

Staple!

Linear Algebra
MAS4105 6137

Class-C

Prof. JLF King
Tuesday, 09Feb2016

C1: Show no work. Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0$. Symbol B^t means the transpose of matrix B .

a In \mathbb{R}^3 , let $u := (8, 5, -1)$, $v := (1, 0, -4)$ and $w := (13, 10, 10)$. Then $w \in \text{Line}(u, v)$: T F
Then $w \in \text{Span}(u, v)$: T F
Then $\text{Span}(u, v, w) = \mathbb{R}^3$: T F

b VS $V := \text{MAT}_{4 \times 4}(\mathbb{R})$ is a 16-dim' al \mathbb{R} -VS. Define lin.trn $D: V \rightarrow V$ by $D(M) := M + M^t$. Then Nullity(D) = . And Rank(D) = .

The trn $U: V \rightarrow V$ by $U(M) := M^2$ is: Circle best
Linear Affine (but not linear) Not-affine

c In each blank below, write either “there exist” or “for all”, one of the underlined scalar-pairs, and a phrase.

Assertion $\text{Span}(v, w) \supset \text{Span}(x, y)$ means:
 scalars a, b | c, d (st. | we have that | and)
 scalars a, b | c, d (st. | we have that)
 $av + bw = cx + dy$.

d Here, let AT mean “Always True”, AF mean “Always False” and Nei mean “Neither always true nor always false”. Below, v, w, x repr. *distinct, non-zero* vectors in \mathbb{R}^4 , a \mathbb{R} -VS. Please the correct response:

y1 If $x \notin \text{Span}\{v, w\}$ then $\{v, w, x\}$ is linearly independent. AT AF Nei

y2 Collection $\{0, x\}$ is linearly-independent. AT AF Nei

y3 $\text{Span}\{v, w, x, v + 2w + 3x\}$ is all of \mathbb{R}^4 . AT AF Nei

y4 If none of v, w, x is a multiple of the other vectors, then $\{v, w, x\}$ is linearly independent. AT AF Nei

y5 For 2×2 matrices: $\text{Det}(B + A) = \text{Det}(B) + \text{Det}(A)$. AT AF Nei

Ord: Let R_θ be the std. rotation [by θ] matrix. With

$$C := \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix} \quad \text{and} \quad B := \begin{bmatrix} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{bmatrix},$$

the product $[CB]^{35} = \alpha \cdot R_\theta$, with $\alpha = \dots \in \mathbb{R}_+$ and $\theta = \dots \in (-180^\circ, 180^\circ]$. [Hint: Don't multiply matrices. Geometrically, C and B represent what linear-trns?]

C3: OYOP: Essay: *Write on every **third** line, so that I can easily write between the lines.*

i On your essay-paper, write “A 5×7 matrix M is in Reduced Row-Echelon Form *IFF*...” and complete the paragraph (with one or more sentences) to give a formal defn of RREF.

ii Give a careful proof of the...

1: RREF Uniqueness Theorem. Consider two 5×7 RREF matrices A and B . If A is row-equivalent to B , then $A = B$. \diamond

Start your argument with “Proof of the RREF Uniqueness Thm” and end it with “QED”.

End of Class-C

C1: _____ 145pts

C3: _____ 65pts

Total: _____ 210pts

Please PRINT your name and ordinal. Ta:

Ord:

.....

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature:

.....