

C1: Show no work. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

[z] A multivariate polynomial, where each monomial has the same degree, is circle

monogamous atrocious gregarious
monic expialadocious homogeneous
manic unitary Unitarian utilitarian

[a] Suppose C and A are 3×3 matrices s.t $\text{Det}(C) = \frac{1}{2}$ and $\text{Det}(A) = 5$. Then

$$\text{Det}(C^{-1}AC^t A^t AC^t) = \text{_____}.$$

[b] Let \mathbb{S}_8 denote the set of permutations of $[1 \dots 8]$. For an 8×8 matrix $M = [\beta_{i,j}]_{i,j}$, write the “Generalized-diagonal formula”

$$\text{Det}(M) = \sum \left[\text{_____} \right].$$

[c] $M := \begin{bmatrix} 7 & 0 \\ 1 & 2 \end{bmatrix}$. Compute M^{-1} over these three fields.
[Write your \mathbb{Z}_p answers using symmetric residues.]

$$\text{Over } \mathbb{Z}_5: M^{-1} = \text{_____}. \text{ Over } \mathbb{Z}_7: M^{-1} = \text{_____}.$$

$$\text{Over } \mathbb{Q}: M^{-1} = \text{_____}.$$

$$\text{[d]} \quad \mu = \text{_____} \leq \nu = \text{_____}$$

are the eigenvalues of $G := \begin{bmatrix} 2 & 3 \\ 4 & 1 \end{bmatrix}$. Let $D := \begin{bmatrix} \mu & 0 \\ 0 & \nu \end{bmatrix}$. Then $D = U^{-1}GU$ where the 2×2 integer matrix U is

$$U = \left[\begin{array}{c|c} \text{_____} & \text{_____} \\ \hline \text{_____} & \text{_____} \end{array} \right].$$

OYOP: Essays: *Write on every third line, so that I can easily write between the lines. In grammatical English sentences, prove the following:*

C2: DEFN: A collection $\mathcal{C} := \{\mathbf{U}_1, \dots, \mathbf{U}_K\}$ of subspaces is linearly-independent if: . . .

THM: For linear-transformation $T: \mathbf{V} \rightarrow \mathbf{V}$, eigenspaces $\mathbf{W}_1, \dots, \mathbf{W}_8$ have (distinct) eigenvalues β_1, \dots, β_8 . Prove that $\mathcal{D} := \{\mathbf{W}_1, \dots, \mathbf{W}_8\}$ is linearly-independent.

C3: Matrix $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$, where A and D are 5×5 and 7×7 , resp. Suppose C is the 7×5 zero-matrix. Prove that $\text{Det}(M) = \text{Det}(A) \cdot \text{Det}(D)$. [Hint: A good picture helps.]

End of Class-C

C1: _____ 130pts

C2: _____ 55pts

C3: _____ 55pts

Total: _____ 240pts