

OYOP: For the 2 Essays: *Write your grammatical English sentences on every third line, so that I can easily write between the lines.*

C1: DEFN: A collection $\mathcal{C} := \{\mathbf{W}_1, \dots, \mathbf{W}_8\}$ of subspaces is *linearly-independent* if: . . .

THM: For linear-transformation $T: \mathbf{V} \rightarrow \mathbf{V}$, eigenspaces $\mathbf{W}_1, \dots, \mathbf{W}_8$ have (distinct) eigenvalues β_1, \dots, β_8 . Prove that $\mathcal{D} := \{\mathbf{W}_1, \dots, \mathbf{W}_8\}$ is linearly-independent.

C2: Matrix $\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{Z} & \mathbf{D} \end{bmatrix}$, where \mathbf{A} and \mathbf{D} are 5×5 and 7×7 , resp., and \mathbf{Z} is 7×5 . Prove that if a GD (generalized diagonal) passes through the \mathbf{B} block, then it passes through \mathbf{Z} .

Short answer, OYOP:

C3: A system of 3 linear equations in unknowns x_1, \dots, x_5 reduces to the augmented matrix

$$\left[\begin{array}{ccccc|c} 5 & 4 & 0 & 0 & -9 & -7 \\ 0 & 0 & 3 & 0 & 8 & -3 \\ 0 & 0 & 0 & 2 & 1 & 0 \end{array} \right], \text{ which is in RREF.}$$

Please circle each pivot entry.

OYOP, describe the general solution in this form,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \alpha \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \beta \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \gamma \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \dots$$

where each $\alpha, \beta, \gamma, \delta, \dots$ is a free variable (either x_1 or... or x_5), and each column vector has specific numbers in it. $\text{Dim}(\text{SolnFlat}) =$

C4: Show no work.

Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a Let $\mathbf{M}(x) := \begin{bmatrix} 3x-2 & 7x^4-8 & 10 \\ 5 & 9x-2 & 2x-8 \\ 8x & x^5-2 & x^3+2 \end{bmatrix}$.

The high-order term of polynomial $\text{Det}(\mathbf{M}(x))$ is Cx^N ,

where $C =$ and $N =$

b Let \mathbb{S}_8 denote the set of permutations of $[1 \dots 8]$. For an 8×8 matrix $\mathbf{M} = (\beta_{i,j})_{i,j}$, write the “Generalized-diagonal formula”

$$\text{Det}(\mathbf{M}) =$$

.....

c Let $\mathbf{v}_1 := \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$, $\mathbf{v}_2 := \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$, $\mathbf{v}_3 := \begin{bmatrix} 4 \\ Y \\ 3 \end{bmatrix}$. Our \mathbf{v}_3 is in $\text{Span}(\mathbf{v}_1, \mathbf{v}_2)$ when number $Y =$ And then, $\mathbf{v}_3 = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2$, where $\alpha =$ and $\beta =$

d The seq. $\vec{g} := (g_n)_{n=-\infty}^{\infty}$ is defined by recurrence

$$g_{n+2} = 3g_{n+1} + 4g_n$$

and initial conditions $g_0 := -1$ and $g_1 := 11$. So its n^{th} term is $g_n = C_1 \cdot \mu^n + C_2 \cdot \nu^n$, where $\mu < \nu$ are real, and

$$C_1 =$$

.....

$$C_2 =$$

.....

[Hint: The corresponding matrix is $\mathbf{G} := \begin{bmatrix} 3 & 4 \\ 1 & 0 \end{bmatrix}$. And μ, ν are its eigenvalues.]