

Staple!

Differential Eqns C-Class Prof. JLF King
MAP2302 Touch: 17Oct2017

Ord: _____

Bonjour. Write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.

Write expressions unambiguously e.g., “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with negative signs!)

Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\dots$

Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g., write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$.

C1: Show no work.

a A soln to $[f'' - 3f'](x) = 14 - 6x$ is polynomial $f(x) = \dots$. Using parameters α and β , then, the general solution to $[h'' - 3h'](x) = 14 - 6x$ is

$$h_{\alpha, \beta}(x) = \dots$$

And the h with $h(0) = 0$ and $h'(0) = 0$ is $h(x) = \dots$

b Consider linear DiffOp

$$V(y) := ty'' - [1+t]y' + y.$$

Verify [for yourself] that $V(Y_0) = 0$ and $V(Y_1) = 0$, where $Y_0 := e^t$ and $Y_1 := 1+t$. Their Wronskian is $W(Y_0, Y_1) = \dots$. Then VoP tells us that $y_{\alpha, \beta} := \dots$ is the general soln to $V(y_{\alpha, \beta}) = 3t^2$.

c DiffOperators **P, Q, R, S** are defined as

$$\begin{aligned} \mathbf{P}(f) &:= f(3) \cdot f', & \mathbf{Q}(f) &:= \cos(3) \cdot f^{(3)}, \\ \mathbf{R}(f) &:= [\cos(3) \cdot f] + f'', & \mathbf{S}(f) &:= \cos(3) + [3f']. \end{aligned}$$

Then ... **P** is linear: $T F$. **Q** is linear: $T F$.
R is linear: $T F$. **S** is linear: $T F$.

d We have $[6\cos(4t) - 10\sin(4t)]e^{7t} = \alpha e^{Ut} + \beta e^{\bar{U}t}$, for [possibly complex] numbers

$$\alpha = \dots, \beta = \dots, U = \dots$$

OYOP: In grammatical English sentences, write your essay on every **third** line (usually), so that I can easily write between the lines.

C2: Brine with $5 \frac{\text{lb}}{\text{gal}}$ salt flows at rate $1 \frac{\text{gal}}{\text{min}}$ into a tank that initially held 100gal of $2 \frac{\text{lb}}{\text{gal}}$ -salt brine. The tank is well-mixed, and brine is flowing *out* at rate $3 \frac{\text{gal}}{\text{min}}$. So the tank will empty in minutes.

At time t , let $\sigma(t)$ denote the tank-salinity [in lb/gal] and use $y(t)$ for the total number of pounds of salt in the tank.

Explain how to derive a DE for $y()$. Don't just pull a DE out of the air; **explain**, using *Text* and *Pictures*, how it comes from the physical situation. Now re-write the DE in linear-DE form. Use FOLDE to solve the DE. Dividing by the amount of water in the tank at time t , gives this formula for the salinity:

$$\sigma(t) = \left[\dots \right] \frac{\text{lb}}{\text{gal}}.$$

As the tank approaches empty, its salinity approaches $\frac{\text{lb}}{\text{gal}}$. **Do Not Approximate.**

End of C-Class

C1: _____ 105pts

C2: _____ 80pts

Total: _____ 185pts

Please PRINT your name and ordinal. Ta:

Ord:

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor.*

Signature: