

C1: *Essay, on your own paper, triple-spaced.***Prove:** THM: There are ∞ many primes.**Start with...** PROOF: FTSOContradiction, suppose

*: $p_1 < p_2 < \dots < p_k < \dots < p_{L-1} < p_L$

is a list of all prime numbers. I will now produce a prime q which *differs* from every member of (*), as follows. (*Continue your proof from here.*)

Short answer. For **(C2)** and **(C3)**, show no work; please fill-in each blank on the problem-sheet.

C2: Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

Z Prof. King believes that writing in complete, coherent sentences is crucial in communicating Mathematics, improves posture, and whitens teeth. Circle one:

True! Yes! **wH'at S a? sEnTENcE**

a Repeating decimal $0.1\overline{14}$ equals $\frac{n}{d}$, where posints $n \perp d$ are $n =$ and $d =$

b Note that $\text{GCD}(15, 21, 35) = 1$. Find particular integers S, T, U so that $15S + 21T + 35U = 1$:

$$S = \dots, T = \dots, U = \dots.$$

[Hint: $\text{GCD}(\text{GCD}(15, 21), 35) = 1$.]

c The number of ways of picking 42 objects from 6 types is $\left[\begin{smallmatrix} 6 \\ 42 \end{smallmatrix} \right] \xrightarrow{\text{Binom coeff}} \left(\dots \right)$. And

$$\left[\begin{smallmatrix} 6 \\ 42 \end{smallmatrix} \right] = \left[\begin{smallmatrix} T \\ N \end{smallmatrix} \right], \text{ where } T = \dots \neq 6, \text{ and } N = \dots.$$

d On \mathbb{Z}_+ , write $x \$ y$ IFF $\text{GCD}(x, y) \geq 2$. So $\$$ is Circle

Transitive: $T \ F.$ **Symm.:** $T \ F.$ **Reflex.:** $T \ F.$

On \mathbb{Z} , say that $x \nabla y$ IFF $x - y < 1$. Then ∇ is:

Trans.: $T \ F.$ **Symm.:** $T \ F.$ **Reflex.:** $T \ F.$

(Be careful on both parts!)

For natnums J_1, J_2, \dots, J_K and $N := \sum_{\ell=1}^K J_\ell$, the **multinomial coefficient** $\left(\begin{smallmatrix} N \\ J_1, J_2, \dots, J_K \end{smallmatrix} \right)$ means

$$\dots \cdot \left(\begin{smallmatrix} N \\ J \end{smallmatrix} \right) \xrightarrow{\text{Using}} \dots \cdot \left(\begin{smallmatrix} 7 \\ 2, 2, 3 \end{smallmatrix} \right) \xrightarrow{\text{Single}} \dots \cdot \left(\begin{smallmatrix} 7 \\ 2, 2, 3 \end{smallmatrix} \right) \xrightarrow{\text{integer}} \dots$$

C3: Posint $N :=$ is such that numbers $N, N+1, N+2, N+3, \dots, N+95$ are each composite. Particular proper divisors in $[2 .. \infty)$ are:

$$N \mid \dots, [N+1] \mid \dots, [N+23] \mid \dots, [N+95] \mid \dots.$$