

Abbrevs. Let **SCC** mean “positively oriented simple-closed-contour”. For a **SCC** C , have \hat{C} be the (open) region C encloses, and let \bar{C} mean C together with \hat{C} . So \bar{C} is $C \cup \hat{C}$; it is automatically simply-connected and is a closed bounded set.

C1: Short answer. Show no work.

Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

[z] The person who completed the proof that $\oint_C f = 0$, when f holomorphic on \hat{C} , was: **Archimedes Argand Abel Euler Gauss Goursat Hadamard Hypatia Lagrange Liouville Morera Picard Rouché Taylor Weierstrass Zeno**

[a] Compute $\int_0^{2\pi} \frac{1}{\cos(\theta) + 6} d\theta =$ _____.

[Hint: $\text{CoV } z = e^{i\theta}$.]

[b] $\int_{-\infty}^{\infty} \frac{1}{[x^2 + 1]^2} dx =$ _____.

[Hint: A \square contour.]

[c] $\int_{-\infty}^{\infty} \frac{\cos(x)}{x^2 + 9} dx =$ _____.

[Hint: A \square contour. Sine is an odd fnc, so $\int_{-\infty}^{\infty} \frac{\sin(x)}{x^2 + 9} dx$ is zero.]

[d] $\text{Res}\left(\frac{e^{2z}}{[z-5]^4}, z=5\right) =$ _____.

[e] $\text{Res}\left(z^4 \cdot e^{1/z}, z=0\right) =$ _____.

OYOP: In grammatical English **sentences**, write your essay on every **third** line (usually), so that I can easily write between the lines.

C2: **i** Carefully state, but DNP [Do Not Prove] Cauchy's Inequality theorem.

ii Define: A function f is **entire** if....
Carefully state, but DNP, Liouville's thm on entire fncs.

iii State the Gauss Mean Value Thm.

iv Derive Gauss-MVT directly from the Cauchy Integral Formula.

End of Class-C

C1: _____ 175pts

C2: _____ 90pts

Total: _____ 265pts