

Prof. JLF King
Wednesday, 24Oct2018

C1: Short answer. Show no work.

 A *minimum* requirement for an LOR (letter-of-recommendation) from Prof. K is two courses. Circle:

True

Darn tootin'!

b The basic theory of infinite cardinals was developed by Circle: Abel Alladi Avogadro Bernstein Bertrand Cantor Cauchy Dedekind Fraenkel Gauss Hilbert Russell Shakespeare Zermelo

He started this work in latter half of the Circle:

1400s 1500s 1600s 1700s 1800s 1900s

 For $G := \{1, 2, 3, 4\}$, consider $f:G \rightarrow \mathcal{P}(G)$ by

$$\begin{aligned} f(1) &:= G, & f(2) &:= \{1, 3\}, \\ f(3) &:= \emptyset, & f(4) &:= \{1, 4\}. \end{aligned}$$

The set $B := \{x \in G \mid f(x) \not\geq x\}$ is $\{ \dots \}$.

 The map $f(k, n) := 2^k \cdot [1 + 2n]$ is a bijection from $\mathbb{N} \times \mathbb{N} \leftrightarrow \mathbb{Z}_+$. And $f^{-1}(176) = ($, $).$

A “Cantor’s-Hotel” type bijection $f: (5, 6] \leftrightarrow (0, 1)$ is:

$f(\text{.....}) := \text{.....}$, for each positiv n

and $f(x) :=$, for each $x \in (5, 6] \setminus C$,

where $C \coloneqq$

.....

 Let \mathcal{P}_∞ denote the family of all *infinite* subsets of \mathbb{N} . Define relation \approx on \mathcal{P}_∞ by: $A \approx B$ IFF $A \cap B$ is infinite. Stmt “*This \approx is an equivalence-relation*” is: *T* *F*

g Define $G:[1..12] \rightarrow \mathbb{N}$ where $G(n)$ is the number of letters in the n^{th} Gregorian month. So $G(2) = 8$, since the 2nd month is “February”. The only fixed-point of G is \dots . The set of posints k where $G^{\circ k}(12) = G^{\circ k}(7)$ is \dots .

.....
[January, February, March, April, May, June, July, August, September, October, November, December]

C2: Short answer. Show no work.

Between sets $\mathbf{X} := \mathbb{Z}_+$ and $\mathbf{Y} := \mathbb{N}$, consider injections $f: \mathbf{X} \hookrightarrow \mathbf{Y}$ and $h: \mathbf{Y} \hookrightarrow \mathbf{X}$, defined by

$$f(x) := 3x \quad \text{and} \quad h(y) := y + 5.$$

Schröder-Bernstein produces a set $G \subset h(\mathbf{Y}) \subset \mathbf{X}$ st., letting $U := \mathbf{X} \setminus G$, the fnc $\beta: \mathbf{X} \leftrightarrow \mathbf{Y}$ is a *bijection*, where

$$*: \quad \beta|_U := f|_U \quad \text{and} \quad \beta|_G := h^{-1}|_G.$$

For this (f, h) , the (U, G) pair is unique. Computing,

$$\beta(56) = \text{_____} \quad \beta(137) = \text{_____} \quad \beta^{-1}(603) = \text{_____}$$

↳ ↳ ↳

C1: _____ 145pts

C2: _____ 50pts

Total: _____ 195pts