

C1: SHORT ANSWER. Fill in the blanks below, expressing your answer in simplest form unless otherwise indicated. Write **DNE**, for “Does Not Exist”, if the indicated operation cannot be performed.

Do not make approximations. **Show no work.** There is no partial credit for this question, so carefully verify that you have written what *you* mean. In particular, make sure that you write expressions unambiguously, e.g the expression “ $1/a + b$ ” should be parenthesized either $(1/a) + b$ or $1/(a + b)$ so that I know your meaning. Be careful with negative signs. [Points $30 * 10 = 300$]

$$A := \begin{bmatrix} 1 & 1 & 2 \\ 2 & 5 & 1 \\ 1 & 2 & -1 \\ 1 & 1 \end{bmatrix}, \quad B := \begin{bmatrix} -1 & -1 \\ 2 & -4 \end{bmatrix}, \quad C := \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}.$$

(a1) $\text{rank}(A) = \boxed{\dots}$ $\text{nullity}(A) = \boxed{\dots}$

(a2) Give a basis for $\text{Null}(A)$. (Write the vectors vertically.) $\text{Basis} = \left\{ \begin{bmatrix} \end{bmatrix} \right\}$

(a3) Give a basis for $\text{Row}(A)$. (Write the transpose of each vector.) $\text{Basis} = \left\{ \begin{bmatrix} \end{bmatrix} \right\}$

(a4) Give a basis for $\text{Col}(A)$. $\text{Basis} = \left\{ \begin{bmatrix} \end{bmatrix} \right\}$

(a5) What value of y puts $\begin{bmatrix} 1 \\ y \\ 3 \\ 3 \end{bmatrix}$ in $\text{Col}(A)$? $y = \boxed{\dots}$

(b1) Compute the char. poly $\text{cp}_B(x) = \boxed{\dots}$, and set of eigen-values: $\{ \boxed{\dots} \}$.

Let α denote the more-positive eigenvalue, and β the more-negative. Compute a B -eigenvector, \mathbf{v}_α , for α ; compute a B -eigenvector, \mathbf{v}_β , for β : $\mathbf{v}_\alpha = \boxed{\dots}$, $\mathbf{v}_\beta = \boxed{\dots}$

(c) Let $p()$ be the smallest degree polynomial such that $p(-1) = 1 = p(1)$ and $p(3) = 13$. Then $p(x) = \boxed{\dots}$

(d) Write $\det(C)$ as a degree-3 polynomial in the 9 variables a, b, \dots, h, i . $\det(C) = \boxed{\dots}$

(e) $E(y)$ is a 10×10 matrix populated (Thanks Scott!) with numbers, except that $E_{5,4} = E_{5,9} = y$. I tell you that $\det(E(1)) = 1$ and $\det(E(2)) = 3$. $\det(E(3)) = \boxed{\dots}$

C2: [70 Points] This continues from the matrix B from problem C1(b). Please show the steps for this problem (and also fill-in the blanks):

Just as we did in class, compute a 2×2 change-of-basis matrix M so that $M^{-1} \begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix} M = B$.

Let z denote the entry in position (2,1) of matrix B^{100} . Write z as a linear combination of α^{100} and β^{100} (using the actual values of α and β , of course.)

$$M = \boxed{\dots}$$

$$z = \boxed{\dots}$$

Bonus [15 Points] Make up a nice Linear Algebra problem –something creative. You do not necessarily need to know how to solve it.

Filename: **c-cl.LinC1998g.ams.tex**

As of: *Mon Apr 20, 1998* Typeset: *6September2015*