

I give permission for Prof. King to email my grades to my ufl.edu address. Circle: Yes No

Notation. For the Laplace transform of f , use $\mathcal{L}(f) = \hat{f}$. Use \mathcal{L}^{-1} for the inverse Laplace-transform operator.

C1: Show no work.

a If $\lim_{x \rightarrow 0^+} 8/x$ equals ∞ , then $\lim_{x \rightarrow 0^+} 5/x$ is **Circle**:
Prof. King's beret. Colored chalk.

b Fnc $y_{\alpha,\beta}(t) = \alpha e^{At} + \beta e^{Bt} + P \cdot \sin(t) + Q \cdot \cos(t)$ is the general soln to

$$*: 3y'' + 4y' + y = \cos(t),$$

with numbers $A = \underline{\dots}$, $B = \underline{\dots}$, $P = \underline{\dots}$, $Q = \underline{\dots}$.

Also, the *constants* on LhS(*) are 3, 4, 1. With the DE describing the position of a spring, the *constant* corresponding to Hooke's constant is $\underline{\dots}$.

c Fncts $x(t)$ and $y(t)$ satisfy this system of DEs,

$$\begin{aligned} x' + 4x - y &= 0, \\ y' + 2x + 7y &= 0. \end{aligned}$$

It can be written $\mathbf{Y}' = \mathbf{G} \cdot \mathbf{Y}$,

where $\mathbf{Y} := \begin{bmatrix} x \\ y \end{bmatrix}$ and \mathbf{G} is matrix

Characteristic poly of \mathbf{G} is $\rho_{\mathbf{G}}(z) = \underline{\dots}$

A soln has $x(t)$ a linear combination of $e^{\alpha t}$ and $e^{\beta t}$ for numbers $\alpha = \underline{\dots}$ and $\beta = \underline{\dots}$.

d Matrices $\mathbf{G}, \mathbf{A}, \mathbf{P}$ are 3×3 , with \mathbf{G} invertible and \mathbf{P} nilpotent.

Matrix $\mathbf{G}\mathbf{P}\mathbf{G}^{-1}$ is nilpotent: **AT** **AF** **Nei**

Each entry of $e^{t\mathbf{P}}$ is a polynomial: **AT** **AF** **Nei**

Matrix $e^{\mathbf{P}}$ is nilpotent: **AT** **AF** **Nei**

\mathbf{P}^2 is the zero-matrix: **AT** **AF** **Nei**

The mult-inverse of $e^{\mathbf{G}}$ is $-e^{\mathbf{G}}$: **AT** **AF** **Nei**

Matrix $e^{[\mathbf{A}^2]}$ equals $[e^{\mathbf{A}}]^2$: **AT** **AF** **Nei**

e U.F. $x = x(t)$ satisfies $2x^{(3)} + 5x^{(2)} - x = 0$.

Then $\mathbf{Y} := \begin{bmatrix} x \\ x' \\ x'' \end{bmatrix}$ satisfies $\mathbf{Y}' = \mathbf{M} \cdot \mathbf{Y}$, where \mathbf{M} is this 3×3 matrix of numbers:

$$\mathbf{M} = \begin{bmatrix} \underline{\dots} & \underline{\dots} & \underline{\dots} \\ \underline{\dots} & \underline{\dots} & \underline{\dots} \\ \underline{\dots} & \underline{\dots} & \underline{\dots} \end{bmatrix}.$$

f We can re-write function

$$f(t) := 2 \cdot \cos\left(\frac{11}{6}\pi + 4t\right) + \sqrt{3} \cdot \cos(\pi + 4t)$$

as $f(t) = R \cdot \cos(\theta + 4t)$, for real numbers

$$R = \underline{\dots} \geq 0 \text{ and } \theta = \underline{\dots} \in [0, 2\pi).$$

[Hint: OYOP, write $\cos()$ as the real-part of $\exp(\text{something})$, and *Draw Yourself a large Useful Picture* in the complex plane.]

g Suppose $y(0) = -1$, $y'(0) = 5$, $y''(0) = 2$. Then $\mathcal{L}(y^{(3)} + y^{(2)} - 4y)(s)$ equals $[[B(s) \cdot \hat{y}(s)] + C(s)]$ for **polynomials**

$$C(s) = \underline{\dots} \text{ and } B(s) = \underline{\dots}.$$

End of C-Class

C1: 185pts

Total: 185pts