = -x$ line through the origin. Then

$$P = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \end{bmatrix}.$$

h Permuting $(1 \dots 6)$ to $(6, 3, 5, 2, 1, 4)$ is (Circle one: **Odd** **Even** **Neither**)

i Let g be the summation poly of $f(t) := 2t^2 - t - 8$ in that $g(n) = \sum_{j=0}^{n-1} f(j)$, for each positive integer n . Then $g(n) =$ $n^3 +$ _____ $n^2 +$ _____ $n +$ _____.

Note. The following four questions ask for an example matrix which is neither the identity nor zero matrix. Give an example of...

j an idempotent matrix: _____.

k a nilpotent matrix: _____.

l an involution matrix: _____.

m a shear _____ with determinant -1 .

C2: On separate sheets of paper, give a careful statement of Cramer's Theorem, defining all the matrix-notation that you use.

For an 20×20 matrix E , let “ $\text{cof}(E, i, j)$ ” be the 19×19 matrix which is E but with row i and col j deleted. Assume now that E is an invertible 20×20 matrix. Let e be the $(3, 7)$ -entry in E^{-1} . Give a formula, ITOf cofactors of E and determinants, for $e =$ _____.

C3: On separate sheets of paper, show all work for this problem, writing in complete sentences that end with visible periods. :-) Consider the unit vector $\mathbf{u} = \frac{1}{5}(0, 3, 4)$. Compute a 2-decimal approximation to the

3×3 matrix R which rotates CCW about \mathbf{u} by 30°. So

$$R = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}.$$

End of Class-C

C1: _____ 420pts

C2: _____ 60pts

C3: _____ 45pts

Total: _____ 525pts

Please PRINT your *name* and *ordinal*. Ta:

Ord:

.....

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature:

.....