

Hello. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\cdots$.

C1: Show no work.

a The seq. $\vec{g} := (g_n)_{n=-\infty}^{\infty}$ is defined by recurrence

$$g_{n+2} = 3g_{n+1} + -1g_n$$

and initial conditions $g_0 := -1$ and $g_1 := 2$. So its n^{th} term is $g_n = C_1 \cdot \mu^n + C_2 \cdot \nu^n$, where $\mu < \nu$ are real, and

$$\begin{aligned} C_1 &= \text{.....}, \mu = \text{.....}, \\ C_2 &= \text{.....} \text{ and } \nu = \text{.....} \end{aligned}$$

[Hint: The corresponding matrix is $\mathbf{G} := \begin{bmatrix} 3 & -1 \\ 1 & 0 \end{bmatrix}$. And μ, ν are its eigenvalues.]

b $\mathbf{M} := \begin{bmatrix} -7 & 9 & 0 \\ -6 & 8 & 0 \\ 12 & -18 & -1 \end{bmatrix}$ has three real eigenvalues,

$$\alpha = \text{.....} \leq \beta = \text{.....} \leq \gamma = \text{.....}$$

Hence $\begin{bmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & \gamma \end{bmatrix} = \mathbf{U}^{-1} \mathbf{M} \mathbf{U}$, where

$$\mathbf{U} = \left[\begin{array}{c|c|c} & & \\ \hline & & \\ \hline & & \end{array} \right].$$

$$\text{c} \quad \mu = \text{.....} \leq \nu = \text{.....}$$

are the eigenvalues of $\mathbf{G} := \begin{bmatrix} 3 & 1 \\ 5 & 2 \end{bmatrix}$. Let $\mathbf{D} := \begin{bmatrix} \mu & 0 \\ 0 & \nu \end{bmatrix}$. Then

$\mathbf{D} = \mathbf{U}^{-1} \mathbf{G} \mathbf{U}$ where the 2×2 integer matrix \mathbf{U} is

$$\mathbf{U} = \left[\begin{array}{c|c} & \\ \hline & \\ \hline & \end{array} \right].$$

d The 3×3 elem-matrix whose lefthand action adds

8 times row-2 to row-1 is

$$\left[\begin{array}{c|c|c} & & \\ \hline & & \\ \hline & \text{---} & \text{---} \end{array} \right].$$

e Suppose T is a linear map from \mathbb{R}^3 to \mathbb{R}^2 . Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard basis for \mathbb{R}^3 , and let $\{\mathbf{v}_1, \mathbf{v}_2\}$

be the standard basis for \mathbb{R}^2 . Suppose that $T(\mathbf{e}_1) = 17\mathbf{v}_1 - 2\mathbf{v}_2$ and $T(\mathbf{e}_2) = 6\mathbf{v}_2$ and $T(\mathbf{e}_3) = -4\mathbf{v}_1 - 3\mathbf{v}_2$.

Then the matrix of T is:

f Let $\mathbf{v}_1 := \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$, $\mathbf{v}_2 := \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$, $\mathbf{v}_3 := \begin{bmatrix} 4 \\ 3 \\ Y \end{bmatrix}$, So $\mathbf{v}_3 \in \text{Span}(\mathbf{v}_1, \mathbf{v}_2)$ when $W = \text{.....}$ & $Y = \text{.....}$. And $\mathbf{v}_3 = \alpha\mathbf{v}_1 + \beta\mathbf{v}_2$, where $\alpha = \text{.....}$ and $\beta = \text{.....}$.

Essay question: On your own sheets of paper, write a soln using complete sentences, explaining a bit about HOW this problem is solved.

C2: Let $\mathbf{B} := \begin{bmatrix} 0 & 7 & 3 \\ 1 & 0 & -1 \\ 0 & 2 & 1 \end{bmatrix}$. Please write its inverse matrix as a product of elementary matrices. Please write, below each matrix, the corresponding row-operation symbol: $\mathbb{S}_{i,j}$ (switch two rows), $\mathbb{M}_{i,\beta}$ (mult. Row_i by β), $\mathbb{A}_{i,(\alpha,j)}$ (to Row_i add $\alpha \cdot \text{Row}_j$).

$$\mathbf{B}^{-1} = \text{.....}$$

C3: The fol. 2×2 matrix does not have...

$$\mathbf{B} := \left[\begin{array}{c|c} & \\ \hline & \end{array} \right]$$

...an eigenbasis, because the algebraic multiplicity of e-val $\mu = \text{.....}$ strictly exceeds its geometric multiplicity. Show me this by rref-ing the matrix $\mathbf{B} - \mu\mathbf{I}$ and showing that it has too few free-cols.

C1: _____ 190pts

C2: _____ 45pts

C3: _____ 50pts

Total: _____ 285pts

Print name _____ Ord: _____

HONOR CODE: *“I have neither requested nor received help on this exam other than from my professor.”*

Signature: _____