

C1: With \mathbf{V} a vectorspace over field \mathbf{F} , suppose $\mathbf{W}_1, \mathbf{W}_2, \mathbf{W}_3, \dots \subset \mathbf{V}$ are subspaces. Define sets

$$\mathbf{X} := \mathbf{W}_1 \cup \mathbf{W}_2; \quad \mathbf{S} := \left\{ \mathbf{u} + 2\mathbf{v} \mid \begin{array}{l} \mathbf{u} \in \mathbf{W}_1 \text{ and} \\ \mathbf{v} \in \mathbf{W}_2 \end{array} \right\};$$

$$\mathbf{Y} := \bigcap_{n=1}^{\infty} \mathbf{W}_n.$$

OYOSOP, *prove*, or give an *explicit CEX* (field, VS and vectors/scalars) to: "Set \mathbf{X} is a VS." Ditto \mathbf{S} and \mathbf{Y} .

C2: Matrix \mathbf{R} equals $RREF(\mathbf{S})$, where \mathbf{S} is

$$\begin{bmatrix} 0 & 1 & 2 & 0 & 0 & 2 & 1 \\ 0 & 1 & 2 & 1 & -1 & 3 & -1 \\ 0 & -1 & -2 & -1 & 2 & -3 & 3 \\ 0 & 2 & 4 & 1 & -1 & 5 & 0 \end{bmatrix} \text{ and } \mathbf{R} := \begin{bmatrix} 0 & 1 & 2 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

So $\text{Rank}(\mathbf{S}) = \text{_____}$ and $\text{Nullity}(\mathbf{S}) = \text{_____}$.

OYOSOP, as col-vecs, write a basis \mathcal{A} for $\text{Range}(L_{\mathbf{S}})$. As column-vectors, write a basis \mathcal{B} for $\text{Ker}(L_{\mathbf{S}})$.

C3: a On $\mathbf{V} := \text{MAT}_{5 \times 3}(\mathbb{Q})$, the map $T: \mathbf{V} \rightarrow \mathbf{V}$ by $T(\mathbf{A}) := RREF(\mathbf{A})$ is \mathbb{Q} -linear. T F

The map $\text{PLY}_3 \rightarrow \text{PLY}_3$ which sends $f \mapsto g$, where $g(x) := x \cdot f'(x+5)$, is: Circle best Linear Affine Neither

b Let \mathbf{R}_θ be the std. rotation [by θ] matrix. With

$$\mathbf{E} := \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix} \quad \text{and} \quad \mathbf{D} := \begin{bmatrix} \sqrt{2} & -\sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{bmatrix},$$

the product $[\mathbf{E} \mathbf{D}]^{23} = \alpha \cdot \mathbf{R}_\theta$, with $\alpha = \text{_____} \in \mathbb{R}$

and $\theta = \text{_____} \in (-180^\circ, 180^\circ]$. [Hint: Don't multiply matrices. Geometrically, \mathbf{E} and \mathbf{D} represent what lin-trns?]

c With \mathbf{C} the change-of-basis matrix from $\mathcal{E} := (1, x, x^2)$ to $\mathcal{B} := (3x + 5x^2, x + 2x^2, 1)$, then \mathbf{C}^{-1} equals

$$\left[\begin{array}{c|c|c} & & \\ \hline & & \\ \hline & & \end{array} \right], \quad \mathbf{C} = \left[\begin{array}{c|c|c} & & \\ \hline & & \\ \hline & & \end{array} \right].$$

d The determinant of $\mathbf{M} := \begin{bmatrix} 3 & 4 & 5 \\ 0 & 5 & -1 \\ 0 & 7 & -2 \end{bmatrix}$ is _____. The

char-poly of \mathbf{M} is $Ax^3 + Bx^2 + Cx + D$, where $B = \text{_____}$
and $C = \text{_____}$.